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ABSTRACT
Training machine learning (ML) algorithms is a computationally
intensive process, which is frequently memory-bound due to repeat-
edly accessing large training datasets. As a result, processor-centric
systems (CPU, GPU) waste large amounts of energy and execu-
tion cycles due to the data movement between memory units and
processing units. Memory-centric computing systems, i.e., systems
with processing-in-memory (PIM) capabilities, can alleviate this
data movement bottleneck.

Our goal is to understand the potential of general-purpose PIM
architectures to accelerate ML training. To do so, we (1) implement
several classic ML algorithms (namely, linear regression, logistic re-
gression, decision tree, K-Means clustering) on a real-world general-
purpose PIM architecture, (2) evaluate and characterize them in
terms of accuracy, performance and scaling, and (3) compare to their
counterpart state-of-the-art implementations on CPU and GPU. Our
evaluation on a real memory-centric computing system with more
than 2500 PIM cores shows that PIM greatly accelerates memory-
boundMLworkloads, when the necessary operations and datatypes
are natively supported by PIM hardware. For example, our PIM
implementation of decision tree is 27× faster than the CPU imple-
mentation on an 8-core Intel Xeon, and 1.34× faster than the GPU
implementation on an NVIDIA A100. Our PIM implementation of
K-Means clustering is 2.8× and 3.2× faster thanCPU andGPU imple-
mentations, respectively. We provide several key observations, take-
aways, and recommendations for users of ML workloads, program-
mers of PIM architectures, and hardware designers and architects
of future memory-centric computing systems. We open-source all
our code and datasets at https://github.com/CMU-SAFARI/pim-ml.
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1 INTRODUCTION
Machine learning (ML) algorithms [1–6] have become ubiquitous
in many fields of science and technology due to their ability to learn
from and improve with experience with minimal human interven-
tion. These algorithms train by updating their model parameters
in an iterative manner to improve the overall prediction accuracy.
However, training ML algorithms is a computationally intensive
process, which requires large amounts of training data [7–9]. Ac-
cessing training data in current processor-centric systems (e.g.,
CPU, GPU) requires costly data movement between memory and
processors, which results in high energy consumption and a large
percentage of the total execution cycles. This data movement can

become the bottleneck of the training process, if there is not enough
computation and locality to amortize its cost [10–15].

One way to alleviate the cost of data movement is processing-
in-memory (PIM) [16–20], a data-centric computing paradigm
that places processing elements near or inside the memory ar-
rays [7, 18, 21–154]. Even though PIM was first proposed in the
1960s [21, 22], real-world PIM systems have only recently beenman-
ufactured [155–165]. The UPMEM PIM architecture [155–160] is
the first PIM architecture to become commercially available.

Our goal in this work is to quantify the potential of general-
purpose real-world PIM architectures for training of ML algorithms.
To this end, we implement four representative classic machine
learning algorithms (linear regression [166, 167], logistic regres-
sion [166, 168], decision tree [169], K-Means [170]) on a memory-
centric system containing PIM-enabled memory, specifically the
UPMEM PIM architecture [156–160].1 Our PIM implementations
of ML algorithms follow PIM programming recommendations in
recent literature [157–159, 177]. We apply several optimizations
to overcome the limitations of existing general-purpose PIM ar-
chitectures (e.g., limited instruction set, relatively simple pipeline,
relatively low frequency) and take full advantage of the inherent
strengths of PIM (e.g., large memory bandwidth, low memory la-
tency).

We evaluate our PIM implementations in terms of training accu-
racy, performance, and scaling characteristics on a real memory-
centric system with PIM-enabled memory [156, 177, 178]. The sys-
tem features 2,524 PIM cores running at 425 MHz, and 158 GB of
DRAM memory. Our experimental real system evaluation provides
new observations and insights, including the following:
• ML training workloads that show memory-bound behavior in
processor-centric systems can greatly benefit from (1) fixed-point
data representation, (2) quantization [179, 180], and (3) hybrid pre-
cision implementation [164, 181] (without much accuracy loss),
in order to alleviate the lack of native support for floating-point
and high-precision (i.e., 32- and 64-bit) arithmetic operations in
the evaluated PIM system.

• ML training workloads that require complex activation func-
tions (e.g., sigmoid) [182] can take advantage of lookup tables
(LUTs) [107, 183, 184], instead of function approximation (e.g.,
Taylor series) [185], when PIM systems lack native support for
those activation functions.

1We do not include neural networks in our study, since GPUs and TPUs [171] have
a solid position as the preferred and highly optimized accelerators for them [98,
171–176] due to their extremely high floating-point performance. The UPMEM PIM
architecture (used in this study) currently does not have native support for floating-
point operations [155–160].
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• Data can be placed and laid out such that accesses of PIM cores to
their nearby memory banks are streaming, which enables better
utilization of the internal PIM memory bandwidth.

• ML training workloads with large training datasets can greatly
benefit from scaling the size of PIM-enabled memory with PIM
cores attached to memory banks. Training datasets can remain
in memory without being moved to the host processor (e.g., CPU,
GPU) in every iteration of the training process. Even if PIM cores
need to communicate intermediate results via the host processor,
this communication overhead is tolerable.
We compare our PIM implementations of linear regression, lo-

gistic regression, decision tree, and K-Means to their state-of-the-
art CPU and GPU counterparts. We observe that memory-centric
systems with PIM-enabled memory can significantly outperform
processor-centric systems for memory-bound ML training work-
loads, when the operations needed by theMLworkloads are natively
supported by PIM hardware (or can be replaced by efficient LUT
implementations). We open-source all our PIM implementations of
ML training workloads, training datasets, and evaluation scripts in
our GitHub repository [186].

2 BACKGROUND AND MOTIVATION
2.1 Machine Learning Workloads
Machine learning (ML) [1–6] is a family of algorithms that learns
a target function (or model) that best maps the input variables to
an output variable. ML algorithms build (train) a model using the
observed data (training dataset). The model is then used to make
(infer) predictions or decisions.

Our goal in this study is to analyze how real-world general-
purpose PIM architectures can accelerate training of representative
ML algorithms, and generate insights and recommendations that
are useful to programmers and architecture designers. We select
four representative classic machine learning algorithms (linear
regression, logistic regression, decision tree, K-Means clustering)
from three of the subcategories of ML algorithms (regression, clas-
sification, clustering).

We employ the roofline model [187] to quantify the memory
boundedness of the CPU versions of the four workloads. Fig. 1
shows the roofline model on an Intel Xeon E3-1225 v6 CPU [188]
with Intel Advisor [189]. We observe from Fig. 1 that all of the
CPU versions of the four workloads are in the memory-bound
area of the roofline model (i.e., the shaded region on the left side
of the intersection between the DRAM bandwidth roof and the
peak compute performance roof). Hence, we confirm that the four
workloads are limited by memory access. As a result, these ML
workloads are potentially suitable for PIM.

