
Accelerating Generalized Linear Models with
MLWeaving: A One-Size-Fits-All System for
Any-Precision Learning

Zeke Wang, Kaan Kara, Hantian Zhang,
Gustavo Alonso, Onur Mutlu, Ce Zhang

Systems Group, ETH Zurich

Outline

Quick Background (5mins) MLWeaving (10mins)

Stochastic Gradient Descent (SGD)

Low Precision

Synchronous vs. Asynchronous

Arbitrary-precision Training

MLWeaving Memory Layout

MLWeaving Hardware Design

Efficient Synchronous Design

OK, how does SGD work?

Stochastic Gradient Descent (SGD)

min
$

1
2
'
(

𝐴(𝑥+ − 𝑏(.

Linear Regression

Training Data:
Database,

Sensor

Computing Device:
FPGA, GPU,

CPU

Model:
DRAM,
Cache

Data Ar Model x

Gradient: dot(Ar, x)Ar Ar = get_data()

1

2

3

Two Interesting
Properties

g = comp_grad(x,Ar)

x = x – g

P2: Can be done in low precision
(not 32-bit floating point)

P1: Model can be staled, especially
when running on multiple cores.

x = get_model()
4

set_model(x)

SGD on the CPU: synchronous or asynchronous?

g = comp_grad(x,Ar)

x = x – g

set_model(x)

Ar = get_data()

x = get_model()

Sync. Single-Core SGD: Low Throughput

Training Data:
Database,

Sensor

Computing Device:
FPGA,

GPU, CPU

Model x:
DRAM,
Cache

Data Ar Model x

Gradient g: dot(Ar, x)ArCPU – Single Core

Causes Problem When Using Multiple Cores.

Read After Write (RAW) Dependency Regarding the Model x

Async. Multi-Core SGD: High Throughput

Multi-core SGD relies on asynchrony.

HogWild! [1]

ModelAverage [2]

[1] Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. In NIPS. 2011.

[2] Parallelized Stochastic Gradient Descent. In NIPS. 2010.

Synchrony vs. Asynchrony on CPUs

Hardware Efficiency
(Throughput)

Statistical Efficiency
(Convergence Rate)

Single-core SGD
(Synchrony)

Low High

Multi-core SGD
(Asynchrony)

High Low

Why Low Precision?

Why Low Precision?

“It is a cat” (>0.5)

1.310245

X 0.602069

0.788857897

about 1.3

X about 0.6

about 0.78

Full precision Low precision

Relax, It is only Machine Learning.

Current Hardware Supports Limited Precisions

Char (8-bit),
Short (16-bit)

FP8 (8-bit),
FP16 (16-bit)

INT8 (8-bit)

CPU GPU TPU

Goal of This Work

For Generalized Linear Model training, can we
enable things that cannot be well done on CPUs??

! Any-precision Training High-throughput Sync. Design

Outline

Quick Background (5mins) MLWeaving (10mins)

Stochastic Gradient Descent (SGD)

Low Precision

Synchronous vs. Asynchronous

Arbitrary-precision Training

MLWeaving Memory Layout

MLWeaving Hardware Design

Efficient Synchronous Design

Two Goals of Arbitrary-precision Training

1, One hardware design and one copy of dataset
support any-precision training.

2, Our design achieves linear speedup with lower precision.

A0
[2]A0

[0]

Data Compute

Observation 2: Low precision (e.g., 8 bit fixed
point) often provides reasonable quality

Observation 3: Different training task might
need different precision level even on the

same dataset

Can we store the data in a new data
structure that efficiently supports

arbitrary precision data movement?

How most systems store ML data today:

1 1

1 1 1 1

2 2 2

2 2 2 2

1st row A

2nd row B

1st feature 2nd feature

MLWeaving:

1st row A

A0
[.] A0

[4]

B0
[0] B0

[.] B0
[4] B0

[2]

A.
[0] A.

[.] A.
[4] A.

[2]

B.
[0] B.

[.] B.
[4] B.

[2]

A0
[0] A.

