
MetaSys
A	Practical	Open-source	Metadata	Management	System	
to	Implement	and	Evaluate	Cross-layer	Optimizations

Nandita	Vijaykumar,	Ataberk	Olgun,	Konstantinos	Kanellopoulos,	
F.	Nisa Bostancı,	Hasan	Hassan,	Mehrshad Lotfi,	Phillip	B.	Gibbons,	Onur Mutlu



1

Executive	Summary
Motivation: Hardware-software	cooperative	(cross-layer)	techniques	
improve	performance,	quality	of	service,	and	security

Problem: Cross-layer	techniques	are	challenging	to	implement	and	evaluate	in	real	hardware
because	they	require modifications	across	the	stack

Our	Goal is	twofold:
1)	Enable	rapid implementation	and	evaluation	of	cross-layer	techniques	in	real	hardware
2)	Quantify	the	overheads associated	with	a	general	metadata	management	system

Key	Idea:

Develop	a	metadata	management	system	(MetaSys)	with	hardware	and	software	components	
that	are	reusable	across	cross-layer	techniques	to	minimize	programmer	effort	

Prototype: Xilinx	Zedboard prototype	using	RISC-V	Rocket	Chip:

Low	on-chip	storage	(0.2%)	and	memory	storage	(0.2%)	overhead	metadata	management

Evaluation: Graph	prefetching	and	memory	protection	case	studies,
extensive	overhead	characterization
• MetaSys-based	graph	prefetcher	performs	similar	to	state-of-the-art	specialized	prefetcher
• Low-overhead bounds-checking	(14%)	and	return	address	protection	(1.2%)
• Single general	metadata	management	system	scales	well

MetaSys	Source	Code: https://github.com/CMU-SAFARI/MetaSys

https://github.com/CMU-SAFARI/MetaSys


2

Outline
• Background

• Cross-Layer	Techniques
• Evaluating	Cross-Layer	Techniques

• MetaSys
• Overview	
• Components
• Operation
• FPGA	Prototype

• Case	Studies
• Prefetching
• Memory	Safety	and	Protection

• Characterizing	a	General	Metadata	Management	System



3

Caches

Memory	
ControllersPrefetchers

Hardware	Performance	Optimizations

Today
Optimize	for	performance	by	designing	hardware
that	infers	and	predicts	program	behavior



4

Future:	Cross-Layer
Software	can	provide	information	(metadata) that	the	
hardware	is	trying	to	infer

Data	Structures Access	Patterns

Integer Float

CharData	
Type/Layout

Hardware
Software

Cross-Layer	Techniques



5

Example:	Locality	Descriptor	(I)

[Vijaykumar+,	ISCA’18a]

The	programmer or	the	compiler
describes	key	semantics
using	a	software	interface

Data	Structure

Float

Char

Metadata

Locality	Descriptor	[Vijaykumar+,	ISCA’18a]
1. Express	data	locality	(from	software)
2. Exploit	data	locality (in	hardware)	in	GPUs



6

Example:	Locality	Descriptor	(II)

[Vijaykumar+,	ISCA’18a]

Hardware	optimizations	
leverage	key	program	semantics

to	improve	performance	significantly	(e.g.,	>50%)



7

H
ardw

are
Softw

are

Benefits	of	Cross-Layer	Techniques

• Performance	optimizations
• Security	enhancements
• Quality	of	service	improvements
• Better	programmability
• Better	portability

Hardware

Software
Cross-Layer	Interface

[Vijaykumar+,	ISCA’18a]
[Vijaykumar+,	ISCA’18b]

[Koo+,	ISCA’17]

[Mukkara+,	ASPLOS’16]
[Ma+,	ASPLOS’15]

[Yu+,	CARVV’17]

Example	prior	work

…



8

Cross-Layer	Evaluation	Infrastructure
Evaluating	cross-layer	techniques	is	non-trivial

Need	a	new	infrastructure	to	evaluate	a	new	cross-layer	technique
• Difficult	given	complexity	(changes	across	the	stack)

