
MASK: Redesigning the GPU
Memory Hierarchy to Support
Multi-Application Concurrency

Rachata Ausavarungnirun
Vance Miller Joshua Landgraf Saugata Ghose

Jayneel Gandhi Adwait Jog Christopher J. Rossbach Onur Mutlu

Executive Summary

2

Problem: Address translation overheads
limit the latency hiding capability of a GPU

Key Idea
Prioritize address translation requests over data requests

MASK: a GPU memory hierarchy that
A. Reduces shared TLB contention
B. Improves L2 cache utilization
C. Reduces page walk latency

MASK improves system throughput by 57.8% on average
over state-of-the-art address translation mechanisms

Large performance loss vs. no translation

High contention at the shared TLB
Low L2 cache utilization

Outline

3

• Executive Summary

• Background, Key Challenges and Our Goal

• MASK: A Translation-aware Memory Hierarchy

• Evaluation

• Conclusion

Why Share Discrete GPUs?

4

• Enables multiple GPGPU applications to
run concurrently

• Better resource utilization
• An application often cannot utilize an entire GPU
• Different compute and bandwidth demands

• Enables GPU sharing in the cloud
• Multiple users spatially share each GPU

Key requirement: fine-grained memory protection

GPU Core

Private TLB

State-of-the-art Address Translation in GPUs

5

GPU CoreGPU CoreGPU Core

Shared TLB

Private TLB

Page Table
Walkers

Page Table
(in main memory)

Private TLB Private TLB
Private
Shared

App 1

App 2

GPU Core

Private TLB

A TLB Miss Stalls Multiple Warps

6

GPU CoreGPU CoreGPU Core

Shared TLB

Private TLB

Page Table
Walkers

Page Table
(in main memory)

Private TLB Private TLB
Private
Shared

App 1

App 2

StalledStalled

Data in a page is
shared by many threads

All threads
access the same page

GPU Core

Private TLB

Multiple Page Walks Happen Together

7

GPU CoreGPU CoreGPU Core

Shared TLB

Private TLB

Page Table
Walkers

Page Table
(in main memory)

Private TLB Private TLB
Private
Shared

App 1

App 2

GPU’s parallelism creates
parallel page walks

Stalled StalledStalledStalled

Data in a page is
shared by many threads

All threads
access the same page

0 0.2 0.4 0.6 0.8 1

Ideal SharedTLB PWCache

Effect of Translation on Performance

8

Normalized Performance

0 0.2 0.4 0.6 0.8 1

Ideal SharedTLB PWCache

Effect of Translation on Performance

9

Normalized Performance

What causes the large performance loss?

0 0.2 0.4 0.6 0.8 1

Ideal SharedTLB PWCache

Effect of Translation on Performance

10

37.4%

Normalized Performance

Problem 1: Contention at the Shared TLB

11

• Multiple GPU applications contend for the TLB

0.0
0.2
0.4
0.6
0.8
1.0

App 1 App 2 App 1 App 2 App 1 App 2 App 1 App 2

L2
 T

LB
 M

is
s

R
at

e
(L

ow
er

 is
 B

et
te

r) Alone Shared

3DS_HISTO CONS_LPS MUM_HISTO RED_RAY

Problem 1: Contention at the Shared TLB

12

• Multiple GPU applications contend for the TLB

0.0
0.2
0.4
0.6
0.8
1.0

App 1 App 2 App 1 App 2 App 1 App 2 App 1 App 2

L2
 T

LB
 M

is
s

R
at

e
(L

ow
er

 is
 B

et
te

r) Alone Shared

3DS_HISTO CONS_LPS MUM_HISTO RED_RAY

Contention at the shared TLB leads to lower performance

Problem 2: Thrashing at the L2 Cache

13

• L2 cache can be used to reduce page walk latency
à Partial translation data can be cached

• Thrashing Source 1: Parallel page walks
à Different address translation data evicts each other

• Thrashing Source 2: GPU memory intensity
à Demand-fetched data evicts address translation data