[0]

MLWeaving Memory Layout

Observation 1:
Often memory bandwidth bound

MLWeaving Memory Layout

Data Compute

Observation 1:
Often memory bandwidth bound

Observation 2: Low precision (e.g., 8 bit fixed
point) often provides reasonable quality

Observation 3: Different training task might
need different precision level even on the

same dataset

Can we store the data in a new data
structure that efficiently supports

arbitrary precision data movement?

How most systems store ML data today:

A0
[0] 1 1 1

1 1 1 1

A.
[0] 2 2 2

2 2 2 2

1st row A

2nd row B

1st feature 2nd feature

1st row A

A0
[0] A.

[0]A0
[.] A0

[4] A0
[2]

𝐵0
[0] 𝐵0

[.] 𝐵0
[4] 𝐵0

[2]

A.
[.] A.

[4] A.
[2]

𝐵.
[0] 𝐵.

[.] 𝐵.
[4] 𝐵.

[2]

MLWeaving:

Data Compute

Observation 1:
Often memory bandwidth bound

Observation 2: Low precision (e.g., 8 bit fixed
point) often provides reasonable quality

Observation 3: Different training task might
need different precision level even on the

same dataset

Can we store the data in a new data
structure that supports arbitrary

precision data movement?

How most systems store ML data today:

A0
[0] 1 1 1

1 1 1 1

A.
[0] 2 2 2

2 2 2 2

1st row A

2nd row B

1st feature 2nd feature

1st row A A0
[0] A.

[0]

A0
[.] A0

[4] A0
[2]

𝐵0
[0] 𝐵0

[.] 𝐵0
[4] 𝐵0

[2]

A.
[.] A.

[4] A.
[2]

𝐵.
[0] 𝐵.

[.] 𝐵.
[4] 𝐵.

[2]

MLWeaving Memory Layout

A0
[.] A.

[.]

MLWeaving:

Data Compute

Observation 1:
Often memory bandwidth bound

Observation 2: Low precision (e.g., 8 bit fixed
point) often provides reasonable quality

Observation 3: Different training task might
need different precision level even on the

same dataset

Can we store the data in a new data
structure that supports arbitrary

precision data movement?

How most systems store ML data today:

A0
[0] 1 1 1

1 1 1 1

A.
[0] 2 2 2

2 2 2 2

1st row A

2nd row B

1st feature 2nd feature

1st row A A0
[0] A.

[0]

A0
[.] A0

[4] A0
[2]

𝐵0
[0] 𝐵0

[.] 𝐵0
[4] 𝐵0

[2]

A.
[.] A.

[4] A.
[2]

𝐵.
[0] 𝐵.

[.] 𝐵.
[4] 𝐵.

[2]

MLWeaving Memory Layout

A0
[.] A.

[.]

A0
[4] A0

[2] A.
[4] A.

[2]

MLWeaving:

Data Compute

Observation 1:
Often memory bandwidth bound

Observation 2: Low precision (e.g., 8 bit fixed
point) often provides reasonable quality

Observation 3: Different training task might
need different precision level even on the

same dataset

Can we store the data in a new data
structure that supports arbitrary

precision data movement?

How most systems store ML data today:

A0
[0] 1 1 1

1 1 1 1

A.
[0] 2 2 2

2 2 2 2

1st row A

2nd row B

1st feature 2nd feature

1st row A A0
[0] A.

[0]

A0
[.] A0

[4] A0
[2]

𝐵0
[0] 𝐵0

[.] 𝐵0
[4] 𝐵0

[2]

A.
[.] A.

[4] A.
[2]

𝐵.
[0] 𝐵.

[.] 𝐵.
[4] 𝐵.

[2]

MLWeaving Memory Layout

A0
[.] A.

[.] A0
[4] A0

[2]A.
[4] A.

[2]

2nd row B

𝐵0
[0] 𝐵0

[.] 𝐵0
[4] 𝐵0

[2] 𝐵.
[0] 𝐵.

[.] 𝐵.
[4] 𝐵.

