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Abstract—DRAM cells in close proximity can fail depending on the data content in neighboring cells. These failures are called data-dependent
failures. Detecting and mitigating these failures online while the system is running in the field enables optimizations that improve reliability,
latency, and energy efficiency of the system. All these optimizations depend on accurately detecting every possible data-dependent failure that
could occur with any content in DRAM. Unfortunately, detecting all data-dependent failures requires the knowledge of DRAM internals specific
to each DRAM chip. As internal DRAM architecture is not exposed to the system, detecting data-dependent failures at the system-level is a
major challenge. Our goal in this work is to decouple the detection and mitigation of data-dependent failures from physical DRAM organization
such that it is possible to detect failures without knowledge of DRAM internals. To this end, we propose MEMCON, a memory content-based
detection and mitigation mechanism for data-dependent failures in DRAM. MEMCON does not detect every possible data-dependent failure.
Instead, it detects and mitigates failures that occur with the current content in memory while the programs are running in the system. Using
experimental data from real machines, we demonstrate that MEMCON is an effective and low-overhead system-level detection and mitigation
technique for data-dependent failures in DRAM.

1 INTRODUCTION

The continued scaling of DRAM process technology has en-
abled higher density DRAM by placing smaller memory cells
close to each other. Unfortunately, the close proximity of cells
exacerbates cell-to-cell interference, making cells susceptible to
failures [13, 15, 16, 18, 23, 24, 27, 30–32, 34, 39]. A prominent
type of interference failure occurs depending on the data con-
tent in neighboring cells. Such failures are called data-dependent
failures [14, 15, 18, 24, 39]. Historically, data-dependent failures
have been a major problem for manufacturing reliable DRAM cells
since as early as the Intel 1103, the first commercialized DRAM
chip [36]. These failures are inherent to DRAM design as they are
caused by the electromagnetic coupling between wires used to
access DRAM cells [1, 15, 18, 24, 39]. Manufacturers detect these
failures by exhaustively testing neighboring DRAM cells with data
patterns that introduce enough cell-to-cell interference to cause
failures and then either remap the failed bits or discard the faulty
chips to mitigate/avoid the failures. Therefore, these failures can
significantly affect the yield and manufacturing cost of DRAM
chips. As DRAM cells get smaller, more cells fail due to cell-to-cell
interference, posing a significant challenge to DRAM scaling [13,
15, 24, 27, 30–32, 34, 39]. Prior works proposed to detect and miti-
gate these failures in the field, while the system is under operation,
as a way to ensure correct DRAM operation while still being
able to continue the scaling of process technology. Such system-
level detection and mitigation of DRAM failures provides better
reliability, performance, and energy efficiency in future memory
systems [3, 6, 7, 10, 14, 15, 18, 20, 23–26, 28, 33, 38, 40, 43, 44, 46].
System-level detection and mitigation relies on detecting every cell
that can fail during the entire lifetime of the system and mitigating
failures via ECC and/or remapping of faulty cells to some other
region [14, 33, 47]. Unfortunately, detection and mitigation of data
dependent failures face two major challenges. First, the detection
of data-dependent failures is closely tied to internal DRAM orga-
nization, which is different in each chip and usually not exposed
to the system [12, 15, 22, 24, 45]. Without the exact knowledge of
the internal design of a DRAM chip, it is not possible to detect
all failures (discussed in detail in Section 2). Second, detecting
all possible data-dependent failures, which constitute a very large
number of failures, is time consuming [14, 15, 24], and mitigating
such a large number of failures with ECC or remapping results
in a large space overhead [14, 33]. It is expected that systems
will have to detect and mitigate an even larger number of data-
dependent failures in the future as cells become more vulnerable
to interference with DRAM scaling [24, 34].

The goal of this work is to decouple the detection and mitigation
of data-dependent failures from DRAM internals and design a low
overhead mechanism that can be implemented in the system with-
out requiring any knowledge about the specifics of internal DRAM
design. We develop a DRAM-transparent mechanism based on
the key observation that, in order to ensure correct operation of
memory during runtime, it is not required to detect and mitigate
every possible data-dependent failure that can potentially occur
throughout the lifetime of the system. Instead, it is sufficient to
ensure reliability against data-dependent failures that occur with
only the current data content in memory. Leveraging this observa-
tion, we propose MEMCON, a memory content-based detection
and mitigation mechanism for data-dependent failures in DRAM.
While the system and applications are running, MEMCON detects
failures with the current content in memory. These detected fail-

ures are mitigated using a high refresh rate for rows that contain
the failing cells. MEMCON significantly reduces the mitigation
cost as the number of failures with current content is less than the
total number of failures with every possible combination of data
content. Using experimental data from real DRAM chips tested
with real program content, we show that program data content in
memory exhibits 2.4X-35.2X fewer failures than all possible failures
with any data content, making MEMCON effective in reducing
mitigation cost.

