MetaSys

A Practical Open-source Metadata Management System
to Implement and Evaluate Cross-layer Optimizations

Nandita Vijaykumar, Ataberk Olgun, Konstantinos Kanellopoulos,
F. Nisa Bostanci, Hasan Hassan, Mehrshad Lotfi, Phillip B. Gibbons, Onur Mutlu

SAFARI

Carnegie . UNIVERSITY OF
ETH: . el ¥ TORONTO

University

Executive Summary

Motivation: Hardware-software cooperative (cross-layer) techniques
improve performance, quality of service, and security

Problem: Cross-layer techniques are challenging to implement and evaluate in real hardware
because they require modifications across the stack

Our Goal is twofold:
1) Enable rapid implementation and evaluation of cross-layer techniques in real hardware
2) Quantify the overheads associated with a general metadata management system

Key Idea:

Develop a metadata management system (MetaSys) with hardware and software components
that are reusable across cross-layer techniques to minimize programmer effort

Prototype: Xilinx Zedboard prototype using RISC-V Rocket Chip:

Low on-chip storage (0.2%) and memory storage (0.2%) overhead metadata management

Evaluation: Graph prefetching and memory protection case studies,
extensive overhead characterization

* MetaSys-based graph prefetcher performs similar to state-of-the-art specialized prefetcher
* Low-overhead bounds-checking (14%) and return address protection (1.2%)
e Single general metadata management system scales well

SAFARI MetaSys Source Code: https://github.com/CMU-SAFARI/MetaSys 1

https://github.com/CMU-SAFARI/MetaSys

* Background
e Cross-Layer Techniques
e Evaluating Cross-Layer Techniques

* MetaSys
e Overview
e Components
e Operation
e FPGA Prototype

* Case Studies
e Prefetching
e Memory Safety and Protection

* Characterizing a General Metadata Management System

SAFARI 2

Hardware Performance Optimizations

Today

Optimize for performance by designing hardware
that infers and predicts program behavior

Caches

Memory
d’l‘efe“hersn: Controllers
(| =
ClE -

0ooo

&

SAFARI 3

Cross-Layer Techniques

Future: Cross-Layer

Software can provide information (metadata) that the
hardware is trying to infer

Data Structures Access Patterns Type/Layout

Software & * ‘
Hardware =h
20 0fF =

SAFARI 4

Example: Locality Descriptor (I)

Locality Descriptor [Vijaykumar+, ISCA'18a]
1. Express data locality (from software)

2. Exploit data locality (in hardware) in GPUs
The programmer or the compiler

describes key semantics

using a software interface

cudaMalloc (sm mappings, size);
LocalityDescriptor ldesq(sm mappings,||size, INTER-THREAD, tile,

Data Structure Metadata

SAFARI [Vijaykumar+, ISCA’18a] 5

Example: Locality Descriptor (1I)

INTER_THREAD Locality
I Type?
INTRA_THREAD

NO_REUSE

Hardware optimizations

leverage key program semantics
to improve performance significantly (e.g., >50%)

SAFARI [Vijaykumar+, ISCA’18a] 6

Benetfits of Cross-Layer Techniques

* Performance optimizations Example prior work
[Vijaykumar+, ISCA’18a]
[Vijaykumar+, ISCA’18b]
* Quality of service improvements [Koo+, ISCA’17]
[Yu+, CARVV’17]
[Mukkara+, ASPLOS’16]
[Ma+, ASPLOS’'15]

aiemp.eH

* Security enhancements

* Better programmability

941eM)jOS

* Better portability

Hardware

I Cross-Layer Interface I

Software

SAFARI 7

Cross-Layer Evaluation Infrastructure

Evaluating cross-layer techniques is non-trivial

Cycle-accurate

FPGA prototypes
simulators P yp

Need a new infrastructure to evaluate a new cross-layer technique

* Difficult given complexity (changes across the stack)

SAFARI 8

General Metadata Management System

A single general system can support multiple techniques

Appllcatlon Expressmn

Interface to
0 Application

Expressive
Q [Summarize + Convey + Save] >— Memory
Interface to €) XMem
System/Architecture
ystem/, re)
oS Optimization
Memory DRAM
Prefetcher Caches Controller Cache

Key Benefit: Amortize the cost to implement
each new technique

SAFARI [Vijaykumar+, ISCA’18b] 9

* MetaSys
e Overview
e Components
e Operation
e FPGA Prototype

* Case Studies
e Prefetching
e Memory Safety and Protection

* Characterizing a General Metadata Management System

SAFARI 10

MetaSys: Overview

GGoal: Enable rapid implementation and evaluation
of cross-layer techniques in real hardware