2.2 Processing-in-Memory
Processing-in-memory (PIM) [7, 18, 21–154] is a computing para-
digm that advocates for memory-centric computing systems, where
processing elements (general-purpose cores and/or accelerators) are
placed near or inside the memory arrays. PIM is a feasible solution
to alleviate the data movement bottleneck [16–20], caused by (1) the
need for moving data between memory units and compute units in
processor-centric systems, which causes a huge performance loss
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Figure 1: Roofline model for the CPU versions of four ML
workloads (LIN: linear regression, LOG: logistic regression,
DTR: decision tree, KME: K-Means clustering) on an Intel
Xeon E3-1225 v6 CPU.

and energy waste, and worsened by (2) the increasing performance
disparity between fast processor units and slow memory units.

Real-world PIM architectures are finally becoming a reality, with
the commercialization of the UPMEM PIM architecture [156–158],
and the announcement of Samsung HBM-PIM [161, 162], Samsung
AxDIMM [163], SK Hynix AiM [164], and Alibaba HB-PNM [165].
These five real-world PIM systems have some important common
characteristics, as depicted in Fig. 2. First, there is a host processor
(CPU or GPU), typically with a deep cache hierarchy, which has
access to (1) standard main memory, and (2) PIM-enabled mem-
ory. Second, the PIM-enabled memory chip contains multiple PIM
processing elements (PIM PEs), which have access to memory (ei-
ther memory banks or ranks) with higher bandwidth and lower
latency than the host processor. Third, the PIM processing elements
(either general-purpose cores, SIMD units, FPGAs, or specialized
processors) run at only a few hundred megahertz, and have a small
number of registers and relatively small (or no) cache or scratchpad
memory. Fourth, PIM PEs may not be able to communicate directly
with each other (e.g., UPMEM DPUs, HBM-PIM PCUs or AiM PUs
in different chips), and communication between them happens via
the host processor.
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Figure 2: High-level view of a state-of-the-art processing-
in-memory system. The host CPU has access to𝑀 standard
memory modules and 𝑁 PIM-enabled memory modules.

In our study, we use the UPMEM PIM architecture [155–159,
177, 178, 190]. This PIM architecture uses 2D DRAM arrays and
combines them with general-purpose cores, called DPUs, on the
same chip. In the current architecture generation (as of April 2023),
there are 8 DPUs and 8 DRAM banks per chip, and 16 chips per
DIMM (8 chips/rank). DPUs are relatively deeply pipelined and
fine-grained multithreaded [191–193]. DPUs run software threads,
called tasklets.
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DPUs have a 32-bit RISC-style general-purpose instruction
set [177]. They feature native support for 32-bit integer addition/-
subtraction and 8-bit multiplication, but some complex operations
(e.g., 32-bit integer multiplication/division) and floating-point oper-
ations are emulated [158, 159].

Each DPU has access to its own (1) 64-MB DRAM bank, called
MRAM, (2) 24-KB instruction memory, and (3) 64-KB scratchpad
memory, calledWRAM. The host CPU can access the MRAM banks
for copying input data (from main memory to MRAM, i.e., CPU-
DPU) and retrieving results (from MRAM to main memory, i.e.,
DPU-CPU). Since there is no direct communication channel be-
tween DPUs, all inter-DPU communication takes place through the
host CPU by using DPU-CPU and CPU-DPU data transfers.

Throughout this paper, we use generic terminology, since our
implementation strategies are applicable to PIM systems like the
generic one described in Fig. 2, and not exclusive of the UPMEMPIM
architecture. Thus, we use the terms PIM core, PIM thread, DRAM
bank, scratchpad, andCPU-PIM/PIM-CPU transfer, which correspond
to DPU, tasklet, MRAM bank, WRAM, and CPU-DPU/DPU-CPU
transfer in UPMEM’s terminology [177].

3 ML TRAINING AND PIM IMPLEMENTATION
We select four widely-used machine learning workloads (linear
regression, logistic regression, K-Means, and decision tree) as rep-
resentative ones for our analysis of machine learning training on
real-world PIM architectures. We consider them representative
because they are diverse in terms of learning approach and appli-
cation. They have also diverse computational characteristics (e.g.,
computation pattern, synchronization needs), as Table 1 shows.

Table 1: Machine learning workloads

Characteristic Linear
Regression

Logistic
Regression

Decision
Tree K-Means

Short name LIN LOG DTR KME

Learning approach Supervised Unsupervised
Application Regression Classification Clustering

Memory
access pattern

Sequential Yes Yes Yes Yes
Strided No No No No
Random No No No No

Computation
pattern

Operations mul,
add

mul, add,
exp, div

compare,
add

mul, compare,
add

Datatypes float,
int32_t

float,
int32_t float int16_t,

int64_t

Communication/
synchronization

Intra
PIM Core barrier barrier barrier,

mutex
barrier,
mutex

Inter
PIM Core Yes Yes Yes Yes

We do not include any neural network (or deep learning algo-
rithm) or reinforcement learning (RL) algorithm in our study for
two main reasons. First, training of neural networks (e.g., CNN,
RNN, GAN) can generally benefit from large caches and register
files in processor-centric computing systems, since they expose high
temporal locality [7]. Together with their inherent data-level par-
allelism and very high floating-point operation intensity, they are
a good fit for GPUs [173]. In fact, the state-of-the-art ML-targeted
PIM architecture [161, 162] shows performance improvements for
neural network inference (not training) and with small batch sizes.
Second, RL [194] is an inherently sequential process, where an agent
learns to make decisions by receiving a reward at timestep 𝑡 + 1
for an action that was performed at timestep 𝑡 on an environment.
As a result, RL does not appear as a natural fit for PIM systems

with many parallel processing elements, such as the one depicted
in Figure 2. For deep RL, the state-of-the-art approaches [195] accel-
erate only the neural network training part in RL (neural network
training is out of the scope of our work as explained above).

3.1 Linear Regression
Linear regression [166, 167] is a supervised learning algorithm
where the predicted output variable has a linear relation with the
input variable.
Algorithm Description. Linear regression obtains a linear model
that predicts an output vector 𝑦 from an input matrix 𝑋 based
on some coefficients or weights, vector 𝑤 . We implement linear
regression with gradient descent [196], as the optimization algo-
rithm to find the minimum of the loss function. During training,
we repeatedly refine the values of𝑤 based on the observed values
𝑦 for the inputs in matrix 𝑋 (row vectors 𝑥𝑖 ). In each iteration, we
first calculate the predicted output for each row vector 𝑥𝑖 , i.e., the
dot product of 𝑥𝑖 and𝑤 . Second, we calculate the gradient for the
predicted output, i.e., the error of the predicted output with respect
to the observed value 𝑦. Third, we update the weights𝑤 using the
calculated gradient. We repeat the above process until convergence
(i.e., the gradient of loss function is zero or close to zero).
PIM Implementation. Our PIM implementation of linear regres-
sion with gradient descent divides the training dataset (𝑋 ) so that
each PIM core is assigned an equal number of row vectors 𝑥𝑖 . If the
training dataset resides initially in the main memory of the host
processor, we need to transfer the corresponding partitions of the
training dataset to the local memories (e.g., DRAM banks) of the
PIM cores. Inside a PIM core, we first distribute the assigned row
vectors 𝑥𝑖 across the running threads, which compute the dot prod-
ucts of row vectors and weights (𝑥𝑖 ·𝑤 ). Second, each dot product
result is compared to the observed value 𝑦 to compute a partial
gradient value. Third, we reduce partial gradient values, and return
the results to the host. Finally, the host (1) performs final reductions,
(2) updates the weights 𝑤 , and (3) redistributes them to the PIM
cores for the next training iteration.