One critical issue with MEMCON is that whenever there is a
write to memory, content gets changed and MEMCON needs to
test that new content to determine if the new content introduces
any data-dependent failures. Unfortunately, testing memory for
data-dependent failures while the programs are simultaneously
running in the system is expensive. Testing leads to extra memory
accesses that can interfere with critical program accesses and
can slow down the running programs. On the other hand, the
benefit of testing comes from using a lower refresh rate once
no failure is found in a row. The longer the content remains the
same, the higher the benefit from the reduced refresh operations.
Therefore, there is a trade-off between the cost of testing vs.
frequency of testing. In this work, we show that the cost of
testing can be amortized by the reduction in refresh operations,
if consecutive tests in a row are performed at a minimum time
interval. As testing is triggered by a write operation that changes
the data content in memory, we refer to this minimum interval
as MinWriteInterval. We find that MinWriteInterval is 448–864 ms,
depending on the test mode, refresh rate, and DRAM timing
parameters (Section 3).

We profile real applications and make a case for MEMCON
with two experiments. First, we demonstrate that a significant
fraction of the time programs spend on intervals greater than
MinWriteInterval (on average 71.8% of the execution time), which
shows that MEMCON can amortize the cost of testing in real
workloads. Second, we show that the impact of extra requests due
to MEMCON is negligible on program performance (only 0.5-1.8%
compared to the ideal no-test case). We conclude that MEMCON
is an effective and low-overhead online detection and mitigation
technique for data-dependent failures in DRAM.

This paper makes the following contributions:
• This is the first work to propose a system-level data-dependent

failure detection and mitigation technique that is completely
decoupled from the internal physical organization of DRAM.
Our detection and mitigation technique, MEMCON, depends
only on the current memory content of the applications.

• We analyze and model the cost and benefit of failure detection
and mitigation with the current memory content. Our analysis
demonstrates that the cost of testing for the current content can
be amortized if consecutive tests in a row are performed at a
minimum time interval (between 448 and 864 ms according
to our evaluation). As testing needs to be performed when
data content changes with program writes, we refer to this
minimum interval as MinWriteInterval.

• Based on our analysis of MinWriteInterval, we make a case
for MEMCON with two experimental studies. By profiling
real applications we show that (i) applications running in real
machines spend a significant amount of time on long write
intervals, providing an opportunity to maximize the benefit of
testing, and (ii) the impact of extra requests due to MEMCON
is negligible on program performance.
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2 MOTIVATION

Due to cell-to-cell interference in DRAM, some DRAM cells
can fail depending on the data content stored in neighboring
cells. We refer to these failures as data-dependent failures [14,
18, 24, 38, 39]. In order to detect these failures, manufacturers
exhaustively test neighboring DRAM cells with data patterns that
introduce enough cell-to-cell interference to cause failures. Unlike
traditional manufacturing time testing, some recent works propose
to detect data-dependent failures at the system-level to enable
system optimizations that improve reliability, latency, and energy
efficiency of memory [14, 15, 23, 24, 38]. These works propose
to test every cell in a DRAM chip to detect all possible cells that
are susceptible to data-dependent failures with any content in
memory. They propose to detect these cells with an initial testing
phase and mitigate the failures with ECC or remapping to ensure
correct operation for any content in memory that can possibly occur
during system operation. However, there are two major challenges
in detecting and mitigating data-dependent failures in the system.

(i) Detection is challenging due to unknown internal DRAM
organization. There are two design issues in modern DRAM chips
that make system-level failure detection particularly difficult.

First, DRAM vendors internally scramble the address space
within DRAM. Neighboring addresses in the system address space
do not correspond to neighboring physical cells [12, 15, 22, 24, 45].
Consequently, testing neighboring cells for data-dependent fail-
ures by writing a specific data pattern in neighboring addresses
at the system-level does not test adjacent cells in the DRAM cell
array. Figure 1a shows one example of scrambled address space
in DRAM. Neighbors of the cell at address X are expected to
be located at adjacent addresses X-1 and X+1 with a regular
linear mapping of physical address space to system address space.
However, due to scrambling of the address space, neighbors of X
are located at system addresses X-1 and X+5. This internal address
mapping from physical to system-level address is not exposed to
the system [15, 22, 24, 45]. To make things worse, vendors scramble
the addresses differently for each generation of DRAM chips [15].

