2023 IEEE International Symposium on Performance Analysis of Systems and Software

Evaluating

Machine Learning Workloads

on Memory-Centric Computing Systems

Juan Gomez Luna, Yuxin Guo, Sylvan Brocard,
Julien Legriel, Remy Cimadomo, Geraldo F. Oliveira,
Gagandeep Singh, Onur Mutlu

https://arxiv.org/pdf/2207.07886.pdf
https://github.com/CMU-SAFARI/pim-ml|
juang@ethz.ch

mzmich SA FA R ' rHeEm

Monday, April 24, 2023

https://arxiv.org/pdf/2207.07886.pdf
https://github.com/CMU-SAFARI/pim-ml
mailto:juang@ethz.ch

Executive Summary

* Training machine learning (ML) algorithms is a computationally expensive
grocess, frequently memory-bound due to repeatedly accessing large training
atasets
* Memory-centric computin% systems, i.e., with Processing-in-Memory (PIM)
capabilities, can alleviate this data movement bottleneck
* Real-world PIM systems have only recently been manufactured and
commercialized
- UPMEM has designed and fabricated the first publicly-available real-world PIM
architecture
* Our goal is to understand the potential of modern general-purpose PIM
architectures to accelerate machine learning training

* Our main contributions:
- PIM implementation of several classic machine learning algorithms: linear
regression, logistic regression, decision tree, K-means clustering
- Workload characterization in terms of quality, performance, and scaling
- Comparison to their counterpart implementations on processor-centric systems
(CPU and GPU)
* PIM version of DTRis 27x [1.34x faster than the CPU | GPU version, respectively

* PIM version of KME is 2.8x [3.2x faster than the CPU / GPU version, respectively
- Source code: https://github.com/CMU-SAFARI/pim-ml

* Experimental evaluation on a real-world PIM system with 2,524 PIM cores @
425 MHz and 158 GB of DRAM memory

* Key observations, takeaways, and recommendations for ML workloads on
general-purpose PIM systems

SAFARI 2

https://github.com/CMU-SAFARI/pim-ml

Outline

4)
Machine learning workloads
_ J
Processing-in-memory
4)
PIM implementation of ML workloads
_ J
(") Quality Metrics
. Analysis of PIM Kernels
Evaluatlon Performance Scaling
_ Y, Comparison to CPU and GPU
SAFARI 3

Machine Learning Workloads

Machine learning
Unsupervised
learning

* Machine learning training
with large amounts of data
is a computationally
expensive process, which
requires many iterations to
update an ML model’s e
parameters e,

Supervised Reinforcement
learning learning

* Frequent data movement between memory and processing
elements to access training data

* The amount of computation is not enough to amortize the
cost of moving training data to the processing elements

- Low arithmetic intensity
- Low temporal locality
- Irregular memory accesses

SAFARI 4

Machine Learning Workloads: Our Goal

* Our goal is to study and analyze
how real-world general-purpose
PIM can accelerate ML training

* Four representative ML
algorithms: linear regression,
logistic regression, decision tree,
K-means

W
o

; Peak compute performance

)
* Roofline modelto g 1
quantify the memory g | EDpg
boundedness of CPU &
versions of the four & | :
workloads *301 0.1 ; 10

Arithmetic Intensity (OP/B)

All workloads fall in the memory-bound area of the Roofline

SAFARI 5

Outline

4)
Machine learning workloads
_ J
Processing-in-memory
4)
PIM implementation of ML workloads
_ J
(") Quality Metrics
. Analysis of PIM Kernels
Evaluatlon Performance Scaling
_ Y, Comparison to CPU and GPU
SAFARI 6

Processing-in-Memory (PIM)

* PIM is a computing paradigm that advocates for memory-
centric computing systems, where processing elements are
placed near or inside the memory arrays

* Real-world PIM architectures are becoming a reality

- UPMEM PIM, Samsung HBM-PIM, Samsung AXDIMM, SK Hynix AiM,
Alibaba HB-PNM

* These PIM systems have some common characteristics:

1. Thereis a host processor (CPU or GPU) with access to (1) standard
main memory, and (2) PIM-enabled memory

2. PIM-enabled memory contains multiple PIM processing elements
(PEs) with high bandwidth and low latency memory access

3. PIM PEs run only at a few hundred MHz and have a small number
of registers and small (or no) cache/scratchpad

4. PIM PEs may need to communicate via the host processor

SAFARI 7

A State-of-the-Art PIM System

Standard Main Memory

r

Memory Array
(Rank or Bank)