FPGA	prototypesCycle-accurate	
simulators



9

General	Metadata	Management	System

A	single general	system	can	support	multiple	techniques

Key	Benefit: Amortize	the	cost	to	implement									
each	new	technique

[Vijaykumar+,	ISCA’18b]



10

Outline
• Background

• Cross-Layer	Techniques
• Evaluating	Cross-Layer	Techniques

• MetaSys
• Overview
• Components
• Operation
• FPGA	Prototype

• Case	Studies
• Prefetching
• Memory	Safety	and	Protection

• Characterizing	a	General	Metadata	Management	System



11

MetaSys:	Overview
Goal:	Enable	rapid implementation	and	evaluation	
of	cross-layer	techniques	in	real	hardware
MetaSys:	Open-source infrastructure	
to	evaluate	cross-layer	techniques	end-to-end

MetaSys	Source	Code: https://github.com/CMU-SAFARI/MetaSys

https://github.com/CMU-SAFARI/MetaSys


12

MetaSys:	Components

Tagged	memory-based	metadata	management
Efficient	metadata	querying	in	hardware1



13

MetaSys:	Tagged	Memory	(I)
Tag	memory	addresses	with	metadata	IDs

Optimization	
Client

Metadata
ID Metadata

Is	<address>
accessed	frequently? metadata	ID

Metadata	Store

YES

Example



14

MetaSys:	Tagged	Memory	(II)

Processor

Main	MemoryCore

TLB



15

MetaSys:	Tagged	Memory	(II)

Processor

Main	MemoryCore

TLB

Metadata
Mapping	
Table

Pointer

Metadata	ID

Map	memory	addresses	
to	metadata	IDs

Metadata
Mapping	
Table



16

MetaSys:	Tagged	Memory	(II)

Processor

Main	MemoryCore

TLB

Metadata
Mapping	
Table

Pointer

Metadata	ID

Map	memory	addresses	
to	metadata	IDs

Metadata
Mapping	
Table

64	B

4	KiB

64	B

4	KiB

Mapping	Granularity

.	.	. .	.	..	.	.

ID	==	0 ID	==	1



17

MetaSys:	Tagged	Memory	(II)

Processor

Main	MemoryCore

TLB

Mapping	
Management	Unit

MetaSys
Instructions

Access	&	Manipulate	
Metadata	Table

Metadata
Mapping	
Table



18

MetaSys:	Tagged	Memory	(II)

Processor

Main	MemoryCore

TLB

Mapping	
Management	Unit

MetaSys
Instructions

Metadata	
Lookup	Unit

Address	
Translation

Retrieve
Metadata

ID

Metadata
Mapping	
Table

Metadata	ID



19

MetaSys:	Tagged	Memory	(II)

Processor

Main	MemoryCore

TLB

Mapping	
Management	Unit

MetaSys
Instructions

Metadata	
Lookup	Unit

Address	
Translation

Retrieve
Metadata

ID

Metadata
Mapping	
Table

Metadata	ID



20

MetaSys:	Tagged	Memory	(II)

Processor

Main	MemoryCore

TLB

Mapping	
Management	Unit

MetaSys
Instructions

Metadata	
Lookup	Unit

Address	
Translation

Retrieve
Metadata

ID

Metadata	
Mapping	
Cache

Metadata
Mapping	
Table

Metadata	ID



21

MetaSys:	Tagged	Memory	(II)

Processor

Main	MemoryCore

TLB

Mapping	
Management	Unit

MetaSys
Instructions

Metadata	
Lookup	Unit

Address	
Translation

Retrieve
Metadata

ID

Metadata	
Mapping	
Cache

Metadata
Mapping	
TableMetadata	ID



22

MetaSys:	Tagged	Memory	(II)

Processor

Main	MemoryCore

TLB

Metadata
Mapping	
Table

Mapping	
Management	Unit

MetaSys
Instructions

Metadata	
Lookup	Unit

Address	
Translation

Retrieve
Metadata

ID

Metadata	
Mapping	
Cache

Optimization	
Client

Metadata	
Table

Map	metadata	IDs
to	metadata

Metadata
Table

Metadata	ID

Metadata



23

MetaSys:	Tagged	Memory	(II)