Scrambled Mapping X−4 X X+5

Linear Mapping X−1 X X−1

0 01

0 7654321
Physical
Address

Cell Array

Address
System

(a) Address scrambling

Original Array Redundant Cols

0 1 2 3 4 5 6 7
Physical
Address

Remapping

(b) Column remapping

Fig. 1: Address scrambling and column remapping in DRAM

Second, DRAM vendors repair some of the faulty cells detected
during manufacturing tests by remapping the faulty columns to
available redundant columns in DRAM [9]. Figure 1b shows an
example of remapping where three faulty columns at physical
column addresses 1, 4, and 6 are remapped to the redundant
columns located at the right of the original cell array. Due to this
remapping, cells in remapped columns now depend on neighbors
located in the redundant cell array. For example, the neighbors
of cells located at physical column address 1 are now located
at physical addresses 4 and 7. Remapping makes neighboring
cell information different for each chip based on the location of
faulty cells and remapped columns, making it necessary to design
specific detection tests targeted for each individual chip in the
system.

Vendors consider the internal DRAM design as proprietary
information and do not expose it outside the manufacturing
organization. Even if the vendors expose the details of DRAM
internals, scrambling of address space and remapped columns
make system-level detection tightly coupled with each specific
DRAM chip. Exposing such information efficiently for each chip
and designing a generalized detection mechanism in the system
that will work for all past and future commercially available
DRAM chips is rather challenging.

(ii) Mitigation is very expensive. It is expected that systems
will have to mitigate a large number of failures in the future
as cells become more vulnerable to cell-to-cell interference with
DRAM scaling [18, 34]. Prior works have shown that mitigating a

large number of failures with ECC or remapping adds a significant
storage overhead, making mitigation very expensive [14, 33].

The goal of this work is to design a low-overhead technique
for detecting and mitigating data-dependent failures that can be
implemented in the system, without requiring any knowledge
about the internal DRAM organization. To this end, we propose to
decouple the detection and mitigation of data-dependent failures
from DRAM internals.1 We limit the scope of our mechanism to
data-dependent failures, as other interference [18, 34] and random
failures [10, 28, 38] can be mitigated using ECC or orthogonal
mechanisms proposed in prior works [14, 18, 33, 38]. We also do
not provide mechanisms to handle variation in data-dependent
failures with the change in temperature. Prior works showed that
it is possible to protect against these variations using well-known
and experimentally validated temperature models and adding an
appropriate guardband to the mitigation technique [14, 20, 24]. In
the next section, we describe our DRAM-transparent detection and
mitigation mechanism that relies only on the change in memory
content during the execution of applications in the system.

3 MEMCON: MEMORY CONTENT-BASED DETECTION
AND MITIGATION OF DRAM FAILURES

In this work, we make an argument that it is not necessary to
detect and mitigate every possible data-dependent failure that can
occur with any memory content during the lifetime of the system.
Instead, it is sufficient to detect and mitigate the failures that
occur only with the current content in memory, stored by programs
running in the system, and ensure a reliability guarantee that there
will be no failure in the system with the current memory content.
Doing so makes system-level detection and mitigation dependent
on the change in memory content with execution time and eliminates
the need to detect every susceptible cell that can fail due to data
dependence with any content in memory.

Based on this observation, we make a case for memory content-
based detection and mitigation for data-dependent failures in DRAM,
which we refer to as MEMCON. While the programs are running,
MEMCON detects failures with the current memory content, and
uses a higher refresh rate for faulty rows to mitigate those failures.
As a result, it detects failures dynamically while programs are
running and mitigates only failures that can be triggered by
the programs. MEMCON (i) eliminates the need for detecting
every possible data-dependent failure, which requires knowledge
of DRAM internals, and (ii) reduces the mitigation cost as the
number of failures with the current memory content is less than
the total number of failures with every possible combination
of data content in memory. Figure 2 shows the percentage of
rows that contain data-dependent failures with current memory
content compared to every possible data-dependent failure detected
in memory. The fraction of the rows represents the number
of failed rows for each workload when its memory footprint
is duplicated in the entire DRAM module to ensure that the
whole memory is occupied by program content. The failure rate
is generated by testing real DRAM chips with an FPGA-based
infrastructure [6, 8, 14, 15, 18, 20, 22, 24, 38]. We test DRAM
chips with a refresh interval of 4 s at 45C, which corresponds to a
refresh interval of 328 ms at 85C [24]. We present the percentage of
failing rows (averaged over every 100 million instructions across
a set of representative phases [37]) for 20 SPEC CPU 2006 [42]
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Fig. 2: Percentage of rows that exhibit failures