[2]

MLWeaving:

A0
[2]

Data Compute

Observation 1:
Often memory bandwidth bound

Observation 2: Low precision (e.g., 8 bit fixed
point) often provides reasonable quality

Observation 3: Different training task might
need different precision level even on the

same dataset

Can we store the data in a new data
structure that supports arbitrary

precision data movement?

How most systems store ML data today:

A0
[0] 1 1

1 1 1 1

A.
[0] 2 2 2

2 2 2 2

1st row A

2nd row B

1st feature 2nd feature

1st row A A0
[0] A.

[0]

A0
[.] A0

[4]

𝐵0
[0] 𝐵0

[.] 𝐵0
[4] 𝐵0

[2]

A.
[.] A.

[4] A.
[2]

𝐵.
[0] 𝐵.

[.] 𝐵.
[4] 𝐵.

[2]

MLWeaving Memory Layout

A0
[.] A.

[.] A0
[4] A0

[2]A.
[4] A.

[2]

2nd row B 𝐵0
[0] 𝐵0

[.] 𝐵0
[4] 𝐵0

[2]𝐵.
[0] 𝐵.

[.] 𝐵.
[4] 𝐵.

[2]

More complicated
when a row has
thousands of features,
but you get the idea.

If we need 1-bit?
If we need 3-bits?

MLWeaving does not work out on CPUs. CPU does not have custom
instruction for MLWeaving memory layout and then we have to group
bits from different memory locations before the further computing.

MLWeaving:

Outline

Quick Background (5mins) MLWeaving (10mins)

Stochastic Gradient Descent (SGD)

Low Precision

Synchronous vs. Asynchronous

Arbitrary-precision Training

MLWeaving Memory Layout

MLWeaving Hardware Design

Efficient Synchronous Design

MLWeaving memory layout: Key idea of MLWeaving hardware design:

MLWeaving Hardware Design: Key Idea

To use bit-serial multiplier to enable
efficient data processing from the
MLWeaving memory layout.

Please read our paper about how bit-serial multiplier works.

1st row A A0
[0] A.

[0] A0
[.] A.

[.] A0
[4] A0

[2]A.
[4] A.

[2]

2nd row B 𝐵0
[0] 𝐵0

[.] 𝐵0
[4] 𝐵0

[2]𝐵.
[0] 𝐵.

[.] 𝐵.
[4] 𝐵.

[2]

The modern CPU does not
support bit-serial multiplier.

Bit-serial Multiplier

Bit-serial Multiplier
Gradient: 𝐴𝑟 ∗ (𝐴𝑟 ∗ 𝑥 − 𝑏𝑟)

Dot product: 𝐴𝑟 ∗ 𝑥

Bit-serial Bit-parallel

MLWeaving memory layout:
MLWeaving hardware design:

Custom Computation for MLWeaving

1st row A A0
[0] A.

[0] A0
[.] A.

[.] A0
[4] A0

[2]A.
[4] A.

[2]

2nd row B 𝐵0
[0] 𝐵0

[.] 𝐵0
[4] 𝐵0

[2]𝐵.
[0] 𝐵.

[.] 𝐵.
[4] 𝐵.

[2]

Bit-serial multiplier + MLWeaving memory
layout enable any-precision ML training.

MLWeaving’s Performance: Almost Linear Speedup with Lower Precision

Computing time vs. Precision Memory traffic vs. Precision

Outline

Quick Background (5mins) MLWeaving (10mins)

Stochastic Gradient Descent (SGD)

Low Precision

Synchronous vs. Asynchronous

Arbitrary-precision Training

MLWeaving Memory Layout

MLWeaving Hardware Design

Efficient Synchronous Design

Synchronous SGD or asynchronous SGD on custom hardware?

SGD on Custom Hardware: The Best of Two Worlds

Hardware Efficiency
(Throughput)

Statistical Efficiency
(Convergence Rate)

Single-core
(Synchrony)

Low High

Multi-core
(Asynchrony)

High Low

Custom hardware
(Synchrony)

High High

Original Synchronous Implementation: Compute-Bound

Key idea: to keep the RAW
dependency, regarding the model x.

Original Implementation
Model
Read

Dot
Product

Model
Write

Cycles

Original Synchronous Implementation: Compute-Bound

Key idea: to keep the RAW
dependency, regarding the model x.