MetaSys: Open-source infrastructure
to evaluate cross-layer techniques end-to-end

=] CMU-SAFARI [MetaSys | public L\ Notifications % Fork 3 W Star 3 -

<> Code (® Issues 1% Pullrequests (» Actions [Projects () Security |~ Insights

¥ main ~ Go to file About

Metasys is the first open-source

olgunataberk Update README.md ... onJul 9, 2021 12 FPGA-based infrastructure with a
prototype in a RISC-V core, to
8 common Initial commit last year enable the rapid implementation
B riscv-tools Add tools directory last year and evaluation of a wide range of
cross-layer software/hardware
I rocket-chip Initial commit last year cooperative technigues techniques
- - X in real hardware. Described in our
0 testchipip Initial commit last year .
pre-print:
Im zedboard Initial commit last year https://arxiv.org/abs/2105.08123
[LICENSE Initial commit last year 0 Readme
[y README.md Update README.md last year &8 View license
¢ 3stars
D metasys_rea... Update metasys_readme.md last year
® 4 watching
% 3 forks
‘= README.md

SAFARI MetaSys Source Code: https://github.com/CMU-SAFARI/MetaSys

11

https://github.com/CMU-SAFARI/MetaSys

MetaSys: Components

Tagged memory-based metadata management

Efficient metadata querying in hardware

SAFARI 12

MetaSys: Tagged Memory (I}

Tag memory addresses with metadata [Ds

Optimization Metadata
-
Client ID

Metadata

CJE

D D:c
ClE
CJE

Is <address> = Metadata Store

?
accessed frequently? YES

SAFARI 13

MetaSys: Tagged Memory (II)

Processor

Core Main Memory

TLB

SAFARI 14

MetaSys: Tagged Memory (II)
Processor

Main Memory

Core

Metadata

Mapping
Table

TLB

Pointer '

Metadata
Mapping
Table

mmmmmda Metadata ID

SAFARI T

MetaSys: Tagged Memory (II)
Processor

Main Memory

Core

Metadata

Mapping
Table

Mapping Granularity

TLB
64 B 64 B

Pointer '

Metadata
Mapping
Table

mmmmmda Metadata ID

SAFARI »

MetaSys: Tagged Memory (II)

Processor
MetaSys Mapping .
Core s tructiyo s Management Unit Main Memory
Metadata
Mapping
Table

TLB Access & Manipulate
Metadata Table

SAFARI 17

MetaSys: Tagged Memory (II)

Processor
MetaSys Mapping Main Memor
: y
Core Tnstructions Management Unit
Metadata
] Mapping
Retrieve Me ID
TLB Metadata _ _
ID
Address
Translation
Metadata
Lookup Unit

SAFARI 18

MetaSys: Tagged Memory (II)

Processor
MetaSys Mapping Mai
: ain Memory
Core Tnstructions Management Unit
Metadata
] Mapping
Retrieve Table
TLB Metadata
ID
Address
Translation
]\IIAJ-..,]..J-.‘
Lo Metdata ID e

SAFARI 19

MetaSys: Tagged Memory (II)

Processor
MetaSys Mapping Mai
: ain Memory
Core Tnstructions Management Unit
Metadata
p— Metadata Mapping
: Mapping Tahla
TLB Metadata Cache Bl Metadata ID
ID
Address
Translation
Metadata
Lookup Unit

SAFARI 20

MetaSys: Tagged Memory (II)

Processor
MetaSys Mapping Main Memor
: y
Core Tnstructions Management Unit
Metadata
p— Metadata Mapping
Retrieve Metadata ID Table
TLB Metadata S
ID
Address
Translation
Metadata
Lookup Unit

SAFARI 21

MetaSys: Tagged Memory (II)

Processor

MetaSys

Core

Retrieve
TLB Metadata
ID

Address
Translation

Instructions

Metadata
Lookup Unit

Mapping
Management Unit

Metadata
Mapping
Cache

Optimization

Main Memory

Metadata

Mapping
Table

Map metadata IDs

to metadata

Client

(Metadata ID) Metadata

Metadata
Table

SAFARI

Table

_>| Metadata

22

MetaSys: Tagged Memory (II)