1. Note that detection of retention failures that occur due to weak cells
that always fail irrespective of the data content is not a major problem.
These failures can be easily detected as these cells fail every time a chip is
tested.
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benchmarks.2 We also show the maximum and minimum fraction
of failing rows of each benchmark as an error bar in the figure. This
figure shows that programs encounter 2.4X-35.2X fewer failures
than every possible failure in DRAM (represented by ALL FAIL
in the figure).

Design Challenge of MEMCON. MEMCON ensures correct
DRAM operation by detecting and mitigating possible failures
with the current memory content. As long as the content remains
the same, MEMCON comfortably ensures reliability since it pro-
vides the right level of protection (e.g., the appropriate refresh
rate) for that content. Read accesses do not alter memory con-
tent and therefore, cannot introduce any new failures. However,
whenever there is a write to memory, content gets changed and
MEMCON needs to test that new content to detect whether or not
that content introduces any data-dependent failure and find the
right level of protection for the rows failing with the new content.

Unfortunately, detecting data-dependent failures while the pro-
grams are running in the system could cause performance
degradation. Testing current memory content for detecting data-
dependent failures involves keeping the the row that is being
tested (i.e., the in-test row) idle until the end of the refresh period
so that cells in that row are tested with the lowest possible charge,
when they are the most vulnerable to cell-to-cell interference. As
any access to a row fully charges all cells in that row, program
accesses during the testing period cannot be serviced from the
in-test row and have to be serviced by temporarily caching the
content of the row in a different region. Therefore, there are two
sources of overhead in detecting data-dependent failures with
current memory content. First, testing involves reading the row
content into the memory controller, keeping the row idle for the
test period, and reading the entire row again to compare with
the prior content to determine if there are any data-dependent
failures. As a result, all the cache blocks in the in-test row have to
be read at least twice to compare their contents before and after the
test. Second, caching the content of the in-test row in some other
region (either inside the memory controller or inside memory)
involves extra read and write traffic to copy the in-test row to
that region. These additional read and write requests for testing
purposes increase bandwidth consumption and can interfere with
critical program accesses.

Cost-Benefit Analysis of MEMCON. As testing at the system-
level is expensive, it is necessary to analyze the cost-benefit of
MEMCON during application runtime in order to demonstrate its
effectiveness. The cost of testing (i.e., its performance and/or en-
ergy overhead) depends on the extra memory requests issued for
testing. The benefit of testing comes from our mitigation technique
of optimizing the refresh rate: MEMCON initially refreshes each
row very frequently to avoid any failures; after the row content is
tested and no failures are detected for a row, that row is refreshed
at a lower rate. Therefore, the benefit of testing comes from the
reduction in refresh operations enabled by testing.

Figure 3 examines the tradeoff between the cost of testing (in
terms of latency) and the frequency of testing of a single row
to demonstrate that the cost of frequent testing can potentially
overshadow the benefit of testing. We provide the detailed cost-
benefit analysis in Section 4.1. There are three different costs
associated with MEMCON: (i) Without any testing, all rows have
to be refreshed aggressively so that failures do not get exposed to
running applications. This cost of aggressive refresh (the periodic
latency required to refresh a row) is represented as the HI-REF
state in the figure. (ii) The cost of testing (the latency required for
extra read-write accesses), which is represented as the highest bar
in the figure, labeled as TESTING. The figure shows that testing is
more expensive than the HI-REF state due to the extra read-write
accesses incurred for testing. (iii) When testing for data-dependent
failures is done and no failures are found in a tested row, the row
can be refreshed less frequently. This low-cost refresh state (the
latency required for infrequent refresh operations) is represented
as LO-REF in the figure.