We implement four different versions of linear regression with
different input datatypes and optimizations:
• LIN-FP32 trains with input datasets of 32-bit real values.
• LIN-INT32 uses 32-bit fixed-point representation of input
datasets. It uses 32-bit integer arithmetic.

• LIN-HYB is applicable to input datasets of limited value range
that fit in 8 bits. The dot product result is 16-bit width, and the
final gradient is represented in 32 bits. This hybrid implemen-
tation is motivated by the fact that real-world PIM cores only
feature arithmetic units of limited precision. For example, UP-
MEM DPUs [177] run native 8-bit integer multiplication, but
emulate 32-bit integer multiplication using shift-and-add instruc-
tions [158]. HBM-PIM [161] and AiM [164] have only 16-bit
floating-point units.

• LIN-BUI replaces compiler-generated 16-bit and 32-bit multipli-
cations with custom multiplications based on 8-bit built-in multi-
plication functions [178] (this optimization is specific to UPMEM
PIM). This optimization, which is based on the assumption that
input data is encoded in 8 bits, reduces the number of instructions
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for each multiplication from 7 instructions (compiler-generated)
to 4 (custom).
In §5, we evaluate all LIN versions in terms of accuracy (§5.1),

performance for different numbers of threads per PIM core (§5.2),
and performance scaling characteristics (§5.3). We also compare
our LIN versions to custom CPU and GPU implementations of
linear regression (§5.4), which use Intel MKL [197] and NVIDIA
cuBLAS [198], respectively.

3.2 Logistic Regression
Logistic regression [166, 168] is a supervised learning algorithm
used for classification, which outputs probability values for each
input observation variable or vector. These values represent the
likelihood of belonging to a certain class or event.
AlgorithmDescription. Logistic regression uses the sigmoid func-
tion tomap predicted values (output vector𝑦 obtained from an input
matrix 𝑋 and a weights vector𝑤 ) to probabilities. Our implementa-
tion of logistic regression uses gradient descent, same as our linear
regression (§3.1). We implement the logistic regression algorithm
in four steps. First, in the beginning of each training iteration, we
obtain the dot product of row vectors 𝑥𝑖 and weights𝑤 . Second, we
apply the sigmoid function to the dot product results. Third, we cal-
culate the gradient to evaluate the error of the predicted probability.
Fourth, we update the weights𝑤 according to the gradients.
PIM Implementation. Our PIM implementation of logistic regres-
sion follows the same workload distribution pattern as our linear
regression implementation. First, row vectors 𝑥𝑖 are distributed
across PIM cores and threads in each PIM core. Second, each thread
computes the dot product of a row vector and the weights (𝑥𝑖 ·𝑤 ),
and applies the sigmoid function to the dot product result. Third,
the thread computes partial gradient values. Fourth, partial gradi-
ent values from different threads are reduced, and the results are
returned to the host. Finally, the host computes the final reductions,
and updates the weights before redistributing them to the PIM
cores.

We implement six different versions of logistic regression with
different input datatypes and optimizations:
• LOG-FP32 trains with input datasets of real data (32-bit preci-
sion). If the PIM architecture does not support exponentiation
(needed for sigmoid), this operation can be approximated by
Taylor series [185]. This is true for the UPMEM PIM architecture.

• LOG-INT32 uses 32-bit fixed-point representation of input
datasets. It uses 32-bit integer arithmetic, and Taylor series for
the sigmoid function.

• LOG-INT32-LUT versions use a LUT per PIM core for sigmoid
values, instead of Taylor series. The size of the LUT depends on
the sigmoid boundary and the number of bits for the decimal
part of the fixed-point representation. We take advantage of the
fact that the sigmoid function is symmetric. Thus, for a sigmoid
boundary of 20 and 10 bits for the decimal part, the size of the LUT
is 20 × 1024 entries. To represent this range of values, we can fit
the entries in 16 bits. As a result, the size of our LUT is 40 KB. This
small size can comfortably reside in the small scratchpads/caches
of PIM cores (e.g., 64-KBWRAM in the UPMEMPIM architecture).
In §5.2, we compare a version that accesses the LUT directly from
DRAM (e.g., MRAM in the UPMEM PIM architecture), called

LOG-INT32-LUT (MRAM), and a version that accesses the LUT
from the scratchpad, called LOG-INT32-LUT (WRAM).

• LOG-HYB-LUT is applicable to input datasets of a limited value
range represented in 8 bits, same as LIN-HYB, and uses LUT-based
sigmoid (LUT in scratchpad).

• LOG-BUI-LUT uses 8-bit built-in multiplication, same as LIN-BUI,
and LUT-based sigmoid (LUT in scratchpad).
In §5, we evaluate all LOG versions in terms of training error rate

(§5.1), performance for different numbers of threads per PIM core
(§5.2), and performance scaling characteristics (§5.3). We also com-
pare our LOG versions to custom CPU and GPU implementations of
logistic regression (§5.4), which use Intel MKL [197] and NVIDIA
cuBLAS [198], respectively.

3.3 Decision Tree
Decision trees [169] are tree-based methods for classification and
regression. A decision tree partitions the feature space into leaves,
with a simple prediction model in each leaf, typically a comparison
to a threshold (e.g., an average value in regression, a majority class
in classification).
Algorithm Description. The training process of a decision tree
builds a binary-search tree, which represents the partitioning of
the feature space. Each tree node splits the current rectangular sub-
space further based on a feature and a threshold. The prediction
is later done by following the correct path in the tree, up to a leaf
which contains the predicted value.

Two main steps of decision tree algorithms are:
(1) Split a tree leaf, thus creating two children connected to their

parent node (i.e., the old leaf). A split is represented as a tuple
(𝑙, 𝑓 , 𝑡ℎ𝑟𝑒𝑠ℎ), where 𝑙 is the tree leaf index, 𝑓 is the feature
index, and 𝑡ℎ𝑟𝑒𝑠ℎ is the feature threshold. After a split, the
left child contains the points 𝑝 of the training set for which
𝑝 [𝑓 ] <= 𝑡ℎ𝑟𝑒𝑠ℎ, and the right child contains the points for
which 𝑝 [𝑓 ] > 𝑡ℎ𝑟𝑒𝑠ℎ.

(2) Evaluate the quality of a leaf split. The quality of a split is
measuredwith a score, e.g., theGini impurity [169], a probability
measure of a randomly chosen element being incorrectly labeled
if it was randomly labeled.

PIM Implementation. Our PIM implementation of a decision tree
partitions the training set into subsets of equal size, which the host
processor transfers to the PIM cores. The host processor maintains
the tree representation and makes splitting decisions, while the
PIM cores compute partial Gini scores to evaluate the splits. The
partial Gini scores computed by PIM cores are returned to the host
and aggregated, in order to make splitting decisions based on the
total Gini score.

The host maintains an active frontier of nodes, i.e., the cur-
rent leaves of the tree. In each training iteration, the host decides
whether (1) to split a leaf, an operation called split commit, or (2) to
evaluate a split, an operation called split evaluate, or (3) to query
the minimum and maximum values of a feature in a leaf, an opera-
tion called min-max. The minimum value (min) and the maximum
value (max) are needed by the host to randomly select a candidate
split threshold in the [min, max] interval. Then, the host sends
commands (i.e., split commit, split evaluate, min-max) to the PIM
cores. The host can send multiple commands at once (with the only
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restriction that there must be at most one command per leaf), thus
exploiting task-level parallelism in the PIM cores.