Processor

Main	MemoryCore

TLB

Metadata
Mapping	
Table

Mapping	
Management	Unit

Metadata	
Lookup	Unit

Metadata	
Mapping	
Cache

Optimization
Client

Metadata	
Table

Retrieve	metadata	IDs

Initialize	
with	

metadata



24

MetaSys:	Components

Tagged	memory-based	metadata	management
Efficient	metadata	querying	in	hardware1

Rich	cross-layer	interface
Communicate	metadata	from	SW	to	HW2



25

MetaSys:	Cross-Layer	Interface

Processor

Main	MemoryCore

TLB

Metadata
Mapping	
Table

Mapping	
Management	Unit

Metadata	
Lookup	Unit

Metadata	
Mapping	
Cache

Optimization	
Client

Metadata	
Table

MetaSys
Instructions



26

MetaSys:	Cross-Layer	Interface

Mapping	
Management	Unit

Metadata	
Mapping	
Cache

Optimization	
Client

Metadata	
Table

Main	Memory
Metadata
Mapping	
Table



27

MetaSys:	Cross-Layer	Interface



28

MetaSys:	Components

Tagged	memory-based	metadata	management
Efficient	metadata	querying	in	hardware1

Rich	cross-layer	interface
Communicate	metadata	from	SW	to	HW2

Flexible	hardware and	software	modules
Facilitate	implementing	new	HW	optimizations3



29

MetaSys:	Hardware	Modules	(I)

Processor

Main	MemoryCore

TLB

Metadata
Mapping	
Table

Mapping	
Management	Unit

Metadata	
Lookup	Unit

Metadata	
Mapping	
Cache

Optimization	
Client

Metadata	
Table

1) Caches
2) Prefetchers
3) Bounds	Checker
4) Memory	Controller



30

MetaSys:	Hardware	Modules	(II)

Processor

Main	MemoryCore

TLB

Metadata
Mapping	
Table

Mapping	
Management	Unit

Metadata	
Lookup	Unit

Metadata	
Mapping	
Cache

Optimization	
Client

Metadata	
Table

commonly	used	across
cross-layer	techniques



31

MetaSys:	Software	Modules

Processor

Main	MemoryCore

TLB

Metadata
Mapping	
Table

Mapping	
Management	Unit

Metadata	
Lookup	Unit

Metadata	
Mapping	
Cache

Optimization	
Client

Metadata	
Table

Operating	System

MetaSys	Library



32

Outline
• Background

• Cross-Layer	Techniques
• Evaluating	Cross-Layer	Techniques

• MetaSys
• Overview	
• Components
• Operation
• FPGA	Prototype

• Case	Studies
• Prefetching
• Memory	Safety	and	Protection

• Characterizing	a	General	Metadata	Management	System



33

MetaSys:	Operation	(MAP)

Core
Mapping	

Management	
Unit

1 Map	metadata	ID
(to	memory	location)

MAP
Instruction

Metadata	ID
“0”

Start	Address
“0”

Size
“1	Unit”

Main	Memory
Metadata
Mapping	
Table

64	B

128	B

4	KiB

…



34

MetaSys:	Operation	(CREATE)

Prefetcher

Metadata	
Table

2 Associate	metadata
(with	metadata	ID)

CREATE
Instruction

Cache

Metadata	
Table

Core
Mapping	

Management	
Unit

Main	Memory
Metadata
Mapping	
Table

Metadata	ID
“0”

Client	ID
“Cache”

Metadata
“Hot”



35

MetaSys:	Operation	(CREATE)

Prefetcher

Metadata	
Table

Cache

Metadata	
Table

Core
Mapping	

Management	
Unit

Main	Memory
Metadata
Mapping	
Table

2 Associate	metadata
(with	metadata	ID)

Metadata	ID
“0”
Metadata
“Hot”



36

MetaSys:	Operation	(LOOKUP)

Prefetcher

Metadata	
Table

3 Lookup	metadata
(with	address)

Cache

Metadata	
Table

Core
Mapping	

Management	
Unit

Main	Memory
Metadata
Mapping	
Table

Should	I	evict	my	cached	word
at	address	0?