J

(Host CPU /7
/7

Q Q /
<

b~
O 1] =

O =

3 A
% E \\\ — Memory Memory
gl S = - Array Array
Cf W [[Host-piy

| —p [PIM PE][PIM PE

M_-

PIM-enabled Memory

\lPIM Processing Elements

~
Instruction |Scratchpad/
Memory Cache

* In our work, we use the UPMEM PIM architecture

- General-purpose processing cores called DRAM Processing
Units (DPUs)

Up to 24 PIM threads, called tasklets

* 32-bit integer arithmetic, but multiplication/division are
emulated¥®, as well as floating-point operations

- 64-MB DRAM bank (MRAM), 64-KB scratchpad (WRAM)

SAFARI

* 8-bit integer multiplication is natively supported

2,560-DPU UPMEM PIM System

Main Memory
\\

A——————————

- Chip |\ Chip)| Chip |\ Chip || Chip || Chip || Chip || Chip
T e e e e e o o)
chip || chip)| chip || chip || chip || chip || chip)| chip

y

Host
CPU O

PIM-enabled Memory

Main Memory

)

N
(o —— ——

a.| | chip)\ chip)| chip | chip | chip)| chip)| chip)| chip
e e e e e e e)
chip)\ chip)| chip | chip || chip)| chip)| chip)| chip)} /

x2

A

Host
CPU 1

\\
S

(PIM PIM PIM PIM PIM PIM PIM
.| | chip || chip || chip ip || chip Chip || Chip
PIM PIM PIM PII PIM PIM PIM
Chip || Chip || Chip || Chi Chip Chip || Chip
¥ x10
0

PIM-enableigyM
160 GB

« 20 UPMEM DIMMs of 16
chips each (40 ranks)

* Dual x86 socket
o UPMEM DIMMs coexist with
regular DDR4 DIMMs

- 2 memory controllers/socket
(3 channels each)

- 2 conventional DDR4 DIMMs
on one channel of one
controller

PI/

A

* There are some faulty DPUs in the system that we use in our 9
SA FA R’ experiments. Thus, the maximum number of DPUs we can use is 2,524

Outline

4)
Machine learning workloads
_ J
Processing-in-memory
4)
PIM implementation of ML workloads
_ J
(") Quality Metrics
. Analysis of PIM Kernels
Evaluatlon Performance Scaling
_ Y, Comparison to CPU and GPU
SAFARI 10

ML Training Workloads

* Four widely-used machine learning
workloads:

Machine learning
Unsupervised
learning

Supervised Reinforcement
learning learning

Linear reg i Logistic reg i K-means

Linear regression (LIN)

Logistic regression (LOG)

Decision tree (DTR)
K-means clustering (KME)

* Diversity of our ML training workloads:
- Memory access patterns
- Operations and datatypes
- Communication/synchronization

Learning Avplication | Alsorithm Short name Memory access pattern Computation pattern Communication/synchronization
approach PP & Sequential | Strided | Random Operations | Datatype Intra PIM Core | Inter PIM Core
Regression Linear Regression LIN Yes No No mul, add float, int32_t barrier Yes
Supervised Classification Logistic Regression LOG Yes No No mul, add, exp, div | float, int32_t barrier Yes
Decision Tree DTR Yes No No compare, add float barrier, mutex Yes
Unsupervised | Clustering K-Means KME Yes No No ul, compare, add | int16_t, int64_t| barrier, mutex Yes

SAFARI 11

Linear Regression

* Linear regression (LIN)is a supervised learning algorithm where
the predicted output variable has a linear relation with the input
variable

- We use gradient descent as the optimization algorithm to find the
minimum of the loss function

* Our PIM implementation divides the training dataset (X) equally
among PIM cores

- PIM threads compute dot products of row vectors and weights

- Each dot product is compared to the observed value y to compute a
partial gradient value

- Partial gradient values are reduced and sent to the host

* Four versions of LIN:
- LIN-FP32: training datasets of 32-bit real values
- LIN-INT32: 32-bit fixed-point representation
- LIN-HYB: hybrid precision (8-bit, 16-bit, 32-bit)
- LIN-BUI: custom multiplication based on 8-bit built-in
multiplication