Inside a PIM core, a split evaluate command is also parallelized,
as different PIM threads work on different batches of feature values.
PIM threads move batches of feature values in the training datasets
from the DRAM bank to the scratchpad (i.e., fromMRAM toWRAM
in UPMEM DPUs), compare them to the corresponding threshold,
and update the partial Gini score accordingly. This operation has
low arithmetic intensity, since only one floating-point comparison
and one integer addition are needed. Consequently, a key point
for performance is to load and handle multiple feature values at
once, in order to hide the latency of accesses to DRAM banks (e.g.,
in UPMEM DPUs, the MRAM-WRAM transfers are handled by
a DMA engine with a deterministic cost for each transfer [158]).
Streaming memory accesses (using large MRAM-WRAM transfers)
sustain higher memory bandwidth than fine-grained strided/ran-
dom accesses (using short MRAM-WRAM transfers) [158]. In order
to access memory in streaming during split evaluate operations,
we lay out the training data in split commit operations as follows:
(1) Points are stored by features. If we denote 𝑝𝑖 [𝑓 ] the value of fea-

ture 𝑓 of point 𝑝𝑖 , the first feature values are 𝑝0 [0]𝑝1 [0] ...𝑝𝑛 [0],
then 𝑝0 [1]𝑝1 [1] ...𝑝𝑛 [1], etc.

(2) For all features, the feature values of points belonging to the
same tree leaf are kept consecutive in memory. This means that
for a leaf node 𝑙 containing the subset of points 𝑝𝑙0, 𝑝

𝑙
1, ..., 𝑝

𝑙
𝑘
,

and a feature 𝑓 , the values of 𝑝𝑙0 [𝑓 ]𝑝
𝑙
1 [𝑓 ] ...𝑝

𝑙
𝑘
[𝑓 ] are stored

consecutively in memory. The same applies to the class values.
In §5, we evaluate DTR in terms of training accuracy (§5.1), per-

formance for different numbers of threads per PIM core (§5.2), and
performance scaling characteristics (§5.3). We also compare our DTR
implementation to state-of-the-art CPU and GPU implementations
of decision tree (§5.4). The CPU version is from Scikit-learn [199]
and the GPU version is from RAPIDS [200].

3.4 K-Means Clustering
K-Means [170] is an iterative clustering method used to find groups,
which have not been explicitly labeled, in a dataset.
Algorithm Description. A K-Means algorithm attempts to parti-
tion the dataset into K pre-defined distinct non-overlapping sub-
groups (clusters) where each data point belongs to only one group.
Points within a cluster are meant be as similar (close) as possible
while in comparison to points belonging to other clusters, their
differences (distance) should be maximized. A cluster is identified
by its centroid, a point with coordinates determined as the mini-
mum total distance between itself and each point of the cluster. Our
K-Means algorithm follows Lloyd’s method [170].
PIM Implementation. Our PIM implementation of K-Means par-
titions the training set and distributes it evenly over the PIM cores.
The host processor sets initial random values of the centroids and
broadcasts them to all PIM cores. In successive iterations, (1) each
PIM core assigns points of its part of the training set to the clus-
ters, and then (2) the host adjusts the centroids based on the new
assignment of points.

First, inside a PIM core, PIM threads evaluate which centroid
is the nearest one to each point of the training set. Distance cal-
culations are done using 16-bit integer arithmetic. Input data is

quantized over a range of ±32767 (16-bit signed integers) to avoid
overflowing when doing summations. Second, after finding the
nearest centroid to a point, a PIM thread increments a counter
and updates one accumulator per coordinate. The counter and the
accumulators are associated to the corresponding cluster. Each
per-coordinate accumulator contains the sum of values of the cor-
responding coordinate for all points belonging to a cluster. After all
points are processed, each PIM core has partial sums of the coordi-
nate values of the points in each cluster, and the number of points in
each cluster. Third, the host processor then retrieves all per-cluster
partial sums and counts from all PIM cores, and reduces them in
order to compute the new coordinates of the centroids (calculated
as the total sum of each coordinate divided by the total count). If
these new centroid coordinates are far enough from the previous
ones, they are sent over to the PIM cores for another iteration. The
process continues until a centroid’s coordinates converge to a local
optimum, i.e., when the updated coordinates are within a threshold
distance to the previous coordinates. The threshold distance used
to check for convergence is the Frobenius norm [201]. Fourth, once
a clustering is completed, the PIM cores compute the inertia (also
known as within-cluster sum-of-squares) of the clustering for their
assigned points, and the host processor sums them up. The entire
K-Means algorithm is repeated with different random starting cen-
troids. The host processor chooses the clustering with the lowest
inertia as the final result.

In §5, we evaluate KME in terms of training quality (§5.1), per-
formance for different numbers of threads per PIM core (§5.2), and
performance scaling characteristics (§5.3). We also compare our KME
implementation to state-of-the-art CPU and GPU implementations
of K-Means (§5.4). The CPU version is from Scikit-learn [199] and
the GPU version is from RAPIDS [200].

4 METHODOLOGY
We make our implementations of ML workloads for a real-world
PIM system compatible with Scikit-learn [199], an open-source ma-
chine learning library, by deploying them as Scikit-learn estimator
objects.

We run our experiments on a real-world PIM system [156] with
2,524 PIM cores running at 425 MHz, and 158 GB of DRAMmemory.
Table 2 shows the main characteristics of this PIM system. The table
also includes characteristics of the CPU and the GPU that we use as
baselines for comparison. We compare our PIM implementations of
ML workloads to state-of-the-art CPU and GPU implementations
of the same workloads in terms of performance and quality (§5.4).
For linear and logistic regression, we implement CPU versions with
Intel MKL [197] and GPU versions with NVIDIA cuBLAS [198]. For
decision tree and K-Means, CPU versions are from Scikit-learn [199]
and GPU versions from RAPIDS [200].

Table 3 presents the datasets that we use in different experiments.
For analysis of PIM kernel performance and performance scaling
(both weak and strong scaling) experiments (§5.2 and §5.3), we use
synthetic datasets, since we can generate them as large as needed
for the scaling experiments. For comparison to CPU and GPU (§5.4),
we use state-of-the-art real datasets.
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Table 2: Evaluated PIM system, baseline CPU and GPU

Metric UPMEM
PIM System [156]

Intel Xeon
Silver 4215 CPU [202]

NVIDIA
A100 GPU [203]

Processor Node 2x nm 14 nm 7 nm

Processor

Total
Cores 2,524 8 (16 threads) 108

(6,912 SIMD lanes)
Frequency 425 MHz 2.5 GHz 1.4 GHz
Peak
Performance

1,088
GOPS

40
GFLOPS★

19,500
GFLOPS

Main Capacity 158 GB 256 GB 40 GB

Memory Total
Bandwidth 2145 GB/s 37.5 GB/s 1555 GB/s

TDP 280 W† 85 W 250 W
†𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑇𝐷𝑃 = 𝑇𝑜𝑡𝑎𝑙 𝑃𝐼𝑀 𝑐𝑜𝑟𝑒𝑠

𝑃𝐼𝑀 𝑐𝑜𝑟𝑒𝑠/𝐷𝐼𝑀𝑀
× 14𝑊 /𝐷𝐼𝑀𝑀 [156].

★𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐺𝐹𝐿𝑂𝑃𝑆 = 2.5𝐺𝐻𝑧 × 8 𝑐𝑜𝑟𝑒𝑠 × 2 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒 .

Table 3: Datasets

Datasets Linear
regression

Logistic
regression Decision tree K-Means

Synthetic† Strong
Scaling

1
PIM Core

211; 16
(0.125 MB)

211; 16
(0.125 MB)

60 K; 16
(3.84 MB)

10 K; 16
(0.64 MB)

256–2048
PIM Cores

6,291,456; 16
(384 MB)

6,291,456; 16
(384 MB)

153,600,000; 16
(9830 MB)

25,600,000; 16
(1640 MB)

Weak
Scaling

per
PIM Core

211; 16
(0.125 MB)

211; 16
(0.125 MB)

211; 16
(38.4 MB)

10 K; 16
(6.4 MB)

Real SUSY [204, 205] Skin
segmentation [206]

Higgs
boson [204, 207]

Higgs
boson [204, 207]

†𝐹𝑜𝑟𝑚𝑎𝑡 = 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 (𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠) ; 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 (𝑆𝑖𝑧𝑒 𝑖𝑛 𝑀𝐵) .

4.1 ML Training Quality Metrics
We evaluate the training quality of the different versions of our ML
workloads. We use synthetic datasets (with uniformly distributed
random samples) and run the experiments on a single PIM core (i.e.,
an UPMEM DPU).

For LIN and LOG, the synthetic datasets contain samples (i.e.,
dataset elements, each with a number of attributes) with 4 decimal
numbers, represented as 32-bit floating-point values. The fixed-
point versions use the same datasets after quantization. The number
of samples is 8,192 and the number of attributes is 16. We calculate
the training error rate (lower is better) as the percentage of inference
errors of a model for the same data the model was trained on.

For DTR, the synthetic dataset has 32-bit floating-point values.
The data is not quantized. The number of samples is 600,000 and
the number of attributes is 16. There are 4 informative attributes, 4
redundant attributes (a random linear combination of the informa-
tive attributes), and 8 random attributes. We evaluate the training
accuracy (closer to 1 is better) on the same data the model was
trained on.

For KME, the synthetic dataset has 32-bit floating-point values.
The PIM version uses the same dataset after quantization. The
number of samples is 100,000 and the number of attributes is 16.
Because it is an unsupervised problem, we do not use accuracy
as a metric. Instead, we use the Calinski-Harabasz score [208] to
measure the absolute quality of the clustering with no knowledge
of the ground truth used in the generation of the dataset. We also
measure the similarity of the clusterings produced by the Scikit-
learn version of the algorithm with the PIM implementation using
the adjusted Rand index [209].

5 EVALUATION
5.1 ML Training Quality

5.1.1 Linear Regression (LIN). We evaluate the training error rate
of our four versions of LIN for varying number of training iter-
ations between 1 and 1000. We observe that the training error
rate flattens after 500 iterations for the four versions. LIN-FP32
achieves a training error rate as low as 0.55% (same as the CPU
version). This is the comparison point for the integer versions (i.e.,
LIN-INT32, LIN-HYB, LIN-BUI). The training error rate of the in-
teger versions remains low (1.02% for LIN-INT32 and 1.29% for
LIN-HYB and LIN-BUI) and close to that of the 32-bit floating-point
version. LIN-HYB and LIN-BUI show the same behavior, since they
use the same datatypes.

5.1.2 Logistic Regression (LOG). We evaluate the training error
rate of our six versions of LOG for numbers of training itera-
tions between 1 and 1000. The training error of LOG-FP32, which
we use as the comparison point for the integer versions (i.e.,
LOG-INT32, LOG-INT32-LUT (MRAM), LOG-INT32-LUT (WRAM),
LOG-HYB-LUT (WRAM), LOG-BUI-LUT (WRAM)), is almost flat af-
ter 100 iterations, and is as low as 1.20% after 1000 iterations
(same as the CPU version). We observe that the training error
rate of LOG-INT32 (2.42%) is higher than that of LOG-INT32-LUT
(MRAM) and LOG-INT32-LUT (WRAM) (2.14%) The reason is that
LOG-INT32 approximates exponentiation (hence, sigmoid) with
Taylor series, while LOG-INT32-LUT (MRAM) and LOG-INT32-LUT
(WRAM) store exact sigmoid values in a LUT. LOG-HYB-LUT (WRAM)
and LOG-BUI-LUT (WRAM) increase the training error rate signifi-
cantly (14.12%) due to the use of reduced-precision datatypes (i.e.,
8- and 16-bit integers).

5.1.3 Decision Tree (DTR). We limit the tree depth to 10. The tree is
built by splitting leaf nodes until no node can be split. A node cannot
be split if (i) it holds fewer than two data points, (ii) it contains only
points belonging to the same class, or (iii) its depth exceeds the
maximum tree depth. To account for the effect of different synthetic
datasets (with randomly generated samples) on both PIM and CPU
implementations, we restart the algorithm 10 times, and average
the resulting accuracies. We register a training accuracy (closer to
1 is better) of 0.90008 for the PIM implementation, against 0.90175
for the CPU version.

5.1.4 K-Means Clustering (KME). We perform a K-Means cluster-
ing with 16 clusters to match the dataset generation. The clustering
iterates for a maximum of 300 iterations, or until the relative Frobe-
nius norm between the cluster centers of two consecutive iterations
is lower than 0.0001. In practice, the clustering always converges
after less than 40 iterations on both the PIM and the CPU imple-
mentations. To account for the effect of synthetic datasets (with
randomly generated samples), we average the metrics across 10
different runs with different random seeds. We register average
Calinski-Harabasz scores [208] of 82200 for both the PIM and the
CPU implementations. The adjusted Rand index [209] between the
PIM and CPU clusterings is 0.999347 on average, showing that the
clusterings are nearly identical despite the quantization.

5.2 Performance Analysis of PIM Kernels
5.2.1 Linear Regression (LIN). Fig. 3 shows the PIM kernel time of
our four versions of LIN. The upper plot (Fig. 3(a)) represents the
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PIM kernel time of LIN-FP32. The lower plot (Fig. 3(b)) shows the
PIM kernel time of the integer versions.
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Figure 3: Execution time (ms) of four versions of linear re-
gression using 1-24 PIM threads in 1 PIM core.

We make four observations. First, all LIN versions result in their
best performance with 11 or more PIM threads. Eleven is the mini-
mum number of PIM threads that keep the pipeline of the PIM core
(i.e., UPMEM DPU) full [155, 158]. For this PIM core, a workload
with performance saturation at 11 PIM threads can be considered
a compute-bound workload, since the latency of instructions exe-
cuted in the pipeline hides the latency of memory accesses [158].