37

MetaSys:	Operation	(LOOKUP)

Prefetcher

Metadata	
Table

Cache

Metadata	
Table

Core
Mapping	

Management	
Unit

Main	Memory
Metadata
Mapping	
Table

Metadata	
Lookup	Unit

Address
“0”

Metadata	ID
“0”

4 Check	metadata	table
(with	metadata	id)

It	is	used	frequently	(hot)
I	will	not	evict	address	0

Metadata
“Hot”

3 Lookup	metadata
(with	address)



38

Outline
• Background

• Cross-Layer	Techniques
• Evaluating	Cross-Layer	Techniques

• MetaSys
• Overview	
• Components
• Operation
• FPGA	Prototype

• Case	Studies
• Prefetching
• Memory	Safety	and	Protection

• Characterizing	a	General	Metadata	Management	System



39

FPGA	Prototype	(I)

1. Accurately evaluate	feasibility	of	the	metadata	management	system
• Implement	all	components	(e.g.,	ports,	wires,	buffers)

2. Quickly run	experiments
• Run	workloads	fast	compared	to	simulation

3. Develop	RTL	as	a	basis	for	future	work
• E.g.,	accurately	measure	area	and	power	using	synthesis	tools

FPGA	prototypesCycle-accurate	simulators



40

FPGA	Prototype	(II)

Zedboard	Zynq	
FPGA	board

RISC-V	Rocket	Chip

In-order
Rocket
Core

TLB

Mapping	Management	
Unit

Metadata	
Lookup	Unit

Metadata	
Mapping	
Cache

Optimization	
Client

Metadata	
TableDDR4	Chips

Metadata
Mapping	
Table



41

MetaSys is	Open	Source	
https://github.com/CMU-SAFARI/MetaSys

Link	to	Source	Code

https://github.com/CMU-SAFARI/MetaSys


42

Outline
• Background

• Cross-Layer	Techniques
• Evaluating	Cross-Layer	Techniques

• MetaSys
• Overview	
• Components
• Operation
• FPGA	Prototype

• Case	Studies
• Prefetching
• Memory	Safety	and	Protection

• Characterizing	a	General	Metadata	Management	System



43

Cross-Layer	Prefetching	Techniques
Handle	challenging access	patterns
• Graph	processing
• Pointer	chasing
• Linear	algebra
• …

Case	Study	#1
New	cross-layer	prefetching	technique	for	graph	applications
• Leverage	graph	data	structure	semantics

• Instead	of	relying	on	program	context	or	memory	access	history

Example	Prior	Work
[Ainsworth+,	ICS‘16]
[Talati+,	HPCA’21]



44

Graph	Representation

0 21 3 4

0 20 3 4

3 44 0 2

7

0 1 2 3 4

3 4

Work	List

Offsets	List

Edges	List

Properties

0

1

3 4

2

Compressed	sparse	row	(CSR)	format



45

Traversing	the	Graph

0 21 3 4

0 20 3 4

3 44 0 2

7

0 1 2 3 4

3 4

Work	List

Offsets	List

Edges	List

Properties

Two	types	of	indirection:

1

2

Using	a	single	value

Using	a	range	of	values

Metadata	required	for	prefetching:
• Type	of	indirection
• Base	address	of	the	next	list
• Size	of	elements	in	both	lists



46

Graph	Prefetching	Using	MetaSys

1 Map	metadata	IDs	to	work,	offset,	and	edges	lists

2
CREATE	metadata	to	express	the	characteristics

{type,	base,	base_next,	size,	size_next}
of	each	list

find	what	the	application	will	access	next	using	metadata

3 Load/store	instruction	triggers	
metadata	lookup	in	prefetcher

Initialize	metadata

Prefetch

Example
3 44 0 2 3 4Edges	List

Properties

base_properties +	
(size_properties *							)4



47

Evaluation	Methodology
CPU 25	MHz,	in-order	Rocket	core

TLB 16	entry	data	TLB,	LRU	policy

L1	D&I$ 16	KiB,	4-way,	4	cycle,	64	B	cache	line,	LRU,	2	MSHRs

DRAM DDR3	1066	MT/s

Metadata	Cache NMRU	policy,	128	entries,	38	bits/entry,	512	B	granularity

Metadata	Table 256	entries,	64	B	entry

Workloads	from	the	Ligra benchmark	(graph	applications):
• PageRank	(PR),	Shortest	Path	(SSSP),	Collaborative	Filtering	(CF),	