SAFARI

Logistic Regression

* Logistic regression (LOG) is a supervised learning algorithm used
for classification, which outputs probability values for each input
observation variable or vector

- Sigmoid function to map predicted values to probabilities

* Our PIM implementation follows the same workload distribution
pattern as our linear regression implementation

e Six versions of LOG:

- LOG-FP32: training datasets of 32-bit real values, Sigmoid
approximated with Taylor series

- LOG-INT32: 32-bit fixed-point representation, Taylor series
- LOG-INT32-LUT: Sigmoid calculation with a lookup table (LUT)
e LOG-INT32-LUT(MRAM): LUT in MRAM
e LOG-INT32-LUT(WRAM): LUT in WRAM
- LOG-HYB-LUT: hybrid precision (8-bit, 16-bit, 32-bit), LUT in WRAM

- LOG-BUI-LUT: custom multiplication based on 8-bit built-in
multiplication, LUT in WRAM

SAFARI 13

Decision Tree

* Decision trees (DTR) are tree-based methods used for classification and
regression, which partition the feature space into leaves, with a simple
prediction model in each leaf

* Our PIM implementation partitions the training set among PIM cores,
which compute partial Gini scores to evaluate the host’s split decisions
* The host sends commands to the PIM cores:
- Split commit to split a tree leaf
- Split evaluate to evaluate a split
- Min-max to query minimum/maximum values of a feature in a tree leaf

Dataset:

* Data layout in split commit to 5 points, 2 features: p0 = (0, 11); p1 = (8, 4);p2 = (7,9); p3 = (2,6):p4 =(5,2
maximize memory bandwidth Memory layout Decision tree
with streaming accesses e -

* This data layout also ensures Loaf0 Lest0
memory accesses in streaming . v e e fresee®
in split evaluate o2 s a7 n]el2]%]>

Leaf 1 Leaf 2 Leaf 1 Leaf 2

SAFARI

K-Means Clustering

* K-means (KME) is an iterative clustering method used to find
groups in a dataset which have not been explicitly labeled

* Our PIM implementation distributes the dataset evenly over
the PIM cores

 PIM threads evaluate which centroid is the closest one to
each point of the training set

- Counter and accumulator per coordinate (per centroid)
* Then, the host recalculates the centroids

* Convergence to a local optimum when the updated
centroid’s coordinates are within a threshold (Frobenius

norm)

SAFARI

Outline

4)
Machine learning workloads
_ J
Processing-in-memory
4)
PIM implementation of ML workloads
_ J
(") Quality Metrics
. Analysis of PIM Kernels
Evaluatlon Performance Scaling
_ Y, Comparison to CPU and GPU
SAFARI 16

Evaluation Methodology

* Synthetic and real datasets

Synthetic Datasets
ML Workload Strong Scaling (1 PIM core | 256-2048 PIM Zores) | Weak Scaling (per PIM core) Real Dataset
Linear regression 2,048 samples, 16 attr. (0.125 MB) | 6,291,456 samples, 16 attr. (384 MB) 2,048 samples, 16 attr. (0.125 MB) | SUSY [223, 224]
Logistic regression || 2,048 samples, 16 attr. (0.125 MB) | 6,291,456 samples, 16 attr. (384 MB) 2,048 samples, 16 attr. (0.125 MB) | Skin segmentation [225]
Decision tree 60,000 samples, 16 attr. (3.84 MB) | 153,600,000 samples, 16 attr. (9830 MB) | 600,000 samples, 16 attr. (38.4 MB) | Higgs boson [223, 226]
K-Means 10,000 samples, 16 attr. (0.64 MB) | 25,600,000 samples, 16 attr. (1640 MB) 100,000 samples, 16 attr. (6.4 MB) | Higgs boson [223, 226]

* Evaluated systems

- UPMEM PIM system with 2,524 PIM cores (@ 425 MHz and 158 GB
of DRAM

- Intel Xeon Silver 4215 CPU
- NVIDIA A100 GPU

* We evaluate:
- Quality metrics
- Performance of PIM kernels
- Performance scaling
- Comparison to CPU and GPU

SAFARI 17

2,560-DPU UPMEM PIM System

Main Memory
\\

A——————————

- Chip |\ Chip)| Chip |\ Chip || Chip || Chip || Chip || Chip
T e e e e e o o)
chip || chip)| chip || chip || chip || chip || chip)| chip

y

Host
CPU O

PIM-enabled Memory

Main Memory

)

