
Accelerating Generalized Linear Models with 
MLWeaving: A One-Size-Fits-All System for 
Any-Precision Learning

Zeke Wang, Kaan Kara, Hantian Zhang, 
Gustavo Alonso, Onur Mutlu, Ce Zhang

Systems Group, ETH Zurich



Outline

Quick Background (5mins) MLWeaving (10mins)

Stochastic Gradient Descent (SGD)

Low Precision

Synchronous vs. Asynchronous

Arbitrary-precision Training

MLWeaving Memory Layout

MLWeaving Hardware Design

Efficient Synchronous Design



OK, how does SGD work?



Stochastic Gradient Descent (SGD)

min
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Linear Regression

Training Data:
Database,

Sensor

Computing Device:
FPGA, GPU, 

CPU

Model:
DRAM,
Cache

Data Ar Model x

Gradient: dot(Ar, x)Ar Ar = get_data()

1

2

3

Two Interesting 
Properties

g = comp_grad(x,Ar)

x = x – g

P2: Can be done in low precision
(not 32-bit floating point) 

P1: Model can be staled, especially 
when running on multiple cores.

x = get_model()
4

set_model(x)



SGD on the CPU: synchronous or asynchronous?



g = comp_grad(x,Ar)

x = x – g

set_model(x)

Ar = get_data()

x = get_model()

Sync. Single-Core SGD: Low Throughput

Training Data:
Database,

Sensor

Computing Device:
FPGA,

GPU, CPU

Model x:
DRAM,
Cache

Data Ar Model x

Gradient g: dot(Ar, x)ArCPU – Single Core

Causes Problem When Using Multiple Cores.

Read After Write (RAW) Dependency Regarding the Model x



Async. Multi-Core SGD: High Throughput

Multi-core SGD relies on asynchrony.

HogWild! [1]

ModelAverage [2]

[1] Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. In NIPS. 2011.

[2] Parallelized Stochastic Gradient Descent. In NIPS. 2010.



Synchrony vs. Asynchrony on CPUs

Hardware Efficiency 
(Throughput)

Statistical Efficiency 
(Convergence Rate)

Single-core SGD 
(Synchrony)

Low High

Multi-core SGD 
(Asynchrony)

High Low



Why Low Precision?



Why Low Precision?

“It is a cat” (>0.5)

1.310245

X 0.602069

0.788857897

about 1.3

X   about 0.6

about 0.78

Full precision Low precision

Relax, It is only Machine Learning.



Current Hardware Supports Limited Precisions

Char (8-bit), 
Short (16-bit) 

FP8 (8-bit), 
FP16 (16-bit)

INT8 (8-bit) 

CPU GPU TPU



Goal of This Work

For Generalized Linear Model training, can we 
enable things that cannot be well done on CPUs??

! Any-precision Training High-throughput Sync. Design
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Two Goals of Arbitrary-precision Training

1, One hardware design and one copy of dataset 
support any-precision training.

2, Our design achieves linear speedup with lower precision.
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[0]

Data Compute

Observation 2: Low precision (e.g., 8 bit fixed 
point) often provides reasonable quality

Observation 3: Different training task might 
need different precision level even on the 

same dataset

Can we store the data in a new data 
structure that efficiently supports 

arbitrary precision data movement?

How most systems store ML data today:

1 1
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1st row A
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MLWeaving:
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MLWeaving Memory Layout

Observation 1: 
Often memory bandwidth bound



MLWeaving Memory Layout
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MLWeaving:



Data Compute

Observation 1: 
Often memory bandwidth bound

Observation 2: Low precision (e.g., 8 bit fixed 
point) often provides reasonable quality

Observation 3: Different training task might 
need different precision level even on the 

same dataset

Can we store the data in a new data 
structure that supports arbitrary 

precision data movement?

How most systems store ML data today:
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MLWeaving:
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need different precision level even on the 
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Can we store the data in a new data 
structure that supports arbitrary 

precision data movement?

How most systems store ML data today:
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MLWeaving Memory Layout
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More complicated 
when a row has 
thousands of features, 
but you get the idea.

If we need 1-bit?
If we need 3-bits?

MLWeaving does not work out on CPUs. CPU does not have custom 
instruction for MLWeaving memory layout and then we have to group 
bits from different memory locations before the further computing. 

