MASK: Redesigning the GPU
Memory Hierarchy to Support
Multi-Application Concurrency

Rachata Ausavarungnirun

Vance Miller Joshua Landgraf Saugata Ghose
Jayneel Gandhi AdwaitJog ChristopherJ. Rossbach Onur Mutlu

Carnegie Mellon TEXAS
ETH..., Vmware M

SAFARI

Executive Summary

Problem: Address translation overheads
limit the latency hiding capability of a GPU

High contention at the shared TLB

Low L2 cache utilization
Large performance loss vs. no translation

Key Idea
Prioritize address translation requests over data requests

MASK: a GPU memory hierarchy that

A. Reduces shared TLB contention
B. Improves L2 cache utilization
C. Reduces page walk latency

MASK improves system throughput by 57.8% on average

over state-of-the-art address translation mechanisms
SAFARI ’

Outline

* Background, Key Challenges and Our Goal

SAFARI

Why Share Discrete GPUs?

* Enables multiple GPGPU applications to
run concurrently

e Better resource utilization

* An application often cannot utilize an entire GPU
* Different compute and bandwidth demands

* Enables GPU sharing in the cloud
* Multiple users spatially share each GPU

(Key requirement: fine-grained memory protection J

SAFARI

State-of-the-art Address Translation in GPUs

‘ Private TLB \ ‘ Private TLB \ ‘ Private TLB \ ‘ Private TLB \

SAFARI

Prlvate

Shared TLB

>

Page Table

Walkers

]

Page Table
(in main memory)

A TLB Miss Stalls Multiple Warps

Data in a page is
shared by many threads

— N
— —
All threads
access the same page

[=0
ivate TLB rivate TLB

Shared TLB

>

Page Table
Walkers

]

SAFARI

Page Table
(in main memory)

Multiple Page Walks Happen Together

Data in a page is

shared by many threads

GPU’s parallelism creates
parallel page walks

— N
— —
All threads
access the same page

’ = 0
ivate TLB rivate TLB

Shared TLB

>

Page Table
Walkers

11813

SAFARI

Page Table
(in main memory)

Effect of Translation on Performance

m |deal SharedTLB PWCache

0 0.2 04 0.6 0.8 1
Normalized Performance

SAFARI

Effect of Translation on Performance

mldeal 0O SharedTLB

0 0.2 04 0.6 0.8 1
Normalized Performance

SAFARI

Effect of Translation on Performance

mildeal O SharedTLB w®mPWCache

| 37.4%

0 0.2 04 0.6 0.8 1
Normalized Performance

What causes the large performance loss?
SAFARI .

Problem 1: Contention at the Shared TLB

* Multiple GPU applications contend for the TLB

m Alone

' '

App1 App2 i App1 App2 | App1 App2 App1 App?2
3DS HISTO CONS LPS ' MUM_HISTO RED_RAY

COOoO00
=) SR NYo Ro Na)
|

L2 TLB Miss Rate
(Lower is Better)

SAFARI .

Problem 1: Contention at the Shared TLB

* Multiple GPU applications contend for the TLB

m Alone m Shared

ddaalldai

App1 App2 { App1 App2 | App1 App2 App1 App2
3DS HISTO CONS LPS ' MUM_HISTO RED_RAY

COOoO00
=) SR NYo Ro Na)

L2 TLB Miss Rate
(Lower is Better)

(Contention at the shared TLB leads to lower performance)

SAFARI .

Problem 2: Thrashing at the L2 Cache

e L2 cache can be used to reduce page walk latency
—> Partial translation data can be cached

* Thrashing Source 1: Parallel page walks
- Different address translation data evicts each other

* Thrashing Source 2: GPU memory intensity
- Demand-fetched data evicts address translation data

(L2 cache is ineffective at reducing page walk latency J

SAFARI -

Observation: Address Translation Is Latency Sensitive

* Multiple warps share data from a single page

%40 l
oS 30 - l
ga 20 -
D -
(Dq,10—
S c |
go O "%+t —°—°t+°r° 1+ ° 1> 7717717 1" T T 71T
- NAXALANDFFNONOONAISSZ §o>oooza>oo)
(<7 QN oL Zlblo T30S F<Wu<n<<cOosS<xy 2
o ™ o Oomfam m4444§§ “odx v OWEZP o
O O n nn <
<

(A single TLB miss causes 8 warps to stall on average]

SAFARI

Observation: Address Translation Is Latency Sensitive

* Multiple warps share data from a single page

* GPU’s parallelism causes multiple concurrent page walks

o)
o

Concurrent
Page Walks
AN
o

—
=
=
%— =
—
=

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

(High address translation latency = More stalled warps J

SAFARI -

Our Goals

 Reduce shared TLB contention

* Improve L2 cache utilization

* Lower page walk latency

SAFARI

16

Outline

* MASK: A Translation-aware Memory Hierarchy

SAFARI

17

MASK: A Translation-aware Memory Hierarchy

 Reduce shared TLB contention
A. TLB-fill Tokens

SAFARI -

A: TLB-fill Tokens

e Goal: Limit the number of warps that can fill the TLB
- A warp with a token fills the shared TLB
- A warp with no token fills a very small bypass cache

* Number of tokens changes based on TLB miss rate
- Updated every epoch

* Tokens are assigned based on warp ID

(Benefit: Limits contention at the shared TLB

SAFARI -

MASK: A Translation-aware Memory Hierarchy

* Improve L2 cache utilization
B. Translation-aware L2 Bypass

SAFARI ’

