Accelerating Generalized Linear Models with
MLWeaving: A One-Size-Fits-All System for
Any-Precision Learning

Zeke Wang, Kaan Kara, Hantian Zhang,
Gustavo Alonso, Onur Mutlu, Ce Zhang

Systems Group, ETH Zurich

Outline

Quick Background (5mins) MLWeaving (10mins)
Stochastic Gradient Descent (SGD) Arbitrary-precision Training
Synchronous vs. Asynchronous MLWeaving Memory Layout
Low Precision MLWeaving Hardware Design

Efficient Synchronous Design

OK, how does SGD work?

Stochastic Gradient Descent (SGD)

P2: Can be done in low precision —>@

not 32-bit floating point
(J fp) Gradient: dot(Ar, x)Ar

® @
} (= s {000

LLLLY LLLL
Training Data: Computing Device: Model:
Database, FPGA, GPU, DRAM,
Sensor CPU Cache

P1: Model can be staled, especially
when running on multiple cores.

Linear Regression

A, = get data()

.
I

get model ()

g = comp grad(x,A,)
X = X — g

set model (x)

Two Interesting
Properties

SGD on the CPU: synchronous or asynchronous?

Sync. Single-Core SGD: Low Throughput

CPU - Single Core Gradient g: dot(Ar, x)Ar

A, = get datal() !

x = get model () } ((((. - e .

Training Data: Computing Device: Model x:
g = Comp_grad (XI Ar) Database, FPGA, DRAM,
Sensor GPU, CPU Cache
H-x-g | |
Read After Write (RAW) Dependency Regarding the Model x

set model (x) Causes Problem When Using Multiple Cores.

Async. Multi-Core SGD: High Throughput

Multi-core SGD relies on asynchrony.

HogWild! 1)

ModelAverage (2]

[1] Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. In NIPS. 2011.

[2] Parallelized Stochastic Gradient Descent. In NIPS. 2010.

Synchrony vs. Asynchrony on CPUs

Hardware Efficiency
(Throughput)

Statistical Efficiency
(Convergence Rate)

Single-core SGD
(Synchrony)

High &%

Multi-core SGD
(Asynchrony)

Low @

Why Low Precision?

Why Low Precision?

Full precision
1.310245

X 0.602069

0.788857897

Low precision

about 1.3

X about 0.6

about 0.78

Relax, It is only Machine Learning.

Current Hardware Supports Limited Precisions

Char (8-bit), FP8 (8-bit),
Short (16-bit) FP16 (16-bit)

INTS (8-bit)

Goal of This Work
3 For Generalized Linear Model training, can we
o enable things that cannot be well done on CPUs?

m Any-precision Training High-throughput Sync. Design

Outline

Quick Background (5mins) MLWeaving (10mins)
Stochastic Gradient Descent (SGD) Arbitrary-precision Training
Synchronous vs. Asynchronous MLWeaving Memory Layout
Low Precision MLWeaving Hardware Design

Efficient Synchronous Design

Two Goals of Arbitrary-precision Training

1, One hardware design and one copy of dataset
support any-precision training.

2, Our design achieves linear speedup with lower precision.

How most systems store ML data today:

MLWeaving Memory Layout 15 feature 5nd feature

e o o o
— wrowa [

Data —>| Compute 2" row B B’ B B

N ——”’

, MLWeaving:
Observation 1:

Often memory bandwidth bound
15t row A

Observation 2: Low precision (e.qg., 8 bit fixed
point) often provides reasonable quality

Observation 3: Different training task might
need different precision level even on the
same dataset

Can we store the data in a new data
structure that efficiently supports
arbitrary precision data movement?

How most systems store ML data today:

MLWeaving Memory Layout 15 feature 5nd feature

e o o o
— rowa [-

Data —>| Compute 2nd row B 512
v
MLWeaving:
Observation 1: 8
Often memory bandwidth bound
1t row A

Observation 2: Low precision (e.g., 8 bit fixed
point) often provides reasonable quality

Observation 3: Different training task might
need different precision level even on the
same dataset

Can we store the data in a new data
structure that efficiently supports
arbitrary precision data movement?

How most systems store ML data today:

MLWeaving Memory Layout 15 feature 5nd feature

e 6 o o
— verown [T

Data —>1 Compute 2" row B

N ——”’

, MLWeaving:
Observation 1:

Often memory bandwidth bound
15t row A . .