Second, using fixed-point representation instead of floating-point
(i.e., LIN-INT32 instead of LIN-FP32) reduces the kernel time by
an order of magnitude. The PIM cores used in our evaluation do
not natively support floating-point arithmetic. Thus, floating-point
operations are emulated, since the PIM cores only have integer
arithmetic units [155, 158].
Key Takeaway 1. Workloads that require arithmetic operations
or datatypes that are not natively supported by PIM cores run at
low performance due to instruction emulation (e.g., floating-point
operations in UPMEM PIM).
Recommendation 1. ML workloads (e.g., LIN, LOG) can employ
fixed-point representation if PIM cores do not support floating-point
operations (e.g., UPMEM PIM) without sacrificing much accuracy
(§5.1).

Third, LIN-HYB accelerates the PIM kernel by 41% over
LIN-INT32. The speedup comes from the use of 8-bit integer multi-
plication, instead of the emulated 32-bit integer multiplication.
Recommendation 2. Quantization can be used to take advantage
of native hardware support, if PIM cores natively support only limited
precision. For example, using hybrid precision after quantizing the
training dataset can significantly improve performance.

Fourth, LIN-BUI achieves an additional 25% speedup over
LIN-HYB due to our custom multiplication operation (§3.1).
Recommendation 3. Programmers (or better compilers) can opti-
mize code at low-level to better leverage available native instructions

and hardware (e.g, 8-bit integer multiplication in UPMEM DPUs).
Our custom 16- and 32-bit integer multiplications (§3.1) significantly
improve performance over compiler-generated code for quantized
training datasets.

5.2.2 Logistic Regression (LOG). Fig. 4 shows the PIM kernel time
of our versions of LOG. Fig. 4(a) shows the results for the two ver-
sions (LOG-FP32, LOG-INT32) that estimate sigmoid based on Taylor
series. Although the 32-bit integer version reduces the kernel time
by 65% with respect to the 32-bit floating-point version, which uses
emulated floating-point operations, the kernel time of both versions
is very high due to the use of Taylor series, which require multiple
iterations to achieve the necessary precision. Fig. 4(b) shows the
PIM kernel time of the LUT-based versions.
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Figure 4: Execution time (ms) of six versions of logistic re-
gression using 1-24 PIM threads in 1 PIM core.

We make five observations. First, the performance of all LOG
versions saturates at 11 PIM threads, for the same reason as LIN
versions. Second, LOG-INT32-LUT (MRAM) results in a speedup of
53× over LOG-INT32. This demonstrates the benefit of converting
computation to memory accesses using LUTs in PIM architectures.
Third, there is very little speedup (3%) coming from placing the LUT
in the scratchpad (WRAM of UPMEMDPUs). The LUT query is only
one memory access and its cost is negligible compared to the rest of
computation. Fourth, the use of 8-bit integer multiplication allows
LOG-HYB-LUT (WRAM) to outperform LOG-INT32-LUT (WRAM) by
28%. Fifth, the custom multiplication used by LOG-BUI-LUT (WRAM)
provides an extra 43% speedup over LOG-HYB-LUT (WRAM).
Recommendation 4. Programmers can convert computation to
memory accesses in PIM architectures by keeping pre-calculated oper-
ation results (e.g., LUTs, memoization) in memory.

5.2.3 Decision Tree (DTR). Fig. 5(a) shows the PIM kernel time of
DTR. We make three observations. First, the performance of DTR
and KME saturates at 11 PIM threads, for the same reason as LIN
versions.
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Figure 5: Execution time (ms) of decision tree (a) using 1-16
PIM threads in 1 PIM core and K-Means clustering (b) using
1-24 PIM threads in 1 PIM core.

Second, the optimized data layout of DTR (§3.3) ensures that data
is accessed at maximum bandwidth and, thus, the pipeline latency
hides the latency of memory accesses.
Recommendation 5. For data structures of more than one dimen-
sion, programmers can optimize the data layout in a way that memory
accesses are in streaming, thus exploiting higher sustained bandwidth.

Third, for DTR, the maximum possible number of PIM threads
is 16 due to the usage of the local scratchpad memory in the PIM
core. The amount of memory needed by each PIM thread limits the
maximum number of PIM threads to 16.

5.2.4 K-Means Clustering (KME). Fig. 5(b) shows the PIM kernel
time of KME. The performance of KME saturates at 11 PIM threads,
for the same reason as LIN versions.
Key Takeaway 2. ML training workloads (e.g., linear regression,
logistic regression, decision tree, K-Means) that are bound by memory
access due to their low arithmetic intensity in processor-centric systems
(e.g., CPU, GPU) behave as compute-bound when running on PIM
cores.
Recommendation 6. Maximize the utilization of PIM cores by
keeping their pipeline fully busy. For example, in the UPMEM PIM
architecture [155], which has fine-grained multithreaded scalar cores,
we recommend to schedule 11 or more PIM threads, which is the
minimum number of PIM threads to saturate the pipeline throughput.

5.3 Performance Scaling
We evaluate performance scaling characteristics of our ML work-
loads using weak scaling and strong scaling experiments. For weak
scaling (§5.3.1), we run experiments on 1 rank (from 1 to 64 PIM
cores). Our goal is to evaluate how the performance scales with
the number of PIM cores for a fixed problem size per processing
element. For strong scaling (§5.3.2), we run experiments on 32 ranks
(from 256 to 2,048 PIM cores). Our goal is to evaluate how the per-
formance of our ML workloads scales with the number of PIM cores
for a fixed problem size.

5.3.1 Weak Scaling. Fig. 6 shows weak scaling results on 1-64 PIM
cores for all versions of our ML workloads. Each bar presents the
total execution time broken down into (1) execution time of the
PIM kernel (i.e., PIM Kernel), communication time between the
host CPU and the PIM cores (i.e., CPU-PIM and PIM-CPU times),
and communication time between PIM cores (i.e., Inter PIM Core).
We make the following observations from the figure.

First, we observe linear scaling of the PIM kernel time of all LIN
versions, all LOG versions, and DTR. However, the PIM kernel time
of KME reduces as we increase the number of PIM cores. This is
caused by the fact that the K-Means algorithm on average converges
with fewer iterations on a larger dataset. The PIM kernel time per
iteration does scale linearly.

Second, the fraction of total execution time spent on communi-
cation between the host CPU and the PIM cores (i.e., CPU-PIM and
PIM-CPU2 times) and between PIM cores (i.e., Inter PIM Core) is
negligible compared to the PIM kernel time for all versions. For all
LIN versions, all LOG versions, DTR, and KME, the sum of CPU-PIM,
Inter PIM Core, and PIM-CPU times takes less than 7% of the total
execution time.

5.3.2 Strong Scaling. Fig. 7 shows strong scaling results on 256-
2,048 PIM cores for all versions of our ML workloads. Each bar
(left y-axis) presents the total execution time broken down into (1)
execution time of the PIM kernel (i.e., PIM Kernel), communication
time between the host CPU and the PIM cores (i.e., CPU-PIM and
PIM-CPU times), and communication time between PIM cores (i.e.,
Inter PIM Core). Each red line (right y-axis) represents the speedup
of a PIM kernel normalized to the performance of 256 PIM cores.
We make the following observations.

First, we observe that the PIM kernel time scales linearly with
the number of PIM cores. The speedup of 2,048 PIM cores over 256
PIM cores is between 6.37× and 7.98×.