B: Translation-aware L2 Bypass

L2 hit rate decreases for deep page walk levels

vage Table Lovel 1

0 0.2 0.4 0.6 0.8 1

L2 Cache Hit Rate

SAFARI

21

B: Translation-aware L2 Bypass

L2 hit rate decreases for deep page walk levels

Page Table Level 1
Page Table Level 2

0 0.2 0.4 0.6 0.8
L2 Cache Hit Rate

SAFARI

22

B: Translation-aware L2 Bypass

L2 hit rate decreases for deep page walk levels

Page Table Level 1

Page Table Level 2
Page Table Level 3

0 0.2 0.4 0.6 0.8 1
L2 Cache Hit Rate

SAFARI

23

B: Translation-aware L2 Bypass

L2 hit rate decreases for deep page walk levels

Page Table Level 1

Page Table Level 2
Page Table Level 3

Page Table Level 4

0 0.2 0.4 0.6 0.8 1
L2 Cache Hit Rate

Some address translation data does not benefit from caching

(Only cache address translation data with high hit rate J

SAFARI 24

B: Translation-aware L2 Bypass

* Goal: Cache address translation data with high hit rate

Page Table Level 1

Page Table Level 2
Page Table Level 3

Page Table Level 4

Average L2 Cache Hit Rate

Cache

0.2

Bypass % !
| 1
0.4 0.6

L2 Cache Hit Rate

0.8

(Benefit 1: Better L2 cache utilization for translation data

(Benefit 2: Bypassed requests 2 No L2 queuing delay

)
J

SAFARI

25

MASK: A Translation-aware Memory Hierarchy

* Lower page walk latency
C. Address-space-aware Memory Scheduler

SAFARI -’

C: Address-space-aware Memory Scheduler

e Cause: Address translation requests are treated similarly
to data demand requests

Bl Address Translation Requests B Data Demand Requests

< 1.0 5, 500
208 £ 400
s 0.8 5 |
,‘% 0.6 - ® 300 -
m Q04 = 200 -
= o

é 0.2 | & 100 -
0 0.0 A—l 0 -

(Idea: Lower address translation request latency

SAFARI 7

C: Address-space-aware Memory Scheduler

* Idea 1: Prioritize address translation requests
over data demand requests

High Priority EOiee
olden Queue

A\ 4

Address Translation Request

To
Normal Queue DRAM
Data Demand Request — —>I .:-
Memory Scheduler

Low Priority

SAFARI 28

C: Address-space-aware Memory Scheduler

* Idea 1: Prioritize address translation requests
over data demand requests

* Idea 2: Improve quality-of-service using the Silver Queue

High Priority

Golden Queue

Address Translation Request

A\ 4

Silver Queue
Data Demand Request > — »
(Applications take turns) To
Normal Queue DRAM
Data Demand Request — —>I .:-
Low Priority Memory Scheduler

Each application takes turn injecting into the Silver Queue
SAFARI ”

Outline

e Evaluation

SAFARI

30

Methodology

* Mosaic simulation platform [MICRO "17]
- Based on GPGPU-Sim and MAFIA [Jog et al., MEMSYS "15]

- Models page walks and virtual-to-physical mapping
- Available at https://github.com/CMU-SAFARI/Mosaic

* NVIDIA GTX750 Ti
 Two GPGPU applications execute concurrently

 CUDA-SDK, Rodinia, Parboil, LULESH, SHOC suites

- 3 workload categories based on TLB miss rate

SAFARI

Comparison Points

e State-of-the-art CPU-GPU memory management
[Power et al., HPCA "14]

= PWCache: Page Walk Cache GPU MMU design

—=> SharedTLB: Shared TLB GPU MMU design

* Ideal: Every TLB access is an L1 TLB hit

SAFARI

Performance

mPWCache 0OSharedTLB ®BMASK mBmldeal

N
o

N
o

58.7% 61.2% 52 0% 57.8%

—_
&)

Normalized
o

Performance

O
o

0.0 -

0-HMR 1-HMR 2-HMR Average

(MASK outperforms state-of-the-art design for every workload

SAFARI -

Other Results in the Paper

e MASK reduces unfairness

* Effectiveness of each individual component
* All three MASK components are effective

* Sensitivity analysis over multiple GPU architectures

« MASK improves performance on all evaluated architectures,
including CPU-GPU heterogeneous systems

* Sensitivity analysis to different TLB sizes
* MASK improves performance on all evaluated sizes

* Performance improvement over different memory
scheduling policies

« MASK improves performance over other
state-of-the-art memory schedulers

SAFARI "

Conclusion

Problem: Address translation overheads
limit the latency hiding capability of a GPU

High contention at the shared TLB

Low L2 cache utilization
Large performance loss vs. no translation

Key Idea
Prioritize address translation requests over data requests

MASK: a translation-aware GPU memory hierarchy

A. TLB-fill Tokens reduces shared TLB contention
B. Translation-aware L2 Bypass improves L2 cache utilization
C. Address-space-aware Memory Scheduler reduces page walk latency

MASK improves system throughput by 57.8% on average

over state-of-the-art address translation mechanisms
SAFARI >

MASK: Redesigning the GPU
Memory Hierarchy to Support
Multi-Application Concurrency

Rachata Ausavarungnirun

Vance Miller Joshua Landgraf Saugata Ghose
Jayneel Gandhi AdwaitJog ChristopherJ. Rossbach Onur Mutlu

Carnegie Mellon TEXAS
ETH..., Vmware M

SAFARI