Original Implementation

50% Utilization

Model
Read

Dot
Product

Model
Write

1st batch

1st batch

2rd batch

2rd batch

1st gradient 2rd gradient

Cycles

Optimal Synchronous Implementation: Memory-Bound

With Chaining: Memory-bound

Original: Compute-bound

Observation: Custom hardware can
update the model (thousands of
weights) at the granularity level: 64
weights, not the whole model.

Model
Read

Dot
Product

Model
Write

1st batch 2rd batch

1st batch 2rd batch

1st gradient 2rd gradient

Cycles

Model
Read

Dot
Product

Model
Write

1st batch

1st batch

1st gradient

2rd batch

2rd batch

2rd gradient

Cycles

Optimal Synchronous Implementation: Memory-Bound

High throughput: “sync” is as fast as “async”.

Model
Read

Dot
Product

Model
Write

1st batch 2rd batch

1st batch 2rd batch

1st gradient 2rd gradient

Cycles

Model
Read

Dot
Product

Model
Write

1st batch

1st batch

1st gradient

2rd batch

2rd batch

2rd gradient

Cycles

Gap: gradient from 64 weights

With Chaining: Memory-bound

Original: Compute-bound

Observation: Custom hardware can
update the model (thousands of
weights) at the granularity level: 64
weights, not the whole model.

Effect of Sync. Design

Training loss vs. Number of Epochs

ModelAverage and Hogwild on the multi-core CPU: Async.
MLWeaving on the custom hardware : Sync.

Our sync. design needs
fewer epochs to converge.

Outline

Quick Background (5mins) MLWeaving (10mins)

Stochastic Gradient Descent (SGD)

Low Precision

Synchronous vs. Asynchronous

Arbitrary-precision Training

MLWeaving Memory Layout

MLWeaving Hardware Design

Efficient Synchronous Design

FPGA - Intel Arria 10
Xeon Broadwell E5
14 Cores @ 2.4 GHz

Intel Endpoint

DRAM
(64 GB)

MLWeaving
Accelerator DoppioDB1x QPI, 2x

PCIe
up to 20

GB/s

MLWeaving UDFs

(1) CREATE INDEX mlweaving_on_t1 ON create_mlweaving(‘t1͛);

Intel Libraries

DoppioDB HW Libs

(2) CREATE INDEX model_on_t1 ON train_mlweaving(‘t1͛, numEpochs, …);
(3) SELECT * FROM infer_mlweaving(model_on_t1, ‘t1͛, labelIndex);

M
LW

ea
vi

ng

in
de

x

System Integration

We integrate MLWeaving
into DoppioDB that is an
open source solution for
FPGA-enhanced databases
based on MonetDB.

Intel HARP2 Platform:
Intel Broadwell 14-core CPU
Intel Arria 10 FPGA

If you are interested to play with MLWeaving, please visit our demo
DoppioDB 2.0 in the Hollywood ballroom, 11:00-12:30, 27-29 Aug, 2019.

End-to-End Performance: MLWeaving

Training loss vs. Time Training loss vs. Memory

ModelAverage and Hogwild on an Intel CPU: 14 cores, AVX2-enhanced, 8-bit dataset.

MLWeaving on an FPGA: 3-bit dataset.

Any Questions?

If you are interested to play with MLWeaving,
please visit our demo DoppioDB 2.0 in the
Hollywood ballroom, 11:00-12:30, 27-29 Aug, 2019.

Acknowledgement: We thank Intel for their generous donation of Intel-Altera Heterogeneous Architecture Research Platform.