Observation 2: Low precision (e.g., 8 bit fixed
point) often provides reasonable quality

Observation 3: Different training task might
need different precision level even on the
same dataset

Can we store the data in a new data
structure that supports arbitrary
precision data movement?

MLWeaving Memory Layout

—3

Data —>

Compute

N ——”’

Observation 1:
Often memory bandwidth bound

Observation 2: Low precision (e.g., 8 bit fixed
point) often provides reasonable quality

Observation 3: Different training task might
need different precision level even on the
same dataset

Can we store the data in a new data
structure that supports arbitrary
precision data movement?

How most systems store ML data today:

15t feature 2nd feature

e BN [B |

2" row B B — By’

MLWeaving:

MLWeaving Memory Layout

—3

Data —> Compute

N ———

Observation 1:
Often memory bandwidth bound

Observation 2: Low precision (e.g., 8 bit fixed
point) often provides reasonable quality

Observation 3: Different training task might
need different precision level even on the
same dataset

Can we store the data in a new data
structure that supports arbitrary
precision data movement?

How most systems store ML data today:

1st feature 2nd feature
oo -
2" row B Bl

MLWeaving:
o [

2nd row B

MLWeaving Memory Layout

—3

Data —> Compute

N ——”’

Observation 1:
Often memory bandwidth bound

Observation 2: Low precision (e.g., 8 bit fixed
point) often provides reasonable quality

Observation 3: Different training task might
need different precision level even on the
same dataset

Can we store the data in a new data
structure that supports arbitrary
precision data movement?

How most systems store ML data today:

15t feature 2nd feature
oo -

2nd row B

More complicated
when a row has
thousands of features,
but you get the idea.

If we need 3-bits?

If we need 1-bit?

MLWeaving does not work out on CPUs. CPU does not have custom

instruction for MLWeaving memory layout and then we have to group
bits from different memory locations before the further computing.

Outline

Quick Background (5mins) MLWeaving (10mins)
Stochastic Gradient Descent (SGD) Arbitrary-precision Training
Synchronous vs. Asynchronous MLWeaving Memory Layout
Low Precision MLWeaving Hardware Design

Efficient Synchronous Design

MLWeaving Hardware Design: Key Idea

MLWeaving memory layout: Key idea of MLWeaving hardware design:

sowa [0 [b To use to enable

efficient data processing from the
MLWeaving memory layout.

The modern CPU does not
support bit-serial multiplier.

Please read our paper about how bit-serial multiplier works.

Custom Computation for MLWeaving

MLWeaving memory layout:

2nd row B o ige

Sit-serial | Bit-parallel

* X

* (

Dot product:

bradient: * X — br)

MLWeaving hardware design:

External memory

Scftware

)

512 - way parallelism (#CL bits)

Dot product

Serial part

Gradient
computation

’}-fa TC[WGT'G

s(a@)| Fifo

Bit-serial Multiplier

S

Batch is

Bit-serial Multiplier

Bit-serial multiplier + MLWeaving memory
layout enable any-precision ML training.

MLWeaving’s Performance: Almost Linear Speedup with Lower Precision

Computing time vs. Precision

32

—)
=) N

L

Speedup over “32-bit”

32
[] Ideal
. MLWeaving 3.0
1615.
8 8.0
Lo L 4D I
1 1.0 :
o [/I I
32 16 8 4 2 1

Precision: Number of bits

Traffic ratio over “1-bit”

Memory traffic vs. Precision

32

[N
g

—
=)}

> o

ldeal

3231.8

1 2 4 8

16

Precision: Number of bits

32

Outline

Quick Background (5mins) MLWeaving (10mins)
Stochastic Gradient Descent (SGD) Arbitrary-precision Training
Synchronous vs. Asynchronous MLWeaving Memory Layout
Low Precision MLWeaving Hardware Design

Efficient Synchronous Design

Synchronous SGD or asynchronous SGD on custom hardware?