N
(o —— ——

a.| | chip)\ chip)| chip | chip | chip)| chip)| chip)| chip
e e e e e e e)
chip)\ chip)| chip | chip || chip)| chip)| chip)| chip)} /

x2

A

Host
CPU 1

\\
S

(PIM PIM PIM PIM PIM PIM PIM
.| | chip || chip || chip ip || chip Chip || Chip
PIM PIM PIM PII PIM PIM PIM
Chip || Chip || Chip || Chi Chip Chip || Chip
¥ x10
0

PIM-enableigyM
160 GB

« 20 UPMEM DIMMs of 16
chips each (40 ranks)

* Dual x86 socket
o UPMEM DIMMs coexist with
regular DDR4 DIMMs

- 2 memory controllers/socket
(3 channels each)

- 2 conventional DDR4 DIMMs
on one channel of one
controller

PI/

A

* There are some faulty DPUs in the system that we use in our 1 8
SA FA R’ experiments. Thus, the maximum number of DPUs we can use is 2,524

Outline

4)
Machine learning workloads
_ J
Processing-in-memory
4)
PIM implementation of ML workloads
_ J
(") Quality Metrics
. Analysis of PIM Kernels
Evaluatlon Performance Scaling
_) Comparison to CPU and GPU
SAFARI 19

Evaluation: Quality Metrics

* Linear regression
- Training error rate of LIN-FP32 is the same as the CPU version
- Forinteger versions, it remains low and close to that of LIN-FP32
* Logistic regression
- LUT-based versions obtain lower training error rates that LOG-
INT32, since they use exact values, not approximations

* Decision tree
- Training accuracy only slightly lower than that of the CPU version

* K-means clustering

- Same Calinski-Harabasz score and adjusted Rand index of PIM and
CPU versions

We maintain the accuracy of all workloads
(or keep it close to the CPU baseline)

SAFARI

Outline

4)
Machine learning workloads
_ J
Processing-in-memory
4)
PIM implementation of ML workloads
_ J
(") Quality Metrics
. Analysis of PIM Kernels
Evaluatlon Performance Scaling
_) Comparison to CPU and GPU
SAFARI 21

Evaluation: Analysis of PIM Kernels (1)

* Linear regression

All versions saturate at 11 or
more PIM threads

Fixed-point representation
accelerates the kernel by an
order of magnitude over FP32

Key Takeaway 1. Workloads
with arithmetic operations or
datatypes not natively

supported by PIM cores run at
low performance due to
instruction emulation (e.g., FP
in UPMEM PIM).

60000
2 50000
= 40000
£ 30000
F 20000
T 10000
0

PIM Ker

5000

{a (a) LIN-FP32
. —O—LIN-FP32
i O, 4550

123456 7 8 9101112131415161718192021222324

Number of PIM Threads (per PIM Core)

4000 A

3000 -

2000 -

PIM Kernel Time (ms)

=
o
o
o

(b) LIN INT Versions

~O—LIN-INT32
LIN-HYB
LIN-BUI

800

600 A

400 A

200 A

1 35 7 911131517 192123

123456 7 8 9101112131415161718192021222324
Number of PIM Threads (per PIM Core)

Recommendation 1. Use fixed-
point representation, without

much accuracy loss, if PIM cores
do not support FP.

SAFARI

Evaluation: Analysis of PIM Kernels (II)

60000 |

* Linear regression 2 so000 [(o) e —
LIN-HYB is 41% faster than | % w

= 20000
LIN—INT32 s 1234567 89101112131415161718192021222324
e Number of PIM Threads (per PIM Core)
5000 800
LIN-BUI provides an 2 4oo | (0 LININT Versions. o
- > —O— LIN-INT32 400 - 32
additional 25% Speedup E 3000 LIN-HYB 200 4 :
- LIN-BUI 259
5% /' BN
S 1000 - T
Recommendatlon 2’ = . Il M\D\D\”—ﬂ—ﬂ—ﬂ—r\—r\—r\—r\—r\—r\—r\—r\—r\—r\—r\—nl
Quantization can take
advantage of native

123456 7 8 9101112131415161718192021222324
Number of PIM Threads (per PIM Core)

hardware support.
Hybrid precision can
significantly improve
performance.