Figure 3 demonstrates the average cost of MEMCON over some
specific period of time, when testing is performed at different
rates for a row. First, if testing is infrequent, the benefit of LO-
REF state overshadows the cost of testing, such that the average

2. Even if we demonstrate the fraction of failing rows for only SPEC
benchmarks, we believe that other workloads with a larger working set
will also exhibit similar results. The number of failures does not depend
on the size of the working set, but depends on the data content in memory.

Time Time

C
o
s
t

C
o
s
t

AVG

LO−REF

COST HI−REF

TESTING

LO−REFLO−REF

AVG
COST

TESTING TESTING

HI−REF

C
o
s
t

HI−REF

TESTING

LO−REF

HI−REF

TESTING

LO−REF

COST
AVG

Time

(a) (b) (c)
t2t1 t3

Fig. 3: Tradeoff between cost of testing vs. frequency of testing

cost remains equal to or lower than that of the HI-REF state
(shown in Figure 3(a)). In this case, a longer interval between two
consecutive tests leads to a higher benefit and the average cost
gets lower. Second, as testing is very expensive, frequent testing
can increase the average cost to a level higher than the HI-REF
state (Figure 3(b)). In this case, it is better to just use frequent
refreshes (HI-REF), instead of detecting any failures, to minimize
the average cost. Therefore, there is a trade-off between the cost
of testing vs. the frequency of testing. In order to minimize the
overall cost (and thus maximize the benefit of testing), MEMCON
should not initiate a test every time there is a new write to a
row. Instead, it should test the row on a write, only when the cost
of testing can be amortized by the future infrequent refreshes to
the tested row. Therefore, MEMCON should skip testing for cases
where the interval between two consecutive writes to a row is
not large enough to amortize the cost of testing.3 Such selective
testing for MEMCON is illustrated in Figure 3(c). MEMCON tests
the row at t1, as the interval between two writes (t1 and t2) is
large enough to amortize the cost of testing. It skips testing for
the write that arrives at t2, as the interval between t2 and t3 is
too small. Instead, MEMCON moves to the HI-REF state during
that interval to avoid the high cost associated with testing.

4 A CASE FOR MEMCON
In this section, we make a case for MEMCON by answering

three questions: (i) How to determine the frequency of testing such
that cost of testing is amortized? (Section 4.1) (ii) Are the intervals
between writes to a row large enough to amortize the cost of
testing in real programs? (Section 4.2) (iii) How much performance
degradation can testing cause to the applications running in the
system? (Section 4.3)

4.1 Amortizing the Cost of Testing
In order to determine the minimum interval between two writes

that can amortize the cost of testing, we compare the total cost
for two configurations: (i) when a row is refreshed aggressively
(always at the HI-REF state), and (ii) with MEMCON, i.e., when a
row is tested and then refreshed at a lower rate if appropriate (LO-
REF state only after testing). The total accumulated cost would
increase linearly with time, as rows are refreshed periodically in
both cases. However, initially, MEMCON would have a higher cost
than HI-REF because of the high cost associated with testing. As
MEMCON moves to the low refresh state after testing, its total
cost would increase at a slower rate compared to the HI-REF
configuration. The point in time when the total cost for HI-REF
would become higher than the total cost of MEMCON indicates
the time interval between two writes that can amortize the cost of
testing. We refer to this interval as minWriteInterval in this work.

Figure 4 shows the total accumulated cost over time (in terms
of latency) for both MEMCON and the HI-REF configuration. In
order to determine the minWriteInterval, we model the cost of HI-
REF and MEMCON based on the latency required to perform
refresh and read-write operations. The HI-REF configuration re-
freshes the rows every 16 ms, which is 4X more frequent than
typical refresh interval in modern DRAM devices. Thus, the cost
of refresh in terms of required latency per row is 39 ns for every 16
ms (details in Appendix). Therefore, the cost for HI-REF increases
sharply with time (represented as the red line in the figure). In this
work, we compare two modes of testing for MEMCON, based on
where data content is buffered to serve accesses during the test.
The cost of testing for each mode determines the frequency of
testing that can amortize the cost.

3. MEMCON can be optimized even further by considering the inter-
val between read accesses and eliminating testing if the row gets read
frequently enough such that it does not need refresh. We leave such an
optimization for future work.
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Fig. 4: Determining MinWriteInterval

READ AND COMPARE. In this mode, an in-test row is buffered
in the memory controller. This mode involves reading the entire
row into the memory controller twice (once before the test and
once after the test) to compare the old and new content and
determine any occurrence of failure. The latency of reading an
8K row twice from memory is 1068 ns (details in Appendix).