Teenage	Follower	(TF),	Triangle	Counting	(TC),	Breadth-First	Search	(BFS),	Radius	
Estimation	(Radii),	Connected	Components	(CC)

Evaluated	configurations:
• Stride:	Baseline	system	+	a	hardware	stride	prefetcher
• GraphPref:	Specialized	graph	prefetcher
• MetaSys:	Graph	prefetching	using	MetaSys



48

Results

MetaSys improves performance by 11.2% on average

Performs similar to the specialized prefetcher GraphPref
(within 0.2%)



49

Outline
• Background

• Cross-Layer	Techniques
• Infrastructure	for	Evaluating	Cross-Layer	Techniques

• MetaSys
• Overview	
• Components
• Operation
• FPGA	Prototype

• Case	Studies
• Prefetching
•Memory	Safety	and	Protection

• Characterizing	a	General	Metadata	Management	System



50

Memory	Safety
Certain	programming	models	are	vulnerable	to:
• Buffer	overflows	cause	unintentional	memory	modifications
Memory-unsafe: When	there	is	no	bounds	checking	for	pointers

• Software	bounds	checking:	Computationally	expensive
• Hardware	bounds	checking:	Too	specialized
MetaSys allows	bounds	checking	without	additional	hardware

char	buffer[6];

string	copy	(buffer,	“buffer overflow”)

b u f f e r o v e r f l o w



51

Bounds	Checking	with	MetaSys (I)

MAP(Metadata	ID	M,	Array	A);

Array	A =	malloc	(16	KB);

for	(i =	0	;	i <	17	KB ;	i++)

STORE	A[i],	1337;

CREATE(M);

1 Allocate	16	KB	of	memory

2 Loop	exceeds allocated	memory	range

3 Eventually,	will	cause	buffer	overflow

Map	Metadata	ID	M	!=	0	to	Array	A

Execute	a	CREATE	instruction	with	ID	=	M
before	each	STORE

Metadata	
Lookup	Unit

Array	A Out-of-bounds

Bounds	Check	
Unit



52

Bounds	Checking	with	MetaSys (I)

MAP(Metadata	ID	M,	Array	A);

Array	A =	malloc	(16	KB);

for	(i =	0	;	i <	17	KB ;	i++)

STORE	A[i],	1337;

CREATE(M);

1 Allocate	16	KB	of	memory

2 Loop	exceeds allocated	memory	range

3 Eventually,	will	cause	buffer	overflow

Map	Metadata	ID	M	!=	0	to	Array	A

Execute	a	CREATE	instruction	with	ID	=	M
before	each	STORE

Metadata	
Lookup	Unit

Array	A Out-of-bounds

Bounds	Check	
Unit

M
M=



53

Bounds	Checking	with	MetaSys (I)

MAP(Metadata	ID	M,	Array	A);

Array	A =	malloc	(16	KB);

for	(i =	0	;	i <	17	KB ;	i++)

STORE	A[i],	1337;

CREATE(M);

1 Allocate	16	KB	of	memory

2 Loop	exceeds allocated	memory	range

3 Eventually,	will	cause	buffer	overflow

Map	Metadata	ID	M	!=	0	to	Array	A

Execute	a	CREATE	instruction	with	ID	=	M
before	each	STORE

Metadata	
Lookup	Unit

Array	A Out-of-bounds

Bounds	Check	
Unit

0
M!=

Fail	
bounds	
check



54

Bounds	Checking	with	MetaSys (II)
Evaluation	Methodology
• Mapping	granularity of	64	B

• Each	64	B	non-contiguous	memory	location	has	an	ID
• Evaluate	Olden	benchmarks
• Compare	against	a	software	bounds	checker

(I)	MetaSys	bounds	checking	incurs	14%	performance	overhead	on	average
(II)	Performs	better	than	the	software	bounds	checker