MLWeaving:
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MLWeaving memory layout: Key idea of MLWeaving hardware design:

MLWeaving Hardware Design: Key Idea 

To use bit-serial multiplier to enable 
efficient data processing from the 
MLWeaving memory layout.

Please read our paper about how bit-serial multiplier works.

1st row A A0
[0] A.

[0] A0
[.] A.

[.] A0
[4] A0

[2]A.
[4] A.

[2]

2nd row B 𝐵0
[0] 𝐵0

[.] 𝐵0
[4] 𝐵0

[2]𝐵.
[0] 𝐵.

[.] 𝐵.
[4] 𝐵.

[2]

The modern CPU does not 
support bit-serial multiplier.



Bit-serial Multiplier

Bit-serial Multiplier
Gradient: 𝐴𝑟 ∗ (𝐴𝑟 ∗ 𝑥 − 𝑏𝑟)

Dot product: 𝐴𝑟 ∗ 𝑥

Bit-serial Bit-parallel

MLWeaving memory layout:
MLWeaving hardware design:

Custom Computation for MLWeaving

1st row A A0
[0] A.

[0] A0
[.] A.

[.] A0
[4] A0

[2]A.
[4] A.

[2]

2nd row B 𝐵0
[0] 𝐵0

[.] 𝐵0
[4] 𝐵0

[2]𝐵.
[0] 𝐵.

[.] 𝐵.
[4] 𝐵.

[2]



Bit-serial multiplier + MLWeaving memory 
layout enable any-precision ML training.



MLWeaving’s Performance: Almost Linear Speedup with Lower Precision

Computing time vs. Precision Memory traffic vs. Precision
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Synchronous SGD or asynchronous SGD on custom hardware?



SGD on Custom Hardware: The Best of Two Worlds

Hardware Efficiency 
(Throughput)

Statistical Efficiency 
(Convergence Rate)

Single-core 
(Synchrony)

Low High

Multi-core 
(Asynchrony)

High Low

Custom hardware
(Synchrony)

High High



Original Synchronous Implementation: Compute-Bound

Key idea: to keep the RAW 
dependency, regarding the model x.

Original  Implementation
Model
Read

Dot
Product

Model
Write

Cycles



Original Synchronous Implementation: Compute-Bound

Key idea: to keep the RAW 
dependency, regarding the model x.

Original  Implementation

50% Utilization

Model
Read

Dot
Product

Model
Write

1st batch

1st batch

2rd batch

2rd batch

1st gradient 2rd gradient

Cycles



Optimal Synchronous Implementation: Memory-Bound

With Chaining: Memory-bound

Original: Compute-bound

Observation: Custom hardware can 
update the model (thousands of 
weights) at the granularity level: 64 
weights, not the whole model.

Model
Read

Dot
Product

Model
Write

1st batch 2rd batch

1st batch 2rd batch

1st gradient 2rd gradient

Cycles

Model
Read

Dot
Product

Model
Write

1st batch

1st batch

1st gradient

2rd batch

2rd batch

2rd gradient

Cycles



Optimal Synchronous Implementation: Memory-Bound

High throughput: “sync” is as fast as “async”.

Model
Read

Dot
Product

Model
Write

1st batch 2rd batch

1st batch 2rd batch

1st gradient 2rd gradient

Cycles

Model
Read

Dot
Product

Model
Write

1st batch

1st batch

1st gradient

2rd batch

2rd batch

2rd gradient

Cycles

Gap: gradient from 64 weights

With Chaining: Memory-bound

Original: Compute-bound

Observation: Custom hardware can 
update the model (thousands of 
weights) at the granularity level: 64 
weights, not the whole model.



Effect of Sync. Design

Training loss vs. Number of Epochs

ModelAverage and Hogwild on the multi-core CPU: Async.
MLWeaving on the custom hardware : Sync. 

Our sync. design needs 
fewer epochs to converge.
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FPGA - Intel Arria 10
Xeon Broadwell E5
14 Cores @ 2.4 GHz

Intel Endpoint

DRAM
(64 GB)

MLWeaving
Accelerator DoppioDB1x QPI, 2x 

PCIe
up to 20 

GB/s

MLWeaving UDFs

(1) CREATE INDEX mlweaving_on_t1 ON create_mlweaving(‘t1͛);

Intel Libraries

DoppioDB HW Libs

(2) CREATE INDEX model_on_t1 ON train_mlweaving(‘t1͛, numEpochs, …);
(3) SELECT  * FROM infer_mlweaving(model_on_t1, ‘t1͛, labelIndex);

M
LW

ea
vi

ng
 

in
de

x

System Integration

We integrate MLWeaving 
into DoppioDB that is an 
open source solution for 
FPGA-enhanced databases 
based on MonetDB. 