Recommendation 3. Programmers/better
compilers can optimize code by leveraging

native instructions (e.g., 8-bit integer
multiplication in UPMEM) .

SAFARI

Evaluation: Analysis of PIM Kernels (111)

__ 500000 l

° Logistic regreSSion £ 400000 {3 (a) LOG 32-bit Versions —ocrm
o 300000 -

. . £ 200000 - 40316 LOG-INT32

Very high kernel time of 100000 X%Mv NS~

LOG-FP32 and LOG- § i 12345678 9101112131415161718192021222324
INT3 2 due to Singid e - Number of PI::OThreads(per PIM Core)
approximation % a0 || (TAOS T versons | o
\CIJ’ Q LOG-INT32-LUT (WRAM)
LOG-INT32-LUT (MRAM) | =7 \ztggsz?mm
is 53x faster g ol B .
than LOG-INT32 Y MREE == = ===

Number of PIM Threads (per PIM Core)

Recommendation 4. Convert

computation to memory accesses LOG-HYB-LUT is 28% faster

than LOG-INT32-LUT

by keeping pre-calculated
operation results (e.g., LUTs, LOG-BUI-LUT provides an
memoization) in memory. additional 43% speedup

SAFARI 24

Evaluation: Analysis of PIM Kernels (1V)

* Linear regression, logistic regression, decision tree,
K-means clustering

| __ 60000 | __ 500000

£ 50000 (a) LIN-FP32 2 400000 <| (a) LOG 32-bit VersionI |
£ 40000 j(\ I o LIN-FP32 | E5 (\ —oLOG-FP32

The performance of all kernels saturates at 11 or more PIM
threads. In the UPMEM PIM architecture, this means that the
pipeline latency hides the memory latency

| TR A LIN-BUI [| & L1 | A% — i EZ5 M |

As a result, these kernels are compute-bound
on the UPMEM PIM architecture

__ 40000 __ 30000

£ 30000 1 (a) DR £ (b) KWIE

> < 20000 -

£ 20000 A _O_DTR] £ —O—KME]
= [.

= 10000 1 = 10000

< £

g 0 T T T T T T T T T T T T T & O T T T T T T T T T T T T T T T T

s 1234567 8 9101112131415161718192021222324 s 1234567 8 9101112131415161718192021222324
e DTR Number of PIM Threads (per PIM Core) e Number of PIM Threads (per PIM Core)

SAFARI 25

Evaluation: Analysis of PIM Kernels (V)

Key Takeaway 2. ML workloads that are memory-
bound due to low arithmetic intensity in CPU/GPU
become compute-bound when running on PIM.

Recommendation 6. Maximize the utilization of
PIM cores by keeping their pipeline fully busy.

SAFARI 26

Outline

4)
Machine learning workloads
_ J
Processing-in-memory
4)
PIM implementation of ML workloads
_ J
(") Quality Metrics
. Analysis of PIM Kernels
Evaluatlon Performance Scaling
_) Comparison to CPU and GPU
SAFARI 27

Evaluation: Performance Scaling (1)

* Strong scaling: 256 to 2,048 PIM cores

PIM-CPU

300000 (I Inter PIM Core
7% === CPU-PIM
250000 o 7 zzzzpimKemel
’g ~O-Speedup
= 200000 { ¥4
2 %
£ 7
= 150000 { /]
g W Wa
2 100000 - ﬁ 7
4
50000 é ‘z %
7 Z
o2 9 1 7
256 | 512 | 1024 | 2048
LIN-FP32
20000
18000
__ 16000
£ 14000
[
£ 12000
E 10000
o
2 8000
5
§ 6000
& 4000
2000
o Z
256 | 512 | 1024 | 2048
LIN-HYB
== PIM-CPU
30000 I Inter PIM Core
30 cPu-PIM
25000 O EZZ3 PIM Kernel
’g ~O~—Speedup
= 20000 -
[
£
= 15000 O
o
S m
2 2
2 10000 7
% %
DTR

SAFARI

O R N WA U O N O

o RPN W S U O N ®

30000

25000

20000

15000

10000

5000

16000
14000
12000
10000
8000
6000
4000
2000

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

O
%l
é
;
/
g y
12
4
256 | 512 (1024 | 2048
LIN-INT32
O
O

O B N W A U N ®

O R N WA U O N 0 ©

Speedup

Speedup

Speedup

Execution Time (ms) Execution Time (ms)