55

Return	Address	Protection	with	MetaSys

https://arxiv.org/pdf/2105.08123v2

https://arxiv.org/pdf/2105.08123v2


56

Outline
• Background

• Cross-Layer	Techniques
• Evaluating	Cross-Layer	Techniques

• MetaSys
• Overview	
• Components
• Operation
• FPGA	Prototype

• Case	Studies
• Prefetching
• Memory	Safety	and	Protection

• Characterizing	a	General	Metadata	Management	System



57

Characterizing	MetaSys
Sources	of	system	overhead:

1. Handling	dynamic	metadata
• Communicating	metadata	SW	à HW	at	runtime

2. Metadata	management and	lookups
• Components	retrieve	metadata	IDs

3. Scaling to	multiple	components
• Multiple	components	access	shared	metadata	support

Conduct	detailed characterization	study	
to	understand	the	overheads



58

Methodology
•Multiple	workloads

• Polybench,	Ligra,	and	memory-intensive	
microbenchmarks

• Baseline	MetaSys configuration	(reminder)
• 512	B mapping	granularity
• 128	entry	metadata	mapping cache
• 256	entry	metadata	table
• 64	B metadata

• Stress	the	metadata	management	system
• Perform	metadata	lookups	for	every	memory	access



59

Overhead	of	Accessing	Metadata

Average real	workload	lookup	overhead	is	low:	2.7%	
(~0%	min,	~14%	max)

Low spatial	&	temporal	locality	workloads	have	high	overheads
(Random: 27%)

Miss-only	and	all-access	are	similar	in	performance
(0.05%	difference)



60

Effect	of	Mapping	Granularity
Mapping Granularity

Most	workloads	have	small	performance	overhead	
even at	the	smallestmapping	granularity

Some	workloads	experience	high	overhead
even at	the	largestmapping	granularity



61

Effect	of	Multiple	Clients
Client	0: Lookup	on	all memory	accesses

Client	1: Lookup	on	all	page	table	walk	requests

Average real	workload	overhead	is	0.3%
(over	one	client)

Microbenchmarks	experience	higher	overhead	with	more	clients
In	the	paper:	Investigate	mechanisms	to	alleviate	their	overheads



62

Outline
• Background

• Cross-Layer	Techniques
• Evaluating	Cross-Layer	Techniques

• MetaSys
• Overview	
• Components
• Operation
• FPGA	Prototype

• Case	Studies
• Prefetching
• Memory	Safety	and	Protection

• Characterizing	a	General	Metadata	Management	System



63

More	in	the	Paper

•More	details	on	MetaSys Design
• OS	Support
• Coherence/Consistency	
• Timing	Sensitivity	of	Metadata	Lookups	
• Software	Library	
• Area	overhead	(@	22nm):	0.03	mm2	

• 0.02%	of	an	Intel	Ivy	Bridge	CPU	core

• In-depth	characterization	analysis
• Effects	of	address	translation
• Effects	of	Metadata	Mapping	Cache	size
• Performance	overhead	of	MAP/CREATE	instructions



64

MetaSys Paper
https://dl.acm.org/doi/full/10.1145/3505250

https://dl.acm.org/doi/full/10.1145/3505250


65

Executive	Summary
Motivation: Hardware-software	cooperative	(cross-layer)	techniques	
improve	performance,	quality	of	service,	and	security

Problem: Cross-layer	techniques	are	challenging	to	implement	and	evaluate	in	real	hardware
because	they	require modifications	across	the	stack

Our	Goal is	twofold:
1)	Enable	rapid implementation	and	evaluation	of	cross-layer	techniques	in	real	hardware
2)	Quantify	the	overheads associated	with	a	general	metadata	management	system

Key	Idea:

Develop	a	metadata	management	system	(MetaSys)	with	hardware	and	software	components	
that	are	reusable	across	cross-layer	techniques	to	minimize	programmer	effort	

Prototype: Xilinx	Zedboard prototype	using	RISC-V	Rocket	Chip:

Low	on-chip	storage	(0.2%)	and	memory	storage	(0.2%)	overhead	metadata	management