[1] ColumnML: Column-Store Machine Learning with On-the-Fly Data Transformation, VLDB’19, Kaan Kara, Ken Eguro, Ce Zhang, Gustavo Alonso
[2] MLWeaving: One-Size-Fits-All System for Any-Precision Learning, (in submission) VLDB’19, Zeke Wang, Kaan Kara, Hantian Zhang, Gustavo Alonso, Ce Zhang, Onur Mutlu
[3] Centaur: A framework for hybrid CPU-FPGA databases, FCCM’17, Muhsen Owaida, David Sidler, Kaan Kara, Gustavo Alonso

systems.ethz.ch/fpga
github.com/fpgasystems

doppioDB [DEMO] doppioDB 2.0: Hardware
Techniques for Improved Integration
of Machine Learning into Databases
Kaan Kara, Zeke Wang, Ce Zhang, Gustavo Alonso
Systems Group, Department of Computer Science, ETH Zurich, Switzerland

Vision

Stock Exchange

Stocks Transactions

OpenCloseValues

Name Region Time Buyer Seller

Date Open Close
Actors

ID Name Position

σDate > 2010

σRegion=Europe

σPosition=Manager

SGD

Model

ML + DBMS =

x Businesses have massive amounts of data in DBMS.

x Declarative way of data preparation (e.g., feature

engineering) in DBMS.

x Declarative machine learning is much more accessible.

DBMS
+

Column-store Database
Management System

Generalized Linear
Model Training

Challenges:
x DMBS are highly optimized systems with specific

storage, data access and workload characteristics.
x ML has different characteristics compared to relational

processing.
Compute Intensive Assumptions on

data format Iterative access

1. ColumnML [1] 2. MLWeaving [2]
How can we train generalized linear models on column
stores efficiently?

Challenges:
1. SGD accesses data in a row-wise fashion.
2. DBMS store data in a transformed format
(compressed/encrypted).

Solutions:
1. Use and optimize an algorithm to access data column-
wise: Partitioned SCD
2. Use specialized hardware (FPGA) to decompress/
decrypt data in a pipeline with an ML engine.

16x

16x

16x

Data
Transformation 1

Data
Transformation 2

Fetch Engine

read
request

write
request

read
response

Compute Engine

Label
Store

Product
Store 1

Column
FIFO

Product
Store 2

Step Size,
Lamda

- --

x xx

- --

Input
Stream
Of
Column
Values

Write
Back

Engine

notify

16x x xx
+ + +

+Dot
Product

Sync

Reorder
Responses

Address
Calculate

1

2

3

4

Model
Store

Global Inner-
Product Update 5

0 1

16x SS

T

FPGA - Intel Arria 10
Xeon Broadwell E5
14 Cores @ 2.4 GHz

Intel Framework Intel Libraries DRAM
(64 GB)

Memory Controller

Accelerator Application

1x QPI, 2x PCIe
Up to 20 GB/s

0

10

20

30

40

50

60

CPU (AVX 14-cores) FPGA

P
ro

ce
ss

in
g

R
at

e
(G

B
/s

)

raw compressed encrypted compressed
+ encrypted

Data:
#samples = 2M
#features = 256
Size: 2.1 GB
Model:
LASSO

2nd Gen. Intel Xeon+FPGA

Efficient memory
access (e.g., bulk
reads)

Data
transformation in
pipeline with ML
accelerator

Highly parallel
computation
engine for high
throughput ML

doppioDB 2.0

UDF (train, validate, infer)

Memory
Manager
malloc()

free()

FThread
Manager

start()
join()

Status

Config FThread
Queues

CPU
Xeon
Broadwell E5
14 Cores
@ 2.4 GHz

Intel Arria 10

FPGA

Main Memory
(Shared)

64 GB

MonetDB

TLB Data/FThread Arbiter

Column
ML

Column
ML

ML
Weaving

Centaur

DB Tables

SQL

INSERT INTO t1_model
SELECT weights FROM TRAIN('t1', step_size, ǫ);

SELECT prediction FROM INFER('t1_model', 't1_new');

SELECT loss FROM VALIDATE('t1_model', 't1');

- Training:

t1_model

doppioDB 2.0 t1 compressed/
encrypted

t1 bitweaving

Iterative
Execution

Quantized
SGD

t1_model

Iterative
Execution

Decryption
Decompression

SCD

Table t1

- Validation:

- Inference:

Operators on the FPGA
can access data directly
through shared memory

Database can create
and monitor jobs on the
FPGA through Centaur

Different types of
operators deployed

Seamless integration
through POSIX-like
threading interfece

Concurrent execution of
hardware operators

User Interface:

1. Loading the data.

2. Transforming the data.

3. Running training.

4. Saving the model.

5. Validation and testing.

6. Inference.

+ Centaur [3]

Can a BitWeaving-like index help accelerate generalized
linear model training?