Second, the overhead of communication between PIM cores
(i.e., Inter PIM Core) is tolerable for all ML workloads. The largest
fraction of Inter PIM Core over the total execution time is 36% for
KME with 2,048 PIM cores. Even so, 2,048 PIM cores provide the
lowest total execution time of KME.

Third, the communication time between the host CPU and the
PIM cores (i.e., CPU-PIM and PIM-CPU times) represents a negligi-
ble fraction of the total execution time of all ML workloads.
Key Takeaway 3. Memory-bound ML training workloads, which
need large training datasets, benefit from large PIM-enabled memory
with many PIM cores. Even if PIM cores need to communicate via the
host processor (e.g., in UPMEM PIM), the amount of data movement
needed for intermediate results is minimal with respect to the size of
the whole dataset.

5.4 Comparison to CPU and GPU
We compare our implementations of ML workloads on a PIM sys-
tem to CPU and GPU implementations of the same workloads

2DTR and KME do not need final PIM-CPU transfer. For DTR, the reason is that the tree is
built iteratively on the host side, and the algorithm ends when the CPU declares termi-
nation on the tree build. For KME, the CPU is in charge of the final cluster assignment
once convergence has been declared.
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Figure 6: Execution time (ms) of ML workloads on 1, 4, 16, and 64 PIM cores using weak scaling. Inside a PIM core, we use the
best-performing number of PIM threads (§5.2).

in terms of performance and quality.3 For linear and logistic re-
gression, we implement CPU versions with Intel MKL [197] and
GPU versions with NVIDIA cuBLAS [198]. For decision tree and K-
Means, CPU versions are from Scikit-learn [199] and GPU versions
from RAPIDS [200].

For the PIM system performance measurements, we use the best-
performing number of PIM cores. Inside a PIM core, we use the
best-performing number of PIM threads (§5.2). We include the time
spent in the PIM cores (“PIM Kernel”), the time spent for inter-
PIM-core synchronization (“Inter PIM”), and the time spent in the
initial CPU-PIM and the final PIM-CPU transfers (“CPU-PIM”, “PIM-
CPU”). For the GPU performance measurements, we include the
kernel time (“GPU Kernel”), and the initial CPU-GPU and the final
GPU-CPU transfer times (“CPU-GPU”, “GPU-CPU”). The results

3See Table 2 for a description of our baseline CPU and GPU architectures.

that we show in this section correspond to the best configurations in
terms of CPU threads (for the CPU versions), GPU threads per block
and thread blocks (for the GPU versions), and PIM cores and PIM
threads (for the PIM versions). We open-source all configurations
for reproducibility [186].

5.4.1 Linear Regression (LIN). Fig. 8 shows the execution times of
LIN versions on PIM, CPU, and GPU with the SUSY dataset [205].
We apply symmetric quantization [179, 180] to evaluate our integer
versions. We make four observations. First, LIN-FP32 is heavily
burdened by the use of floating-point arithmetic, which is not na-
tively supported by the PIM system we use in our evaluation [158].
Despite that, LIN-FP32 is 13% faster than the CPU version. Second,
LIN-INT32 is 8.5× faster than LIN-FP32. This is the result of using
natively supported instructions (even though 32-bit integer multi-
plication is emulated in the UPMEM PIM architecture [158]). Third,

9



0
1
2
3
4
5
6
7
8

0

500000

1000000

1500000

2000000

2500000

25
6

51
2

10
24

20
48

LOG-FP32

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

PIM-CPU
Inter PIM Core
CPU-PIM
PIM Kernel
Speedup

0
1
2
3
4
5
6
7
8

0

200000

400000

600000

800000

1000000

25
6

51
2

10
24

20
48

LOG-INT32

Sp
ee

du
p

0
1
2
3
4
5
6
7
8

0

5000

10000

15000

20000

25000

30000

256 512 1024 2048

LOG-INT32-LUT
(MRAM)

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

0
1
2
3
4
5
6
7
8

0

5000

10000

15000

20000

25000

30000

256 512 1024 2048

LOG-INT32-LUT
(WRAM)

Sp
ee

du
p

0
1
2
3
4
5
6
7
8

0

5000

10000

15000

20000

25000

256 512 1024 2048

LOG-HYB-LUT
(WRAM)

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

0
1
2
3
4
5
6
7
8

0
2000
4000
6000
8000

10000
12000
14000

256 512 1024 2048

LOG-BUI-LUT
(WRAM)

Sp
ee

du
p

0
1
2
3
4
5
6
7
8

0

50000

100000

150000

200000

250000

300000

256 512 10242048

LIN-FP32

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

PIM-CPU
Inter PIM Core
CPU-PIM
PIM Kernel
Speedup

0
1
2
3
4
5
6
7
8

0

5000

10000

15000

20000

25000

30000

256 512 1024 2048

LIN-INT32

Sp
ee

du
p

0
1
2
3
4
5
6
7
8

0

4000

8000

12000

16000

20000

256 512 1024 2048

LIN-HYB

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

0
1
2
3
4
5
6
7
8

0
2000
4000
6000
8000

10000
12000
14000
16000

256 512 1024 2048

LIN-BUI

Sp
ee

du
p

0
1
2
3
4
5
6
7
8

0

2000

4000

6000

8000

10000

256 512 1024 2048

KME

Sp
ee

du
p

PIM-CPU
Inter PIM Core
CPU-PIM
PIM Kernel
Speedup

0
1
2
3
4
5
6
7
8

0

5000

10000

15000

20000

25000

30000

256 512 1024 2048

DTR

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

PIM-CPU
Inter PIM Core
CPU-PIM
PIM Kernel
Speedup

Figure 7: Execution time (ms) of ML workloads on 256, 512, 1,024, and 2,048 PIM cores using strong scaling (left y-axis), and
speedup of the PIM kernel normalized to the performance of 256 PIM cores (right y-axis). Inside a PIM core, we use the
best-performing number of PIM threads (Section 5.2).

LIN-HYB and LIN-BUI further improve performance. The kernel
time of LIN-HYB is 10% lower than that of LIN-INT32 due to the
use of hybrid precision. Our custom multiplication in LIN-BUI re-
duces the kernel time by an additional 4%. Fourth, the GPU version
is 4.1× faster than LIN-BUI, since the A100 (1) has much higher
compute throughput than the PIM system that we use in our ex-
periments, and (2) its memory bandwidth is only 39% lower than
the bandwidth of the PIM system (Table 2).

