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Executive Summary
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Problem: Address translation overheads
limit the latency hiding capability of a GPU

Key Idea
Prioritize address translation requests over data requests

MASK: a GPU memory hierarchy that
A. Reduces shared TLB contention
B. Improves L2 cache utilization
C. Reduces page walk latency

MASK improves system throughput by 57.8% on average
over state-of-the-art address translation mechanisms

Large performance loss vs. no translation

High contention at the shared TLB
Low L2 cache utilization
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Why Share Discrete GPUs?
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• Enables multiple GPGPU applications to
run concurrently

• Better resource utilization 
• An application often cannot utilize an entire GPU
• Different compute and bandwidth demands

• Enables GPU sharing in the cloud
• Multiple users spatially share each GPU

Key requirement: fine-grained memory protection
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State-of-the-art Address Translation in GPUs
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GPU Core

Private TLB

A TLB Miss Stalls Multiple Warps
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GPU Core

Private TLB

Multiple Page Walks Happen Together
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What causes the large performance loss?
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37.4%

Normalized Performance



Problem 1: Contention at the Shared TLB
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• Multiple GPU applications contend for the TLB

0.0
0.2
0.4
0.6
0.8
1.0

App 1 App 2 App 1 App 2 App 1 App 2 App 1 App 2

L2
 T

LB
 M

is
s 

R
at

e
(L

ow
er

 is
 B

et
te

r) Alone Shared

3DS_HISTO CONS_LPS MUM_HISTO RED_RAY



Problem 1: Contention at the Shared TLB
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• Multiple GPU applications contend for the TLB
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Contention at the shared TLB leads to lower performance



Problem 2:  Thrashing at the L2 Cache
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• L2 cache can be used to reduce page walk latency
à Partial translation data can be cached

• Thrashing Source 1: Parallel page walks
à Different address translation data evicts each other

• Thrashing Source 2: GPU memory intensity
à Demand-fetched data evicts address translation data

L2 cache is ineffective at reducing page walk latency



Observation: Address Translation Is Latency Sensitive
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• Multiple warps share data from a single page
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Observation: Address Translation Is Latency Sensitive
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• Multiple warps share data from a single page

• GPU’s parallelism causes multiple concurrent page walks

0

20

40

60

3D
S

BF
S2 BL
K
BP
C
FD

C
O
N
S

FF
T

FW
T

G
U
PS

H
IS
TO H
S

JP
EG LI
B

LP
S

LU
D

LU
H

M
M

M
U
M N
N

N
W

Q
TC
R
AY

R
ED SA
D SC

SC
AN SC
P

SP
M
V

SR
AD TR
D

Av
er
ag
e

C
on

cu
rr

en
t

Pa
ge

 W
al

ks

High address translation latency à More stalled warps



Our Goals
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•Reduce shared TLB contention

• Improve L2 cache utilization

•Lower page walk latency
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MASK: A Translation-aware Memory Hierarchy
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•Reduce shared TLB contention
A. TLB-fill Tokens

• Improve L2 cache utilization
B. Translation-aware L2 Bypass

•Lower page walk latency
C. Address-space-aware Memory Scheduler



A: TLB-fill Tokens
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• Goal: Limit the number of warps that can fill the TLB
à A warp with a token fills the shared TLB
à A warp with no token fills a very small bypass cache

• Number of tokens changes based on TLB miss rate
à Updated every epoch

• Tokens are assigned based on warp ID

Benefit: Limits contention at the shared TLB



MASK: A Translation-aware Memory Hierarchy
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•Reduce shared TLB contention
A. TLB-fill Tokens

• Improve L2 cache utilization
B. Translation-aware L2 Bypass

•Lower page walk latency
C. Address-space-aware Memory Scheduler



B: Translation-aware L2 Bypass
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• L2 hit rate decreases for deep page walk levels
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B: Translation-aware L2 Bypass
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• L2 hit rate decreases for deep page walk levels
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B: Translation-aware L2 Bypass
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• L2 hit rate decreases for deep page walk levels

Some address translation data does not benefit from caching

Only cache address translation data with high hit rate
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Cache
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B: Translation-aware L2 Bypass
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• Goal: Cache address translation data with high hit rate

L2 Cache Hit Rate

Page Table Level 1
Page Table Level 2
Page Table Level 3
Page Table Level 4 Bypass

Benefit 1: Better L2 cache utilization for translation data

Benefit 2: Bypassed requests à No L2 queuing delay

Average L2 Cache Hit Rate



MASK: A Translation-aware Memory Hierarchy
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•Reduce shared TLB contention
A. TLB-fill Tokens

• Improve L2 cache utilization
B. Translation-aware L2 Bypass

•Lower page walk latency
C. Address-space-aware Memory Scheduler



C: Address-space-aware Memory Scheduler
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• Cause: Address translation requests are treated similarly 
to data demand requests

Idea: Lower address translation request latency
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C: Address-space-aware Memory Scheduler
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• Idea 1: Prioritize address translation requests
over data demand requests
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C: Address-space-aware Memory Scheduler
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• Idea 1: Prioritize address translation requests
over data demand requests
• Idea 2: Improve quality-of-service using the Silver Queue 

To 
DRAM

Memory Scheduler

Golden Queue
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(Applications take turns)
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Each application takes turn injecting into the Silver Queue
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Methodology

31

• Mosaic simulation platform [MICRO ’17] 
- Based on GPGPU-Sim and MAFIA [Jog et al., MEMSYS ’15]
- Models page walks and virtual-to-physical mapping
- Available at https://github.com/CMU-SAFARI/Mosaic 

• NVIDIA GTX750 Ti

• Two GPGPU applications execute concurrently

• CUDA-SDK, Rodinia, Parboil, LULESH, SHOC suites
- 3 workload categories based on TLB miss rate



Comparison Points
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• State-of-the-art CPU–GPU memory management 
[Power et al., HPCA ’14]
à PWCache: Page Walk Cache GPU MMU design

à SharedTLB: Shared TLB GPU MMU design

• Ideal: Every TLB access is an L1 TLB hit
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57.8%52.0%
61.2%58.7%

MASK outperforms state-of-the-art design for every workload



Other Results in the Paper
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• MASK reduces unfairness
• Effectiveness of each individual component
• All three MASK components are effective

• Sensitivity analysis over multiple GPU architectures
• MASK improves performance on all evaluated architectures,      

including CPU–GPU heterogeneous systems

• Sensitivity analysis to different TLB sizes
• MASK improves performance on all evaluated sizes

• Performance improvement over different memory 
scheduling policies
• MASK improves performance over other

state-of-the-art memory schedulers



Conclusion
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Problem: Address translation overheads
limit the latency hiding capability of a GPU

Key Idea
Prioritize address translation requests over data requests

MASK: a translation-aware GPU memory hierarchy
A. TLB-fill Tokens reduces shared TLB contention
B. Translation-aware L2 Bypass improves L2 cache utilization
C. Address-space-aware Memory Scheduler reduces page walk latency

MASK improves system throughput by 57.8% on average
over state-of-the-art address translation mechanisms

Large performance loss vs. no translation

High contention at the shared TLB
Low L2 cache utilization
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