Execution Time (ms)

ESSIPIM-CPU

T
O B N W A U N ®

2500000 | nter PIM Core,)
7z mmmCcPU-PIM
2000000 ;’L“e"eﬁ[:e‘
1500000
1000000
500000
0
256 | 512 | 1024|2048
LOG-FP32
30000
O
25000 - .
7
20000 | é
Z
15000 z d
10000 g z
5000 ? ; Z
4 .“é é B
256 | 512 | 1024 | 2048
LOG-INT32-LUT (MRAM)
25000
O
20000 A 7
Z
15000 g
17
U d
10000 g -
7
».
5000 % ‘? %
o1 4 7
256 | 512 | 1024 | 2048
LOG-HYB-LUT (WRAM)

BN WA O N O B N W A OO N ®

o

900000 S
800000 z
700000 { 7
7
600000 2
500000 1 z 4
400000 é 7
300000 4 é é
200000 % ‘Z %
00000 { A 7 A &
A 4 7 0
256 | 512 |1024 | 2048
LOG-INT32
30000
O
25000
20000
15000
10000
5000
0
14000
18 P
12000 ?
10000 1 é
8000 ? d
-
6000 { 7] P
n
w0l H
10 4
2000 | ?‘é é y
14 0 A Y
LOG-BUI-LUT (WRAM)

O P N W A U O N ®

Speedup

Speedup

Speedup

PIM kernel time
scales linearly with
the number of PIM

cores

Little overhead from
inter PIM core
communication and
communication
between host and
PIM cores

28

Evaluation: Performance Scaling (1)

Key Takeaway 3. ML training workloads, which need
large training datasets, benefit from large PIM-
enabled memory with many PIM cores.

SAFARI

Outline

4)
Machine learning workloads
_ J
Processing-in-memory
4)
PIM implementation of ML workloads
_ J
(") Quality Metrics
. Analysis of PIM Kernels
Evaluatlon Performance Scaling
_) Comparison to CPU and GPU
SAFARI 30

Comparison to CPU and GPU (1)

* Linear regression and logistic regression LIN

c ___ 100000 100000 100000 100000 100000 100000 - = GPU-CPU
R [H wol | oo | || [] |25
heaVIIy burdened £ 10004 1000 - 1000 - 1000 - 1000 - 1000 -
— EPIM-CPU
When they use 5 100 gr;ir_PPII'\IA\A 100 - 100 100 100 - 100 -
t. th t § 10| @PIM Kernel 10 A 10 A 10 A 10 4 10 4

operations tna 2 . . X . X)

are not natively LIN-FP32 LIN-INT32 LIN-HYB LIN-BUI CPU GPU

supported by the 100000 100000 100000 o~
pp y LOG 10000 - 10000 A 10000 4 10000 -
hardware ﬂ
Several optimizations reduce | Somcema] ﬂ
the execution time considerably L0GINT32 10GFP3y 'OGIELWT MG

Execution Time (ms)

(LIN/LOG up to 10x/3.9x faster than CPU) gljooowoz ljooomoz- 1:0000002 : 12: - ;jﬁjﬁ‘dl
and close the gap with GPU g o 100 100 o0 1| 0 kerne
performance g ﬂ N ﬂ N R
(LIN/LOG still 4x/16x slower than GPU) s L] L1l ;
(WRAM) (WRAM) CPU GPU

SAFARI 31

Comparison to CPU and GPU (II)

e Decision tree and K-means with Higgs boson dataset

100000 | EOPIM Kernel | 100000 100000 100000 100000 100000
. EICPU-PIM -
€ 10000 g:,’}f\jfm 10000 - 10000 - € 10000 —— 10000 - 10000 { [
g 1000 1000 4 1000 A qé 1000 4 1000 A 1000 A
: l; OPIM Kernel
'8 100 - 100 A 100 - ‘8 100 A gﬁiﬁ;Pglle 100 - 100 e
10] 0| acwor | |8 5o fRPMOU o 0 | | Bouer
L C1GPU Kernel i
1 1 1 ‘—l—l—, 1 1 1
DTR CPU GPU KME CPU GPU
DTR (a) Decision Tree KME (b) K-means
PIM version of DTR is 27x PIM version of KME is 2.8x
faster than the CPU faster than the CPU
version and 1.34x faster version and 3.2x faster
than the GPU version than the GPU version

SAFARI 32

Long arXiv Version

* Additional implementation details
* More evaluation results

* Extended observations, takeaways, and
recommendations

An Experimental Evaluation of Machine Learning Training
on a Real Processing-in-Memory System

Juan Gémez-Luna! Yuxin Guo! Sylvan Brocard® Julien Legriel?
Remy Cimadomo? Geraldo F. Oliveira! Gagandeep Singh! Onur Mutlu!