Observations:
1. Generalized model training is tolerant against using
quantized data.
2. General purpose architectures are not suitable to take
advantage of quantized data.

1. row ABCD EFGH IJKL MNOP
2. row abcd efgh Ijkl mnop
3. row … … … …

1. row AEIM BFJN CGKO DHLP

2. row aelm bfjn cgko dhlp

3. row … … … …

1. Store same significant bits from a row together.
2. Design specialized hardware to use the weaving format
with high efficiency thanks to bit-serial multiplication.
3. Dynamically change the precision used during runtime.

a) Speedup a) Mem. Traffic

Motivations

Linear Model, Logistic Regression, SVM

Database Generalized Linear Model FPGA

For GLM training, can we enable things
that cannot be well done on CPUs/GPUs??

! Any-precision Training High-throughput Sync. Design

Hogwild: Asynchrony

Model:
Cache

Data Ar Model x

Gradient: dot(Ar, x)Ar

Data Ar Model x

Gradient: dot(Ar, x)Ar

Problem? Cache-coherence is expensive, especially for dense data!

g = comp_grad(x,Ar)

x = x – g

set_model(x)

Ar = get_data()

x = get_model()

Shared model x among cores

ModelAverage: Asynchrony

A copy of model x for each core

Training Data:
Database,

Sensor

Computing Device:
FPGA,

GPU, CPU

Model x:
DRAM,
Cache

Data Ar Model x

Gradient g: dot(Ar, x)Ar

Data Ar Model x

Gradient g: dot(Ar, x)Ar

Averaging

Problem? Convergence might be slower.

g = comp_grad(x,Ar)

x = x – g

set_model(x)

Ar = get_data()

x = get_model()

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

How Bit-serial Multiplier Deals with Low Precision?

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Each bit should be binary, but we use
decimal for ease of understanding.

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

How Bit-serial Multiplier Deals with Low Precision?

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

1234

BSMX 0020

Initialization:

0000 0Sum =

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

How Bit-serial Multiplier Deals with Low Precision?

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

BSMX 0020

Initialization:

Bit-Serial (S)

Bit-Parallel (P)

1234

0000 0Sum =

Sum += P * [i]S

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 1-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

BSMX 0020

Memory

Hardware

1234

1st Cycle:

0000 0

1234

Sum =

4

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 1-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

BSMX 0020

Memory

1234

1st Cycle:

0000 0

123

4 means 4000.

Sum += 20 * 4000

Sum =

Hardware

BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 1-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

Memory

1234

1st Cycle:

0008 0

123

Done with 1-bit precision,
or proceed to the next bit.

Sum =

Hardware

BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 2-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

Memory

1234

2nd Cycle:

0008 0

123

Sum =

Hardware

3
BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 2-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

Memory

1234

2nd Cycle:

0008 0

12

3 means 300.

Sum += 20 * 300

Sum =

Hardware

BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 2-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

Memory

1234

2nd Cycle:

0068 0

12

Done with 2-bit precision,
or proceed to the next bit.

Sum =

Hardware

BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 3-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

Memory

1234

3th Cycle:

0068 0

12

Sum =

Hardware

2
BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 3-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

Memory

1234

3th Cycle:

0068 0

1

2 means 20.

Sum += 20 * 20

Sum =

Hardware

BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 3-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

Memory

1234

3th Cycle:

0468 0

1

Done with 3-bit precision,
or proceed to the next bit.

Sum =

Hardware

BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 4-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

Memory

1234

4th Cycle:

0468 0

1

Sum =

Hardware

1BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 4-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

Memory

1234

4th Cycle:

0468 0

1 means 1.

Sum += 20 * 1

Sum =

Hardware

BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 4-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

Memory

1234

4th Cycle:

2468 0
Done with 4-bit precision

Sum =

Hardware

