
MLWeaving: Software/Hardware Co-design

Our Approach (MLWwaving):

Experiment

(a) Time vs. Precision

▪ Hardware: an Intel Broadwell CPU (14 cores, 35MB LLC, 60 GB/s 
memory bandwidth) and an Intel Arria 10 FPGA (directly access the CPU 
memory via one QPI and two PCIe, with memory bandwidth: 15GB/s.  

▪ Dataset: Epsilon (40,000 samples, 2000 features). 
▪ Hogwild (ModelAverage): state-of-the-art parallel implementations of 

SGD on CPUs, using 14 cores, AVX2 and 8-bit dataset.
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Existing Approach:

MLWeaving memory layout (software)

(b) Memory traffic vs. Precision

One hardware design and one memory layout for any precision. 

1, MLWeaving can roughly achieve linear 
speedup (time or memory traffic), when a lower 
number of bits is used, as shown in Figures a, b. 
2, MLWeaving on an FPGA can achieve 11X 
speedup over its CPU rivals in Figure c. 

Stochastic Gradient Decent (SGD):
For e = 1 to E do              /*E 
epochs*/
For i = 1 to N do             /*N 

samples ( റ𝑎i,bi)*/
ax = Qs( റ𝑎i)* റ𝑥;          /*dot 

product*/ 
scale = γ*df(ax, bi); /*serial part*/
റ𝑔 = scale*Qs( റ𝑎i);  /*gradient 

comp*/
റ𝑥 = റ𝑥 - റ𝑔;                  /*model 

update*/

Bit-level flexibility of precision from software side

A~Z (a~z ) is binary, 
0 or 1. 

MLWeaving arithmetic (hardware)

Directly consume the data from MLWeaving
memory layout with bit-serial multipliers. 

Problem: Linear model training using low-precision SGD.

1, One hardware design for each precision.

2, One quantized dataset for each precision.

x:   model,
റ𝑔:  gradient,
Γ:   learning rate,
df: derivative of 
loss function

(c) MLWeaving vs. CPU rivals

Findings: 