SGD on Custom Hardware: The Best of Two Worlds

Hardware Efficiency
(Throughput)

Statistical Efficiency
(Convergence Rate)

Single-core Low () High &%
(Synchrony)

Multi-core High &% Low (&)
(Asynchrony)

Custom hardware
(Synchrony)

High &%

Original Synchronous Implementation: Compute-Bound

External memory

Dot product

Serial part

Gradient
computation

___ ‘t,mmwmmwmmwmso are
‘J—(a Yd’ ware
|—

s(a)] Fifo

- ej

=Y

Key idea: to keep the RAW

dependency, regarding the model x.

Model
Read

Original Implementation

Dot
Product

Batch is
done?

Original Synchronous Implementation: Compute-Bound

External memory

Dot product

Serial part

Gradient
computation

Model
update

s(a)] Fifo

=Y

0o |_;(ZY‘{”3‘:; Key idea: to kee D the RAW

dependency, regarding the model x.

Original Implementation

- ej

Cycles
Model 1 batch Vi hatch eeeess y
Read
Dot 15t batch 21 hateh
Product ———————

Batch is
done?

Width:
.............................. 32 #(L

scale x Qq(a)

%;m ’ ‘ =

t

50% Utilization

Optimal Synchronous Implementation: Memory-Bound

Original: Compute-bound

Observation: Custom hardware can
update the model (thousands of
weights) at the granularity level: 64
weights, not the whole model.

With Chaining: Memory-bound

Cycles
Model 15! batch D hatch e y)
Read
Dot 15 batch 2 hatch
PrOdUCt _

Cycles
Model 15t batch 21 hatch RO A
Read
Dot 15t batch 21 hatch
Product — =

Optimal Synchronous Implementation: Memory-Bound

Model
Read

15t batch

7' batch

Original: Compute-bound

Dot

Product

15t batch

| 7' hatch

Observation: Custom hardware can

update the model (thousands of
weights) at the granularity level: 64
weights, not the whole model.

Model
Read

15t batch

7' batch

Dot

Product

15t batch

7' hateh

With Chaining: Memory-bound

High throughput: “sync” is as fast as “async”.

Gap: gradient from 64 weights

Effect of Sync. Design

Training loss vs. Number of Epochs

0.14

S

g 0.07 ModelAverage | OUF sync. design needs

g MLWeaving Hogwild fewer epochs to converge.
0

1 101 201 301 392
Epochs

ModelAverage and Hogwild on the multi-core CPU: Async.
MLWeaving on the custom hardware : Sync.

Outline

Quick Background (5mins) MLWeaving (10mins)
Stochastic Gradient Descent (SGD) Arbitrary-precision Training
Synchronous vs. Asynchronous MLWeaving Memory Layout
Low Precision MLWeaving Hardware Design
Efficient Synchronous Design

System Integration

Intel HARP2 Platform:

Intel Broadwell 14-core CPU
Intel Arria 10 FPGA

We integrate MLWeaving
into DoppioDB that is an
open source solution for
FPGA-enhanced databases
based on MonetDB.

If you are interested to play with MLWeaving, please visit our demo

(1) CREATE INDEX mlweaving_on_t1 ON create_mlweaving(‘t1’);
(2) CREATE INDEX model_on_t1 ON train_mlweaving(‘t1’, numEpochs, ...);
(3) SELECT * FROM infer_mlweaving(model on_t1, ‘t1’, labellndex);

Intel Endpoint

DoppioDB HW Libs

MLWeaving
Accelerator

FPGA - Intel Arria 10

Intel Libraries

MLWeaving UDFs

DoppioDB
Xeon Broadwell E5
14 Cores @ 2.4 GHz

MLWeaving
index

DRAM
(64 GB)

DoppioDB 2.0 in the Hollywood ballroom, 11:00-12:30, 27-29 Aug, 2019.

End-to-End Performance: MLWeaving

Training loss vs. Time Training loss vs. Memory
Ol 0.] ..
. 0.08 ModelA rag B X —— ModelAverage\ .
2 Hogwild 2 , Hogwild
™ 006 . a0 0.06 MLWeav'ng ...
g MLWeaving : =)
'E 004 1 1X _E 0.04 .. 25X ...
h 002 F 0.02 ...
0 0
0.001 0.1 1 10 1E+00 1E+01 1E+02 1E+03 1E+04
Time Memory traffic (MB)

ModelAverage and Hogwild on an Intel CPU: 14 cores, AVX2-enhanced, 8-bit dataset.