L2 cache is ineffective at reducing page walk latency

Observation: Address Translation Is Latency Sensitive

14

• Multiple warps share data from a single page

0
10
20
30
40

3D
S

BF
S2 BL
K BP

C
FD

C
O
N
S

FF
T

FW
T

G
U
PS

H
IS
TO H
S

JP
EG LI
B

LP
S

LU
D

LU
H

M
M

M
U
M N
N

N
W

Q
TC
R
AY

R
ED
SA
D SC

SC
AN
SC
P

SP
M
V

SR
AD
TR
D

Av
er
ag
eW

ar
ps

 S
ta

lle
d

Pe
r O

ne
 T

LB
 M

is
s

A single TLB miss causes 8 warps to stall on average

Observation: Address Translation Is Latency Sensitive

15

• Multiple warps share data from a single page

• GPU’s parallelism causes multiple concurrent page walks

0

20

40

60

3D
S

BF
S2 BL
K
BP
C
FD

C
O
N
S

FF
T

FW
T

G
U
PS

H
IS
TO H
S

JP
EG LI
B

LP
S

LU
D

LU
H

M
M

M
U
M N
N

N
W

Q
TC
R
AY

R
ED SA
D SC

SC
AN SC
P

SP
M
V

SR
AD TR
D

Av
er
ag
e

C
on

cu
rr

en
t

Pa
ge

 W
al

ks

High address translation latency à More stalled warps

Our Goals

16

•Reduce shared TLB contention

• Improve L2 cache utilization

•Lower page walk latency

Outline

17

• Executive Summary

• Background, Key Challenges and Our Goal

• MASK: A Translation-aware Memory Hierarchy

• Evaluation

• Conclusion

MASK: A Translation-aware Memory Hierarchy

18

•Reduce shared TLB contention
A. TLB-fill Tokens

• Improve L2 cache utilization
B. Translation-aware L2 Bypass

•Lower page walk latency
C. Address-space-aware Memory Scheduler

A: TLB-fill Tokens

19

• Goal: Limit the number of warps that can fill the TLB
à A warp with a token fills the shared TLB
à A warp with no token fills a very small bypass cache

• Number of tokens changes based on TLB miss rate
à Updated every epoch

• Tokens are assigned based on warp ID

Benefit: Limits contention at the shared TLB

MASK: A Translation-aware Memory Hierarchy

20

•Reduce shared TLB contention
A. TLB-fill Tokens

• Improve L2 cache utilization
B. Translation-aware L2 Bypass

•Lower page walk latency
C. Address-space-aware Memory Scheduler

B: Translation-aware L2 Bypass

21

• L2 hit rate decreases for deep page walk levels

0 0.2 0.4 0.6 0.8 1

L2 Cache Hit Rate

Page Table Level 1

B: Translation-aware L2 Bypass

22

• L2 hit rate decreases for deep page walk levels

0 0.2 0.4 0.6 0.8 1

L2 Cache Hit Rate

Page Table Level 1
Page Table Level 2

B: Translation-aware L2 Bypass

23

• L2 hit rate decreases for deep page walk levels

0 0.2 0.4 0.6 0.8 1

L2 Cache Hit Rate

Page Table Level 1
Page Table Level 2
Page Table Level 3

B: Translation-aware L2 Bypass

24

• L2 hit rate decreases for deep page walk levels

Some address translation data does not benefit from caching

Only cache address translation data with high hit rate

0 0.2 0.4 0.6 0.8 1

L2 Cache Hit Rate

Page Table Level 1
Page Table Level 2
Page Table Level 3
Page Table Level 4

Cache

0 0.2 0.4 0.6 0.8 1

B: Translation-aware L2 Bypass

25

• Goal: Cache address translation data with high hit rate

L2 Cache Hit Rate

Page Table Level 1
Page Table Level 2
Page Table Level 3
Page Table Level 4 Bypass

