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Executive Summary

Problem: Address translation overheads
limit the latency hiding capability of a GPU

High contention at the shared TLB

Low L2 cache utilization
Large performance loss vs. no translation

Key Idea
Prioritize address translation requests over data requests

MASK: a GPU memory hierarchy that

A. Reduces shared TLB contention
B. Improves L2 cache utilization
C. Reduces page walk latency

MASK improves system throughput by 57.8% on average

over state-of-the-art address translation mechanisms
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Outline

* Background, Key Challenges and Our Goal
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Why Share Discrete GPUs?

* Enables multiple GPGPU applications to
run concurrently

e Better resource utilization

* An application often cannot utilize an entire GPU
* Different compute and bandwidth demands

* Enables GPU sharing in the cloud
* Multiple users spatially share each GPU

( Key requirement: fine-grained memory protection J
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State-of-the-art Address Translation in GPUs
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A TLB Miss Stalls Multiple Warps

Data in a page is
shared by many threads
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Multiple Page Walks Happen Together

Data in a page is

shared by many threads

GPU’s parallelism creates
parallel page walks
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Effect of Translation on Performance
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Effect of Translation on Performance
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Effect of Translation on Performance
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What causes the large performance loss?
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Problem 1: Contention at the Shared TLB

* Multiple GPU applications contend for the TLB
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Problem 1: Contention at the Shared TLB

* Multiple GPU applications contend for the TLB
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( Contention at the shared TLB leads to lower performance )
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Problem 2: Thrashing at the L2 Cache

e L2 cache can be used to reduce page walk latency
—> Partial translation data can be cached

* Thrashing Source 1: Parallel page walks
- Different address translation data evicts each other

* Thrashing Source 2: GPU memory intensity
- Demand-fetched data evicts address translation data

( L2 cache is ineffective at reducing page walk latency J

SAFARI -



Observation: Address Translation Is Latency Sensitive

* Multiple warps share data from a single page
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( A single TLB miss causes 8 warps to stall on average ]
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Observation: Address Translation Is Latency Sensitive

* Multiple warps share data from a single page

* GPU’s parallelism causes multiple concurrent page walks
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( High address translation latency = More stalled warps J
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Our Goals

 Reduce shared TLB contention

* Improve L2 cache utilization

* Lower page walk latency
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Outline

* MASK: A Translation-aware Memory Hierarchy
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MASK: A Translation-aware Memory Hierarchy

 Reduce shared TLB contention
A. TLB-fill Tokens
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A: TLB-fill Tokens

e Goal: Limit the number of warps that can fill the TLB
- A warp with a token fills the shared TLB
- A warp with no token fills a very small bypass cache

* Number of tokens changes based on TLB miss rate
- Updated every epoch

* Tokens are assigned based on warp ID

( Benefit: Limits contention at the shared TLB
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MASK: A Translation-aware Memory Hierarchy

* Improve L2 cache utilization
B. Translation-aware L2 Bypass
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B: Translation-aware L2 Bypass

L2 hit rate decreases for deep page walk levels
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B: Translation-aware L2 Bypass

L2 hit rate decreases for deep page walk levels

Page Table Level 1
Page Table Level 2

0 0.2 0.4 0.6 0.8
L2 Cache Hit Rate

SAFARI

22



B: Translation-aware L2 Bypass

L2 hit rate decreases for deep page walk levels
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B: Translation-aware L2 Bypass

L2 hit rate decreases for deep page walk levels

Page Table Level 1
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Page Table Level 4
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Some address translation data does not benefit from caching

( Only cache address translation data with high hit rate J
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B: Translation-aware L2 Bypass

* Goal: Cache address translation data with high hit rate

Page Table Level 1

Page Table Level 2
Page Table Level 3

Page Table Level 4
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( Benefit 1: Better L2 cache utilization for translation data

( Benefit 2: Bypassed requests 2 No L2 queuing delay

)
J
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MASK: A Translation-aware Memory Hierarchy

* Lower page walk latency
C. Address-space-aware Memory Scheduler
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C: Address-space-aware Memory Scheduler

e Cause: Address translation requests are treated similarly
to data demand requests

Bl Address Translation Requests B Data Demand Requests
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( Idea: Lower address translation request latency
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C: Address-space-aware Memory Scheduler

* Idea 1: Prioritize address translation requests
over data demand requests
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C: Address-space-aware Memory Scheduler

* Idea 1: Prioritize address translation requests
over data demand requests

* Idea 2: Improve quality-of-service using the Silver Queue
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Data Demand Request — —>I .:-
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Each application takes turn injecting into the Silver Queue
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Outline

e Evaluation
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Methodology

* Mosaic simulation platform [MICRO "17]
- Based on GPGPU-Sim and MAFIA [Jog et al., MEMSYS "15]

- Models page walks and virtual-to-physical mapping
- Available at https://github.com/CMU-SAFARI/Mosaic

* NVIDIA GTX750 Ti
 Two GPGPU applications execute concurrently

 CUDA-SDK, Rodinia, Parboil, LULESH, SHOC suites

- 3 workload categories based on TLB miss rate
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Comparison Points

e State-of-the-art CPU-GPU memory management
[Power et al., HPCA "14]

= PWCache: Page Walk Cache GPU MMU design

—=> SharedTLB: Shared TLB GPU MMU design

* Ideal: Every TLB access is an L1 TLB hit
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Performance
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( MASK outperforms state-of-the-art design for every workload
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Other Results in the Paper

e MASK reduces unfairness

* Effectiveness of each individual component
* All three MASK components are effective

* Sensitivity analysis over multiple GPU architectures

« MASK improves performance on all evaluated architectures,
including CPU-GPU heterogeneous systems

* Sensitivity analysis to different TLB sizes
* MASK improves performance on all evaluated sizes

* Performance improvement over different memory
scheduling policies

« MASK improves performance over other
state-of-the-art memory schedulers
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Conclusion

Problem: Address translation overheads
limit the latency hiding capability of a GPU

High contention at the shared TLB

Low L2 cache utilization
Large performance loss vs. no translation

Key Idea
Prioritize address translation requests over data requests

MASK: a translation-aware GPU memory hierarchy

A. TLB-fill Tokens reduces shared TLB contention
B. Translation-aware L2 Bypass improves L2 cache utilization
C. Address-space-aware Memory Scheduler reduces page walk latency

MASK improves system throughput by 57.8% on average

over state-of-the-art address translation mechanisms
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