COPY AND COMPARE. One problem with the prior test mode is
that testing a large number of rows simultaneously requires a large
buffer in the memory controller. As an alternative, in this second
mode of testing, the content of the in-test rows are temporarily
stored in a different, special region of memory to service requests
during the test. In this mode, the in-test row is copied to another
region in memory by reading the row into the memory controller
and then writing it to that special region in memory. Only the ECC
information is calculated and stored in the memory controller.
After the test, the content of the row is read back again into
the memory controller to compare the old and new ECC values
to determine any occurrence of failure. As a result, this COPY
AND COMPARE mode involves reading the entire row into the
memory controller twice (once before the test and once after the
test) and writing the entire row once into a new location. The cost
for COPY AND COMPARE in terms of latency is 1602 ns (details in
Appendix).4 5

Figure 4 shows that both of these test modes pay the high cost
of testing in the beginning (1068 ns and 1602 ns, respectively).
After that, the system is refreshed once every 64 ms.6 Therefore,
the total cost increases more slowly over time compared to the
HI-REF configuration, where rows are refreshed every 16 ms all
the time. The figure shows that the total cost of testing becomes
lower than the HI-REF configuration, if the system can be at
the LO-REF state for at least 560 ms and 864 ms, respectively
for READ AND COMPARE and COPY AND COMPARE test modes.
Thus, the MinWriteInterval should be 560 ms/864 ms for these
two configurations. We also evaluated the MinWriteInterval for the
LO-REF state with a refresh interval of 128 ms and 256 ms, found
it to be 480 ms and 448 ms, respectively.

We conclude that MEMCON can amortize the cost of testing if
tests are done at a minimum interval of 448-864 ms, depending
on the combination of test mode and refresh interval.

4.2 Distribution of Writes In Programs
In order to evaluate the effectiveness of MEMCON in amortiz-

ing the cost of testing in real applications, we need to consider two
issues regarding write intervals in applications. First, there have
to be writes in applications occurring at an interval greater than
MinInterval: otherwise, according to our evaluation in Section 4.1,
aggressively using the HI-REF state is more cost effective than
MEMCON. Second, programs have to spend a significant fraction
of their runtime in those long intervals to make MEMCON
effective in lowering the total cost.

4. The storage overhead of this mode is modest as only a small fraction
of rows are tested concurrently (e.g., reserving 512 rows per bank for
the special memory region, in a 2 GB module with 8 banks, results in
only a 1.56% loss in DRAM capacity; details in Appendix). This mode
also requires memory requests to the in-test rows to be redirected by the
memory controller to the appropriate region of memory, which can be
accomplished with a very little storage overhead.

5. Not that this mode can become significantly faster by performing
copy operations within DRAM, using mechanisms like RowClone [41]
and LISA [5]. Exploiting subarray-level parallelism [17], tiered-latency
DRAM [19], or a Dual-Data-Port DRAM [21] can also reduce the per-
formance impact of such copy operations. We do not evaluate such
optimizations and leave them for future work.

6. We use 64 ms is this figure, but we also report summary results for
128 ms and 256 ms later.

We evaluate two metrics: percentage of writes with interval
greater than MinWriteInterval is shown in Figure 5(a) and the
fraction of time programs spend on those intervals is shown in
Figure 5(b). We use an FPGA-based memory tracing system that
reads memory bus signals to trace DRAM traffic. The tracer keeps
track of memory commands and addresses from the CPU to a
single DRAM channel. Traces span minutes of application runtime
after the initialization phase. Each trace includes all memory
commands, associated addresses (if applicable) and timestamps
during the tracing time frame. In this experiment, in addition to
SPEC 2006 benchmarks, we evaluate some modern applications
found in typical mobile systems (the popular game Angry Birds [2]
and a background application that remains mostly idle) and server
systems (database server Oracle [35] and search engine Bing [4]).
We make two observations from these figures. First, Figure 5(a)
shows that most (92%) of the writes to a row occur very frequently
(within 1 ms) in real applications. Fortunately, writes within 1 ms
do not need to be tested because such frequent accesses refresh
the row before the refresh interval, avoiding any data-dependent
failures. Second, only a small fraction of writes exhibit large
intervals in real programs; the percentage of writes with intervals
greater than 512 ms is between 0.3% to 2.3%. We also observe
that, even though writes with large intervals are infrequent, writes
happen in bursts and these intervals between the bursts are very
long Thus, a program spends a large fraction of its execution time
in these intervals: on average 71.8% of execution time, as shown in
Figure 5(b). Therefore, when MEMCON performs testing, it would
lead to significant benefit by reducing refresh operations for the
duration of these very long intervals that account for most of the
program execution time. We conclude that MEMCON not only
amortizes the cost of testing, but also significantly reduces the
total cost by using infrequent refreshes for a large fraction of
program execution time.7
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Fig. 5: (a) Distribution of write intervals in rows, (b) Fraction of
time programs spend in long interval writes, (c) Impact of extra
accesses due to testing.