Intel HARP2 Platform:
Intel Broadwell 14-core CPU
Intel Arria 10 FPGA

If you are interested to play with MLWeaving, please visit our demo
DoppioDB 2.0 in the Hollywood ballroom, 11:00-12:30, 27-29 Aug, 2019. 



End-to-End Performance: MLWeaving

Training loss vs. Time Training loss vs. Memory

ModelAverage and Hogwild on an Intel CPU: 14 cores, AVX2-enhanced, 8-bit dataset. 

MLWeaving on an FPGA: 3-bit dataset.



Any Questions?

If you are interested to play with MLWeaving,
please visit our demo DoppioDB 2.0 in the 
Hollywood ballroom, 11:00-12:30, 27-29 Aug, 2019. 

Acknowledgement: We thank Intel for their generous donation of Intel-Altera Heterogeneous Architecture Research Platform.

[1] ColumnML: Column-Store Machine Learning with On-the-Fly Data Transformation, VLDB’19, Kaan Kara, Ken Eguro, Ce Zhang, Gustavo Alonso
[2] MLWeaving: One-Size-Fits-All System for Any-Precision Learning, (in submission) VLDB’19, Zeke Wang, Kaan Kara, Hantian Zhang, Gustavo Alonso, Ce Zhang, Onur Mutlu
[3] Centaur: A framework for hybrid CPU-FPGA databases, FCCM’17, Muhsen Owaida, David Sidler, Kaan Kara, Gustavo Alonso 

systems.ethz.ch/fpga
github.com/fpgasystems

doppioDB [DEMO] doppioDB 2.0: Hardware 
Techniques for Improved Integration 
of Machine Learning into Databases
Kaan Kara, Zeke Wang, Ce Zhang, Gustavo Alonso
Systems Group, Department of Computer Science, ETH Zurich, Switzerland
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Date Open Close
Actors

ID Name Position
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SGD

Model

ML + DBMS = 

x Businesses have massive amounts of data in DBMS.

x Declarative way of data preparation (e.g., feature 

engineering) in DBMS.

x Declarative machine learning is much more accessible.

DBMS
+

Column-store Database 
Management System

Generalized Linear
Model Training

Challenges:
x DMBS are highly optimized systems with specific 

storage, data access and workload characteristics.
x ML has different characteristics compared to relational 

processing.
Compute Intensive Assumptions on 

data format Iterative access

1. ColumnML [1] 2. MLWeaving [2]
How can we train generalized linear models on column 
stores efficiently?

Challenges:
1. SGD accesses data in a row-wise fashion.
2. DBMS store data in a transformed format 
(compressed/encrypted).

Solutions:
1. Use and optimize an algorithm to access data column-
wise: Partitioned SCD
2. Use specialized hardware (FPGA) to decompress/
decrypt data in a pipeline with an ML engine.
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raw compressed encrypted compressed
+ encrypted

Data:
#samples = 2M
#features = 256
Size: 2.1 GB
Model:
LASSO

2nd Gen. Intel Xeon+FPGA

Efficient memory 
access (e.g., bulk 
reads)

Data 
transformation in 
pipeline with ML 
accelerator

Highly parallel 
computation 
engine for high 
throughput ML

doppioDB 2.0

UDF (train, validate, infer)

Memory
Manager
malloc()

free()

FThread
Manager

start()
join()

Status

Config FThread
Queues

CPU
Xeon 
Broadwell E5
14 Cores
@ 2.4 GHz

Intel Arria 10

FPGA

Main Memory
(Shared)

64 GB

MonetDB

TLB Data/FThread Arbiter

Column
ML

Column
ML

ML
Weaving

Centaur

DB Tables

SQL

INSERT INTO t1_model
SELECT weights FROM TRAIN('t1', step_size, ǫ);

SELECT prediction FROM INFER('t1_model', 't1_new');

SELECT loss FROM VALIDATE('t1_model', 't1');

- Training:

t1_model

doppioDB 2.0 t1 compressed/
encrypted

t1 bitweaving

Iterative 
Execution

Quantized
SGD

t1_model

Iterative 
Execution

Decryption
Decompression

SCD

Table t1

- Validation:

- Inference:

Operators on the FPGA 
can access data directly 
through shared memory 

Database can create 
and monitor jobs on the 
FPGA through Centaur

Different types of 
operators deployed

Seamless integration 
through POSIX-like 
threading interfece

Concurrent execution of 
hardware operators

User Interface:

1. Loading the data.

2. Transforming the data.

3. Running training.

4. Saving the model.

5. Validation and testing.

6. Inference.

+ Centaur [3]

Can a BitWeaving-like index help accelerate generalized 
linear model training?