Evaluation: Graph	prefetching	and	memory	protection	case	studies,
extensive	overhead	characterization
• MetaSys-based	graph	prefetcher	performs	similar	to	state-of-the-art	specialized	prefetcher
• Low-overhead bounds-checking	(14%)	and	return	address	protection	(1.2%)
• Single general	metadata	management	system	scales	well



66

MetaSys is	Open	Source	
https://github.com/CMU-SAFARI/MetaSys

Link	to	Source	Code

https://github.com/CMU-SAFARI/MetaSys


67

Updated	Version	on	ArXiv
https://arxiv.org/abs/2111.00082

https://arxiv.org/abs/2111.00082


MetaSys
A	Practical	Open-source	Metadata	Management	System	
to	Implement	and	Evaluate	Cross-layer	Optimizations

Nandita	Vijaykumar,	Ataberk	Olgun,	Konstantinos	Kanellopoulos,	
F.	Nisa Bostancı,	Hasan	Hassan,	Mehrshad Lotfi,	Phillip	B.	Gibbons,	Onur Mutlu



Backup Slides



70

OS	Support
Support	for:
1) managing	MMT	in	physical	address	space
2) flushing	PMTs	on	context	switch
3) updating	MMT	tags	and	invalidating	MMC	

on	page	swaps
4) trap	into	OS	to	perform	checks	

(e.g.,	on	bounds	check	failure)



71

Coherence/Consistency
• Private	metadata	tables	of	private	components	(e.g.,	L1	cache)	are	not	coherent
• Private	metadata	tables	of	shared	components	are	coherent	automatically

- Updates	in	PMTs	due	to	CREATEs	are	visible	to	all	threads	immediately
- Guaranteeing	consistency	requires	use	of	barriers	and	fences

• Metadata	mapping	table	shared	across	threads	of	the	same	process
- Point	of	coherence	is	the	mapping	table,	on	a	MAP,	MMC	entries	in	other	cores	are	invalidated	
- Consistency	still	requires	barriers	and	fences



72

Timing	Sensitivity	of	Metadata
3	modes	on	how	to	handle	a	lookup:
• Force	stall:Memory	instruction	that	triggered	a	lookup	cannot	
commit	until	the	optimization	is	complete
- Security	use	cases

• No	stall:Metadata	lookups	never	stall	the	core,	but	they	are	
always	resolved
- E.g.,	in	page	placement,	cache	replacement

• Best	effort:	Lookups	may	be	dropped	before	they	complete
- E.g.,	prefetcher	training



73

Software	Library



74

MetaSys	vs	XMem
Key	difference:
• The	whole	system	is	open-sourced

Differences	in	interfaces:



75

Existing	Cross-Layer	Infrastructure

PARD: Enable	quality-of-service	techniques
• Tag	programs	with	an	ID
• Propagate	program	ID	with	memory	requests
• Hardware	enforces	QoS	requirements	on	memory	requests

Cheri:	Fine-grained	memory	protection
• Capability	registers	replace	address	operands
• Tag	capabilities	with	an	ID
• Propagate	capability	IDs	with	memory	requests
• Hardware	enforces	bounds	checking,	pointer	integrity,	etc.

[Huang+, CARRV’17] [Woodruf+, ISCA’14]



76

MetaSys:	Return	Address	Protection

1) Map	return	addresses	to	metadata	id	1
2) Return	address	protection	client	performs
metadata	lookup	on	every	store

3) If	a	store	modifies	a	non-zero	metadata	
tag,
cause	exception

1.2% average performance overhead
(in contrast to software canary’s 5.5%)



77

Additional	Memory	Accesses



78

Metadata	Mapping	Cache	Hit	Rate



79

Effect	of	Metadata	Mapping	Cache	Size



80

Tagging	Granularity	vs	TLB	Misses



81

Effect	of	Address	Translation



82

Alleviating	Metadata	Mapping	Cache	Contention



83

MAP/CREATE	Instruction	Overhead



This	work	introduces	MetaSys:
1)	A	general	metadata	management	system

2)	Various	hardware	and	software	components
in	a	real	prototype to	minimize	developer	effort

[Vijaykumar+,	ISCA’18b]