4.3 Impact of Testing on Program Accesses
So far, we have shown that real applications exhibit write

intervals greater than the MinWriteInterval and spend a significant
fraction of time in those intervals, making MEMCON highly effec-
tive. However, in order to make a complete case for MEMCON, we
also need to evaluate the impact of testing on program accesses.
As testing injects extra accesses to memory, theses accesses would
interfere with program accesses and can slow down the running
applications. We evaluate the impact of testing on a wide range of
applications (30 applications from SPEC, server, and stream [29]),
when the detection of failure and execution of these applications
occur simultaneously. In this experiment, whenever there is a
write, memory controller puts the write address of the row in a
queue and starts running tests on such rows in memory using the
READ AND COMPARE mode. However, we restrict the number of
rows that are tested concurrently by using a fixed size buffer in the
memory controller for in-test rows. Figure 5(c) shows the average
slowdown in performance when MEMCON can concurrently test
256-1024 rows. This figure shows that the impact of extra accesses
due to testing on performance is very low, slowing down the
running applications by only 0.5%-1.8% on average. We conclude
that the extra accesses due to testing have a negligible impact
on performance.

Based on our model, analysis, and experimental results, we con-
clude that dynamically detecting and mitigating data-dependent

7. Note that obtaining this benefit requires predicting the write intervals
ahead of time in order to make a decision as to whether or not to initiate
testing upon encountering a write to a row. We leave the design and
evaluation of such prediction mechanisms for future work.
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failures in the system using the current memory content, where
detection and mitigation occurs simultaneously with program
execution is a feasible and cost-effective approach.

5 CONCLUSION
We introduce MEMCON, the first system-level detection and

mitigation technique for data-dependent DRAM failures that com-
pletely decouples failure detection from internal DRAM organi-
zation. MEMCON detects failures with the current content in
memory by running online testing simultaneously with program
execution. In this work, we make a case for MEMCON, showing
that the overhead of such a concurrent detection technique can be
negligible. We believe that our analysis and experimental results
will inspire future works to design, build, and evaluate memory
content-based detection and mitigation techniques in real systems.
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APPENDIX
Cost of READ AND COMPARE. There are three steps involved:

(i) read and store the in-test row in the memory controller, (ii) keep
the in-test row idle in memory for the duration of the target refresh
interval to make sure victim cells are tested with least possible
charge, and (iii) read back the row again in the memory controller
to compare the content to determine failures. Therefore, READ AND
COMPARE mode involves reading the entire row into the memory
controller twice. The cost of reading one row into the memory
controller includes activating the row (tRCD), reading the cache
blocks in the memory controller (128 * tCCD for a typical 8K row),
and closing the row by precharging (tRP) it. Therefore, the cost
for two row accesses in terms of latency is 2*(tRCD + 128 * tCCD
+ tRP) = 1068 ns, using DDR3-1600 timing parameters [11].

Cost of COPY AND COMPARE. The COPY AND COMPARE mode
involves reading the entire row into the memory controller twice
(once before the test and once after the test) and writing the entire
row once into a new row. The cost of COPY AND COMPARE in
terms of latency is 3*(tRCD + 128 * tCCD + tRP) = 1602 ns, using
DDR3-1600 timing parameters [11].

Cost of a Refresh Operation. A row is refreshed by activating
(tRAS) and precharging (tRP) it, making the cost of one refresh
operation tRAS + tRP = 39 ns, using DDR3-1600 timing parame-
ters [11].

Storage Overhead of COPY AND COMPARE. A 2 GB module
consists of 32768 rows per bank (a total of 262144 rows in 8 banks).
Reserving 512 rows per bank (4K rows in total for all banks) for
the special memory region to hold the content of the in-test rows
results in 4096 / 262144 * 100 = 1.56% overhead of the total DRAM
capacity.
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