Benefit 1: Better L2 cache utilization for translation data

Benefit 2: Bypassed requests à No L2 queuing delay

Average L2 Cache Hit Rate

MASK: A Translation-aware Memory Hierarchy

26

•Reduce shared TLB contention
A. TLB-fill Tokens

• Improve L2 cache utilization
B. Translation-aware L2 Bypass

•Lower page walk latency
C. Address-space-aware Memory Scheduler

C: Address-space-aware Memory Scheduler

27

• Cause: Address translation requests are treated similarly
to data demand requests

Idea: Lower address translation request latency

0
100
200
300
400
500

D
R

A
M

 L
at

en
cy

0.0
0.2
0.4
0.6
0.8
1.0

D
R

A
M

 B
an

dw
id

th

Address Translation Requests Data Demand Requests

C: Address-space-aware Memory Scheduler

28

• Idea 1: Prioritize address translation requests
over data demand requests

To
DRAM

Memory Scheduler

Golden Queue
Address Translation Request

Normal Queue
Data Demand Request

High Priority

Low Priority

C: Address-space-aware Memory Scheduler

29

• Idea 1: Prioritize address translation requests
over data demand requests
• Idea 2: Improve quality-of-service using the Silver Queue

To
DRAM

Memory Scheduler

Golden Queue
Address Translation Request

Silver Queue
Data Demand Request

(Applications take turns)
Normal Queue

Data Demand Request

High Priority

Low Priority

Each application takes turn injecting into the Silver Queue

Outline

30

• Executive summary

• Background, Key Challenges and Our Goal

• MASK: A Translation-aware Memory Hierarchy

• Evaluation

• Conclusion

Methodology

31

• Mosaic simulation platform [MICRO ’17]
- Based on GPGPU-Sim and MAFIA [Jog et al., MEMSYS ’15]
- Models page walks and virtual-to-physical mapping
- Available at https://github.com/CMU-SAFARI/Mosaic

• NVIDIA GTX750 Ti

• Two GPGPU applications execute concurrently

• CUDA-SDK, Rodinia, Parboil, LULESH, SHOC suites
- 3 workload categories based on TLB miss rate

Comparison Points

32

• State-of-the-art CPU–GPU memory management
[Power et al., HPCA ’14]
à PWCache: Page Walk Cache GPU MMU design

à SharedTLB: Shared TLB GPU MMU design

• Ideal: Every TLB access is an L1 TLB hit

0.0

0.5

1.0

1.5

2.0

2.5

0-HMR 1-HMR 2-HMR Average

N
or

m
al

iz
ed

Pe

rf
or

m
an

ce

PWCache SharedTLB MASK Ideal

Performance

33

57.8%52.0%
61.2%58.7%

MASK outperforms state-of-the-art design for every workload

Other Results in the Paper

34

• MASK reduces unfairness
• Effectiveness of each individual component
• All three MASK components are effective

• Sensitivity analysis over multiple GPU architectures
• MASK improves performance on all evaluated architectures,

including CPU–GPU heterogeneous systems

• Sensitivity analysis to different TLB sizes
• MASK improves performance on all evaluated sizes

• Performance improvement over different memory
scheduling policies
• MASK improves performance over other

state-of-the-art memory schedulers

Conclusion

35

Problem: Address translation overheads
limit the latency hiding capability of a GPU

Key Idea
Prioritize address translation requests over data requests

MASK: a translation-aware GPU memory hierarchy
A. TLB-fill Tokens reduces shared TLB contention
B. Translation-aware L2 Bypass improves L2 cache utilization
C. Address-space-aware Memory Scheduler reduces page walk latency

MASK improves system throughput by 57.8% on average
over state-of-the-art address translation mechanisms

Large performance loss vs. no translation

High contention at the shared TLB
Low L2 cache utilization

MASK: Redesigning the GPU
Memory Hierarchy to Support
Multi-Application Concurrency

Rachata Ausavarungnirun
Vance Miller Joshua Landgraf Saugata Ghose

Jayneel Gandhi Adwait Jog Christopher J. Rossbach Onur Mutlu