5.4.2 Logistic Regression (LOG). Fig. 9 shows the execution times
of LOG versions on PIM, CPU, and GPU with the Skin segmenta-
tion dataset [206]. We make four observations. First, LOG-FP32
and LOG-INT32 PIM versions are almost 10× slower than the
CPU version. The reason is the high cost of sigmoid estimation
with Taylor series due to their iterative nature (as mentioned in
§5.2.2). Second, LOG-INT32 is 17% faster than LOG-FP32 due to
the faster integer arithmetic [158]. Third, replacing Taylor series
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Figure 8: Execution time (ms) of LIN on PIM, CPU, and GPU
with the SUSY dataset. For all PIM versions (LIN-*), the best-
performing number of PIM cores is 2,524.

with the use of LUTs (in LOG-INT32-LUT (MRAM), LOG-INT32-LUT
(WRAM), LOG-HYB-LUT (WRAM), and LOG-BUI-LUT (WRAM)) to com-
pute sigmoid accelerates the PIM versions by almost two orders
of magnitude. For example, LOG-INT32-LUT (WRAM) is 3.3× and
LOG-BUI-LUT (WRAM) is 3.9× faster than the CPU version. Fourth,
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even though the GPU version is significantly faster than all PIM
versions (e.g., 16.5× faster than LOG-BUI-LUT (WRAM)), the gap
between GPU and PIM is greatly reduced by using appropriate
optimizations in PIM codes (e.g., LUTs, custom multiplication).
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Figure 9: Execution time (ms) of LOG on PIM, CPU, and GPU
with the Skin segmentation dataset. For the PIM versions
(LOG-*), the best-performing number of PIM cores is 2,524 for
LOG-FP32 and LOG-INT32, 320 for LOG-INT32-LUT (MRAM) and
LOG-INT32-LUT (WRAM), and 256 for LOG-HYB-LUT (WRAM) and
LOG-BUI-LUT (WRAM).

We evaluate the training error rate of all versions of LIN (with
the SUSY dataset) and LOG (with the Skin segmentation dataset).
We make two observations. First, the training error rates of the
floating-point versions (i.e., LIN-FP32, LOG-FP32) is the same as
that of the CPU and GPU versions. Second, the training error rates
of the PIM versions of LIN and LOG that use quantized datasets are
greater than those of the CPU and GPU versions, but they may
still be acceptable (i.e., < 20% for LIN and < 9% for LOG) for some
applications [210–216].

5.4.3 Decision Tree (DTR). Fig. 10(a) shows the execution times
of DTR versions on PIM, CPU, and GPU with the Higgs boson
dataset [207]. We make two observations. First, the PIM version of
DTR outperforms the CPU version and the GPU version by 27× and
1.34×, respectively. Since DTR mostly uses comparison operations
(e.g., comparing a feature value to a threshold), the PIM version can
take advantage of the large internal bandwidth of the PIM system
without being burdened by other costly arithmetic operations. Sec-
ond, 70% of the execution time of the GPU version of DTR is spent
on moving data between the host CPU and the GPU, while only 27%
of the execution time of the PIM version is due to communication
between the host CPU and the PIM cores or between PIM cores. The
fact that the host CPU and the PIM cores are connected through
memory channels is an advantage over the GPU, which uses PCIe
bus, as the memory channels provide higher bandwidth.

We evaluate the training accuracy of DTR versions on PIM, CPU,
and GPU.We observe that the accuracy of our PIM version (0.65635)
is very similar to the accuracy of the CPU version (0.65581), and
only slightly smaller than that of the GPU version (0.70462).

5.4.4 K-Means Clustering (KME). Fig. 10(b) shows the execution
times of KME versions on PIM, CPU, and GPU with the Higgs boson
dataset [207]. We observe that the PIM version of KME is 2.8× faster
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Figure 10: Execution time (ms) of DTR (a) and KME (b) on PIM,
CPU, and GPU with the Higgs boson segmentation dataset.
For the PIM versions (DTR, KME), the best-performing number
of PIM cores is 1,024 for DTR and 2,524 for KME.

than the CPU version and 3.2× faster than the GPU version. Similar
to DTR, KME does not use costly arithmetic operations but mainly
16-bit integer arithmetic.

We evaluate the similarity of the clusterings (given by the ad-
justed Rand index) produced by KME versions on PIM, CPU, and
GPU. The adjusted Rand index between the PIM version and the
CPU version is 0.999985, while the adjusted Rand index between the
GPU version and the CPU version is significantly lower (0.758579).
Key Takeaway 4. Memory-bound ML workloads that require
mainly operations natively supported by the PIM architecture (e.g.,
32-bit integer addition/subtraction in UPMEM PIM), such as decision
tree and K-Means clustering, leverage the large PIM bandwidth, and
perform better than their CPU and GPU counterparts.

6 RELATEDWORK
To our knowledge, this is the first work that comprehensively evalu-
ates the benefits of a real general-purpose processing-in-memory
(PIM) system for ML training workloads. We briefly summarize
prior works on PIM acceleration of Deep Learning (DL) and other
ML algorithms.
PIM for DL inference.Many prior works focus on accelerating
DL inference using different PIM solutions. This includes both
proposals from academia [47, 73, 98, 136, 150, 151, 217–224] and
industry [161–165], targeting various types of DL models, including
CNNs [47, 73, 98, 136, 150, 151, 161, 162, 217, 219–222], RNNs [136,
164, 224], and recommendation systems [163, 165, 218, 223]. Our
work differs from such works since we focus on classic ML algo-
rithms (i.e., regression, classification, clustering) using a real-world
general-purpose PIM architecture (i.e., UPMEM PIM [156]).
PIM for DL training. Other works leverage PIM techniques to
accelerate DL training [225–237]. These works mainly utilize the
analog computation capabilities (e.g., for matrix vector multipli-
cation) of non-volatile memories (NVMs) to implement training
of deep neural networks [225–228, 230, 232, 234, 236]. In contrast,
executing DL training using DRAM-based PIM architectures is chal-
lenging, since the area and power constraints of such architectures
lead to performance bottlenecks when executing key operations
(e.g., multiplication) required during training [238].
PIM for other ML algorithms. Few related prior works [80, 239–
243] propose solutions for ML algorithms other than DL inference
and training. Such works leverage different memory technologies
(e.g., 3D-stacked DRAM [80, 239, 242], ReRAM [241], SRAM [240,

11



243]) to accelerate ML workloads such as linear regression [239–
242], logistic regression [239, 241], support vector machines [239],
and K-nearest neighbors [240, 243]. None of these works provide
comprehensive implementation and evaluation of ML algorithms
using a real processing-in-memory architecture.

7 CONCLUSION
Machine learning training frequently becomes memory-bound in
processor-centric systems due to repeated accesses to large training
datasets. Memory-centric systems (i.e., systems with processing-in-
memory (PIM) capabilities) can overcome this memory bounded-
ness.

We implement several representative classic machine learning al-
gorithms on a real-world general-purpose PIM architecture with the
aim of understanding the potential of memory-centric systems for
ML training. We evaluate our PIM implementations on a memory-
centric computing system with more than 2500 PIM cores in terms
of accuracy, performance, and scaling characteristics, and compare
to state-of-the-art implementations for CPU and GPU.

To our knowledge, our work is the first one to evaluate training of
machine learning algorithms on a real-world PIM architecture. We
show that PIM systems can greatly outperform CPUs and GPUs for
memory-bound ML training workloads when the PIM processing
elements have native support for the arithmetic operations and
datatypes required by the ML training workloads. Compared to
CPUs, PIM systems feature significantly higher memory bandwidth
and many more parallel processing elements, the number of which
scales with memory capacity. Compared to GPUs, PIM systems
benefit from higher host-accelerator bandwidth given that PIM
processing elements are connected to the host CPU via memory
channels (as opposed to PCIe like GPUs). We believe that our work
shows great promise for PIM systems as widely-used accelerators
for ML training workloads, and this promise can materialize in
future PIM systems with more mature architectures, hardware, and
software support.
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