MLWeaving on an FPGA: 3-bit dataset.

If you are interested to play with MLWeaving,
please visit our demo DoppioDB 2.0 in the
Hollywood ballroom, 11:00-12:30, 27-29 Aug, 2019.

[DEMO] doppioDB 2.0: Hardware
Techniques for Improved Integration

E of Machine Learning into Databases
Kaan Kara, Zeke Wang, Ce Zhang, Gustavo Alonso

Systems Group, Department of Computer Science, ETH Zurich, Switzerland

Vision)1 4 pBMS = b
Stock Exchange
Stocks Transactions
o
Column-store Database Generalized Linear

/
OpenCloseValues Actors] . 1 i
Model Management System Model Training

mount ,in DBMS. Challenges: g
« DMBS are highly optimized systems with specific
storage, data access and workload characteristics. o

« ML has different characteristics compared to relational

monetdb) + Centaur [3] doppioDB 2.0 * : User Interface:
e 1. Loading the data.
2. Transforming the data.

3. Running training.

4. Saving the model.
- Training: RT INTO t1_model X .
ELECT weights TRAINCT', step. 5. Validation and testing.
- Validation: SELECT loss FROM VALIDATE(t1_model’, t1');
- Inference: SELECT prediction FROM INFERI't1_model’, '1_

6. Inference.

1. ColumnML [1] 2. MLWeaving [2]

How can we train generalized linear models on column Can a BitWeaving-like index help accelerate generalized
stores efficiently? linear model training?

Challenges: Observations:

1. SGD accesses data in a row-wise fashion. 1. Generalized model training is tolerant against using

2. DBMS store data in a transformed format quantized data

(compressed/encrypted). 2. General purpose architectures are not suitable to take

Solutions: advantage of quantized data.

1. Use and optimize an algorithm to access data column- Trow ABCD EFGHLIKC MNP Trew AEM BFIN CoRD DHLP
wise: Partitioned SCD d_aigh il mnop =" bjn _cgko _dhlp
2. Use specialized hardware (FPGA) to decompress/ = =

decrypt data in a pipeline with an ML engine. 1. Store same significant bits from a row together.

2. Design specialized hardware to use the weaving format
with high efficiency thanks to bit-serial multiplication.
3. Dynamically change the precision used during runtime.

{=PHighly paralle
computation
engine for higf ' .
h hput ML a) Speedup a) Mem. Traffic

systems.ethz.ch/fpga 5
github.com/fpgasystems]

generous donation of Intel-Altera Heterogeneous Art

Motivations

Database Generalized Linear Model FPGA

Linear Model, Logistic Regression, SVM

3 For GLM training, can we enable things
: that cannot be well done on CPUs/GPUs?

m Any-precision Training High-throughput Sync. Design

Hogwild: Asynchrony

Gradient: dot(Ar, x)Ar

A, = get datal() J
x = get model () ((Data Ar | | - Model x -
=[e -
g = comp grad(x,A,) D Model:
r___1 Cache
X = X — (g ((C > < ° D
DataAr | [=][#]) Model x D
set model (x) [.

Gradient: dot(Ar, x)Ar

Shared model x among cores

Problem? Cache-coherence is expensive, especially for dense data!

ModelAverage: Asynchrony
. e o e Gradient g: dot(Ar, x)Ar

A, = get datal() 1 |

x = get model () ((((‘ Data Ar X (1] Modelx . DUDD

E LLLLr LLLL
g = comp_grad(x,A,) Training Data: Computing Device: Model x:
Database, FPGA, DRAM,
Sensor GPU, CPU Cache
X = X — Qg
Averaging t
set model (x)
B (((pata A [[_]] Model x
E' TTIT AT
A copy of model x for each core T *

Gradient g: dot(Ar, x)Ar

Problem? Convergence might be slower.

How Bit-serial Multiplier Deals with Low Precision?

4-bit

3-bit:

2-bit:

1-bit:

e 6 o o J4 21
: 0020|

86420

420
X0020

86400

4-00
X0020

86000

4000
X0020

80000
Normal Multiplier

Each bit should be binary, but we use
decimal for ease of understanding.