Observations:
1. Generalized model training is tolerant against using 
quantized data.
2. General purpose architectures are not suitable to take 
advantage of quantized data.

1. row ABCD EFGH IJKL MNOP
2. row abcd efgh Ijkl mnop
3. row … … … …

1. row AEIM BFJN CGKO DHLP

2. row aelm bfjn cgko dhlp

3. row … … … …

1. Store same significant bits from a row together.
2. Design specialized hardware to use the weaving format 
with high efficiency thanks to bit-serial multiplication.
3. Dynamically change the precision used during runtime.

a) Speedup a) Mem. Traffic



Motivations

Linear Model, Logistic Regression, SVM

Database Generalized Linear Model FPGA

For GLM training, can we enable things 
that cannot be well done on CPUs/GPUs??

! Any-precision Training High-throughput Sync. Design



Hogwild: Asynchrony

Model:
Cache

Data Ar Model x

Gradient: dot(Ar, x)Ar

Data Ar Model x

Gradient: dot(Ar, x)Ar

Problem? Cache-coherence is expensive, especially for dense data!

g = comp_grad(x,Ar)

x = x – g

set_model(x)

Ar = get_data()

x = get_model()

Shared model x among cores



ModelAverage: Asynchrony

A copy of model x for each core

Training Data:
Database,

Sensor

Computing Device:
FPGA,

GPU, CPU

Model x:
DRAM,
Cache

Data Ar Model x

Gradient g: dot(Ar, x)Ar

Data Ar Model x

Gradient g: dot(Ar, x)Ar

Averaging

Problem? Convergence might be slower.

g = comp_grad(x,Ar)

x = x – g

set_model(x)

Ar = get_data()

x = get_model()



4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

How Bit-serial Multiplier Deals with Low Precision?

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Each bit should be binary, but we use 
decimal for ease of understanding.
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How Bit-serial Multiplier Deals with Low Precision?

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

1234

BSMX 0020

Initialization:

0000 0Sum =
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How Bit-serial Multiplier Deals with Low Precision?

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

BSMX 0020

Initialization:

Bit-Serial (S)

Bit-Parallel (P)

1234

0000 0Sum =

Sum += P * [i]S



4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 1-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

BSMX 0020

Memory

Hardware

1234

1st Cycle:

0000 0

1234

Sum =
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Bit-serial Multiplier: 1-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

BSMX 0020

Memory

1234

1st Cycle:

0000 0

123

4 means 4000.

Sum += 20 * 4000

Sum =

Hardware



BSM
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Bit-serial Multiplier: 1-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

Memory

1234

1st Cycle:

0008 0

123

Done with 1-bit precision, 
or proceed to the next bit.

Sum =

Hardware



BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 2-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

Memory

1234

2nd Cycle:

0008 0

123

Sum =

Hardware



3
BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 2-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

Memory

1234

2nd Cycle:

0008 0

12

3 means 300.

Sum += 20 * 300

Sum =

Hardware



BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 2-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

Memory

1234

2nd Cycle:

0068 0

12

Done with 2-bit precision, 
or proceed to the next bit.

Sum =

Hardware



BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 3-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

Memory

1234

3th Cycle:

0068 0

12

Sum =

Hardware



2
BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 3-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

Memory

1234

3th Cycle:

0068 0

1

2 means 20.

Sum += 20 * 20

Sum =

Hardware



BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 3-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

Memory

1234

3th Cycle:

0468 0

1

Done with 3-bit precision, 
or proceed to the next bit.

Sum =

Hardware



BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 4-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

Memory

1234

4th Cycle:

0468 0

1

Sum =

Hardware



1BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 4-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

Memory

1234

4th Cycle:

0468 0

1 means 1.

Sum += 20 * 1

Sum =

Hardware



BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 4-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

Memory

1234

4th Cycle:

2468 0
Done with 4-bit precision

Sum =

Hardware