'ETH Ziirich UPMEM

https://arxiv.org/pdf/2207.07886.pdf
Source code: https://github.com/CMU-SAFARI/pim-ml

SAFARI 33

https://arxiv.org/pdf/2207.07886.pdf
https://github.com/CMU-SAFARI/pim-ml

Comparison to CPU and GPU (lII)

e Decision tree and K-means with Criteo 1TB dataset

TPIM Kernel 100000 - 100000 - 100000 1
F00000 7 cpy.piv |100000 A 1000000 1)
£ 100000 Eg}ﬁircw 10000 - 100000 £ 10000 10000 1 10000 1
£ 10000 w000 | [£
= w04 || | [= 1000 COPIM Kernel 10901 10007
s 7 100 0 S 100 | BCPUPIM 100 - 100 |
IRl L= Conen
L% 1o . 10 4 10| meher L% 10 A 10 - 10 { | BGPU Kernel
1 1 1 ——l—l—, 1 1 1
DTR CPU GPU KME CPU GPU
DTR (a) Decision Tree KME (b) K-means
PIM version of DTR is 62x PIM version of KME is 2.7x
faster than the CPU faster than the CPU
version and 4.5x faster version and 3.2x faster
than the GPU version than the GPU version

SAFARI 34

Comparison to CPU and GPU (1V)

Key Takeaway 4. ML workloads that require mainly
operations natively supported by the PIM architecture,

such as decision tree and K-means clustering,
outperform their CPU and GPU counterparts.

SAFARI 35

Long arXiv Version

* Additional implementation details
* More evaluation results

* Extended observations, takeaways, and
recommendations

An Experimental Evaluation of Machine Learning Training
on a Real Processing-in-Memory System

Juan Gémez-Luna! Yuxin Guo! Sylvan Brocard® Julien Legriel?
Remy Cimadomo? Geraldo F. Oliveira! Gagandeep Singh! Onur Mutlu!

'ETH Ziirich UPMEM

https://arxiv.org/pdf/2207.07886.pdf
Source code: https://github.com/CMU-SAFARI/pim-ml

SAFARI 36

https://arxiv.org/pdf/2207.07886.pdf
https://github.com/CMU-SAFARI/pim-ml

@ CMU-SAFARI/ pim-ml ' Public X Edit Pins + ®Unwatch 2 - %

Source Code

<> Code O lIssues 11 Pullrequests ® Actions [Projects © Security |~ Insights @& S

. main - g 1branch © 0 tags otofile Add file~
 https://github.com/ ~— "7 i
. g el1goluj readme 7d7289d 2 days ago) 16 commits
CMU-SAFARI/pim-m]| ™™ S

m Linear_Regression upload regression code 2 days ago
m Logistic_Regression upload regression code 2 days ago
B3 dpu_kmeans @ 728518 submodules 2 days ago
scikit-dpu @ 1ddeb5d submodules 2 days ago
[.gitmodules submodules 2 days ago
[LICENSE readme 2 days ago
[README.md readme 2 days ago
‘= README.md y

PIM-ML

PIM-ML is a benchmark for training machine learning algorithms on the UPMEM architecture,
which is the first publicly-available real-world processing-in-memory (PIM) architecture. The
UPMEM architecture integrates DRAM memory banks and general-purpose in-order cores,
called DRAM Processing Units (DPUs), in the same chip.