How Bit-serial Multiplier Deals with Low Precision?

e o6 o o 4 21
4-bit: X0020
86420 4321

4-20
3-bit: X0020

86400

400
2-bit: X0020 X0020 (BSM

86000

4000
1-bit: X0020

80000
Normal |V|u|tip|ier Bit-serial Multiplier (BSM)

Initialization:

Sum= 00000

How Bit-serial Multiplier Deals with Low Precision?

) 4ozl Initialization:
4-bit: X0020

865420 4 5 2 1\ Bit-Serial (S
4-20
3-bit: X0020

86400

\
o0 — p * ¢l
2-bit: X0020 X 0020 [BSM |—>Sum +=P * S

86000

4000
1-bit: X0020

80000
Normal |V|u|tip|ier Bit-serial Multiplier (BSM)

Bit-Parallel (P)

Sum= 00000

Bit-serial Multiplier: 1-Bit Precision

15t Cycle:

4 2 1
Memory
X 0020 |BSM Hardware

Sum= 00000

1-bit: X0020
80000
Normal |V|u|tip|ier Bit-serial Multiplier (BSM)

Bit-serial Multiplier: 1-Bit Precision
15t Cycle:

2 1

4 means 4000.

4 Hardware
X0020 [BSM| <, 1= 20 * 4000

Sum= 00000

1-bit: X0020
80000
Normal |V|u|tip|ier Bit-serial Multiplier (BSM)

Bit-serial Multiplier: 1-Bit Precision

15t Cycle:
2 1
Memory
X 0020 |BSM Hardware

Sum= 80000
Done with 1-bit precision,
1-bit: X0020 or proceed to the next bit.

80000
Normal |V|u|tip|ier Bit-serial Multiplier (BSM)

Bit-serial Multiplier: 2-Bit Precision

2" Cycle:
2 1
Memory
4300 %0020 |BSM Hardware
2-bit: X0020
50000 Sum= 80000

Normal |V|u|tip|ier Bit-serial Multiplier (BSM)

Bit-serial Multiplier: 2-Bit Precision

2" Cycle:
2 1
means 300.
Memory
4300 . BSM Hardware
2-bit: X0020 0020 Sum += 20 * 300
80000 Sum= 80000

Normal |V|u|tip|ier Bit-serial Multiplier (BSM)

Bit-serial Multiplier: 2-Bit Precision

2" Cycle:
2 1
Memory
4300 %0020 |BSM Hardware
2-bit: X0020
50000 Sum= 85000

Done with 2-bit precision,
or proceed to the next bit.

Normal |V|u|tip|ier Bit-serial Multiplier (BSM)

Bit-serial Multiplier: 3-Bit Precision

3th Cycle:
2 1
4320
3-bit: X0020 Memor
B A0 0 e ———— y
0020 |BSM Hardware

Sum= 85000

Normal |V|u|tip|ier Bit-serial Multiplier (BSM)

Bit-serial Multiplier: 3-Bit Precision

3th Cycle:
1
4-20
3-bit: X0020 2 means 20. Memor
86400 y

2
X 0020 |BSM| g,m+=20* 20 Hardware

Sum= 85000

Normal |V|u|tip|ier Bit-serial Multiplier (BSM)

Bit-serial Multiplier: 3-Bit Precision

3th Cycle:
1
4-20
3-bit: X0020 Memor
B O A O 0 e ———— y
X 0020 |BSM Hardware

Sum= 8 400
Done with 3-bit precision,
or proceed to the next bit.

Normal |V|u|tip|ier Bit-serial Multiplier (BSM)

Bit-serial Multiplier: 4-Bit Precision

R 4321 4th Cycle:
4-bit: X0020
86420 1
Memory
0020 |BSM Hardware
Sum = 400

Normal |V|u|tip|ier Bit-serial Multiplier (BSM)

Bit-serial Multiplier: 4-Bit Precision
e o o o 4 2 1

4th Cycle:
4-bit: X0020
86420

1 means 1.

X 0020 BgM Sum += 20 * 1 Hardware

Sum = 400

Normal |V|u|tip|ier Bit-serial Multiplier (BSM)

Bit-serial Multiplier: 4-Bit Precision
e o o o 4 2 1

4th Cycle:
4-bit: X0020
86420
Memory
X 0020 |BSM Hardware

Sum= 85420
Done with 4-bit precision

Normal |V|u|tip|ier Bit-serial Multiplier (BSM)

