MASK: Redesigning the GPU Memory Hierarchy to Support Multi-Application Concurrency

Rachata Ausavarungnirun

Vance Miller Joshua Landgraf Saugata Ghose Jayneel Gandhi Adwait Jog Christopher J. Rossbach Onur Mutlu

GPU 2 (Virginia EF)

Tuesday 2PM-3PM

ETH Zürich

Carnegie Mellon

Enabling GPU Sharing with Address Translation

Enabling GPU Sharing with Address Translation

High TLB contention

High TLB contention

Inefficient caching

High TLB contention

Inefficient caching

Address translation is latency-sensitive

Our Solution

MASK: A Translation-aware Memory Hierarchy

Three Components of MASK

Three Components of MASK

TLB-fill Tokens

Reduces TLB contention

Shared TLB

Three Components of MASK

TLB-fill Tokens

Reduces TLB contention

Translation-aware L2 Bypass

Improves L2 cache utilization

MASK: Redesigning the GPU Memory Hierarchy to Support Multi-Application Concurrency

Rachata Ausavarungnirun

Vance Miller Joshua Landgraf Saugata Ghose Jayneel Gandhi Adwait Jog Christopher J. Rossbach Onur Mutlu

GPU 2 (Virginia EF)

Tuesday 2PM-3PM

ETH Zürich

Carnegie Mellon