PIM-ML is designed to understand the potential of modern general-purpose PIM
architectures to accelerate machine learning training. PIM-ML implements several
representative classic machine learning algorithms:

® Linear Regression
® |ogistic Regression
® Decision Tree

e K-means Clustering

SAFARI 37

https://github.com/CMU-SAFARI/pim-ml

Executive Summary

* Training machine learning (ML) algorithms is a computationally expensive
grocess, frequently memory-bound due to repeatedly accessing large training
atasets
* Memory-centric computin% systems, i.e., with Processing-in-Memory (PIM)
capabilities, can alleviate this data movement bottleneck
* Real-world PIM systems have only recently been manufactured and
commercialized
- UPMEM has designed and fabricated the first publicly-available real-world PIM
architecture
* Our goal is to understand the potential of modern general-purpose PIM
architectures to accelerate machine learning training

* Our main contributions:
- PIM implementation of several classic machine learning algorithms: linear
regression, logistic regression, decision tree, K-means clustering
- Workload characterization in terms of quality, performance, and scaling
- Comparison to their counterpart implementations on processor-centric systems
(CPU and GPU)
* PIM version of DTRis 27x [1.34x faster than the CPU | GPU version, respectively

* PIM version of KME is 2.8x [3.2x faster than the CPU / GPU version, respectively
- Source code: https://github.com/CMU-SAFARI/pim-m|

* Experimental evaluation on a real-world PIM system with 2,524 PIM cores @
425 MHz and 158 GB of DRAM memory

* Key observations, takeaways, and recommendations for ML workloads on
general-purpose PIM systems

SAFARI 38

https://github.com/CMU-SAFARI/pim-ml

Real PIM Tutorial (ISCA 2023)

e June 18t": Lectures + Hands-on labs + Invited lectures

ISCA 2023 Real-World PIM Tutorial S

Recent Changes Media Manager Sitemap

Trace: « start

start

Table of Contents

Real-world Processing-in-Memory Systems for Modern Workloads Real-world Processing-in-Memory
Systems for Modern Workloads
Tutorial Description Tutorial Description
Organizers
Processing-in-Memory (PIM) is a computing paradigm that aims at overcoming the data movement Agenda (June 18, 2023)

Lectures (tentative)
Hands-on Labs (tentative)
Learning Materials

bottleneck (i.e., the waste of execution cycles and energy resulting from the back-and-forth data movement
between memory units and compute units) by making memory compute-capable.

Explored over several decades since the 1960s, PIM systems are becoming a reality with the advent of the
first commercial products and prototypes.

A number of startups (e.g., UPMEM, Neuroblade) are already commercializing real PIM hardware, each with its own design approach and
target applications. Several major vendors (e.g., Samsung, SK Hynix, Alibaba) have presented real PIM chip prototypes in the last two
years. Most of these architectures have in common that they place compute units near the memory arrays. This type of PIM is called
processing near memory (PNM).

PIM can provide large improvements in both performance and energy
consumption for many modern applications, thereby enabling a
commercially viable way of dealing with huge amounts of data that is
bottlenecking our computing systems. Yet, it is critical to (1) study and
understand the characteristics that make a workload suitable for a PIM
architecture, (2) propose optimization strategies for PIM kernels, and (3)
develop programming frameworks and tools that can lower the learning
curve and ease the adoption of PIM.

This tutorial focuses on the latest advances in PIM technology, workload
characterization for PIM, and programming and optimizing PIM kernels. We
will (1) provide an introduction to PIM and taxonomy of PIM systems, (2)
give an overview and a rigorous analysis of existing real-world PIM
hardware, (3) conduct hand-on labs about important workloads (machine

. learning, sparse linear algebra, bioinformatics, etc.) using real PIM systems,
and (4) shed light on how to improve future PIM systems for such workloads.

ps:/ /arxiv.org/pdf/2105.03814.pdf

SAFARI

https://events.safari.ethz.ch/isca-pim-tutorial/doku.php?id=start

39

https://events.safari.ethz.ch/isca-pim-tutorial/doku.php?id=start

2023 IEEE International Symposium on Performance Analysis of Systems and Software

Evaluating

Machine Learning Workloads

on Memory-Centric Computing Systems

Juan Gomez Luna, Yuxin Guo, Sylvan Brocard,
Julien Legriel, Remy Cimadomo, Geraldo F. Oliveira,
Gagandeep Singh, Onur Mutlu

https://arxiv.org/pdf/2207.07886.pdf
https://github.com/CMU-SAFARI/pim-ml|
juang@ethz.ch

mzmich SA FA R ' rHeEm

Monday, April 24, 2023

https://arxiv.org/pdf/2207.07886.pdf
https://github.com/CMU-SAFARI/pim-ml
mailto:juang@ethz.ch