Processor
Mapping -
Core Management Unit Main Memory
Metadata
Metadata Mapping
Mapping Table
TLB Cache
Initialize
et Optimization
metadata Client
Metadata ——— Metadata
Lookup Unit Table

Retrieve metadata IDs

SAFARI 23

MetaSys: Components

Tagged memory-based metadata management
Efficient metadata querying in hardware

Rich cross-layer interface
Communicate metadata from SW to HW

SAFARI 24

MetaSys: Cross-Layer Interface

Processor
MetaSys Mapping
Core Instructions Management Unit
Metadata -
Mapping
Cache

SAFARI 25

MetaSys: Cross-Layer Interface

MetaSys Operator MetaSys ISA Instructions

CREATE CREATEClientID, TagID, Metadata

(UN)MAP TaglID, start_addr, size

(UN)MAP (UN)YMAP2D TagID, start_addr, lenX, sizeX, sizeY
g
(UN)MAP3D TaglD, start_addr, lenX, lenY, sizeX,
sizeY, sizeZ;
Mapping .
Management Unit Main Memory
Metadata Metadata
Mappng |~ Mapping
Table
Optimization
Client
_____+ Metadata
Table
SAFARI

26

MetaSys: Cross-Layer Interface

MetaSys Operator MetaSys ISA Instructions

CREATE CREATEClientID, TagID, Metadata

(UN)MAP TaglID, start_addr, size
(UN)MAP (UN)MAP2D TaglID, start_addr, lenX, sizeX, sizeY

(UN)MAP3D TaglID, start_addr, lenX, lenY, sizeX,
sizeY, sizeZ;

RESEARCH-ARTICLE ~ OPEN ACCESS

¥ in& f
MetaSys: A Practical Open-source Metadata
Management System to Implement and
Evaluate Cross-layer Optimizations

Authors: Nandita Vijaykumar, Ataberk Olgun,

Konstantinos Kanellopoulos,

F. Nisa Bostanci, Hasan Hassan, Mehrshad Lotfi, @ Phillip B. Gibbons, + 1
Authors Info & Claims

ACM Transactions on Architecture and Code Optimization, Volume 19, Issue 2 ¢ June 2022
SAFARI « Article No.: 26, pp 1-29 « https://doi.org/10.1145/3505250

27

MetaSys: Components

c Tagged memory-based metadata management

Efficient metadata querying in hardware
Rich cross-layer interface
Communicate metadata from SW to HW

Flexible hardware and software modules
Facilitate implementing new HW optimizations

SAFARI

MetaSys: Hardware Modules (I)

Processor

Core

TLB

Metadata
Lookup Unit

Mapping
Management Unit

Metadata
Mapping
Cache

Optimization
Client

— Metadata

Table

Main Memory

Metadata

Mapping
Table

SAFARI

Caches
Prefetchers

Bounds Checker
Memory Controller

29

MetaSys: Hardware Modules (II)

Processor
Mapping :
Core Management Unit Main Memory
Metadata
—— B Metadata Mapping
commonly used across Mapping Table
cross-layer techniques Cache
Optimization
Client
Metadata —— Metadata
Lookup Unit Table

SAFARI 30

MetaSys: Software Modules

Processor
Operating System Bing .
MetaSys Library Metadata
Metadata Mapping
Mapping Table
TLB Cache
Optimization
Client
Metadata — Metadata
Lookup Unit Table

SAFARI 31

* MetaSys

e Operation
e FPGA Prototype

* Case Studies
e Prefetching
e Memory Safety and Protection

* Characterizing a General Metadata Management System

SAFARI 32

MetaSys: Operation (MAP)

g Map metadata ID MAP Metadata ID] Start Address Size
(to memory location) iagildelo] “0” “0” “1 Unit”
Main Memory
Mapping Metadata
Core Management — Mapping
Unit Table

SAFARI 33

MetaSys: Operation (CREATE)

g Associate metadata

CREATE ClientID JMetadatalDJ] Metadata
Instruction “Cache” “0” “Hot”

(with metadata ID)
Main Memory
Mapping Metadata
Core Management — Mapping
Unit Table
Prefetcher Cache
Metadata Metadata
Table Table

SAFARI 34

MetaSys: Operation (CREATE)

g Associate metadata

(with metadata ID)
Met: Metadata Main Memory
“Hot” Metadata
Core Management — Mapping
Unit Table

Prefetcher Cache
Metadata Metadata
Table Table

SAFARI 35

MetaSys: Operation (LOOKUP)

6 Lookup metadata
(with address)

Main Memory

Mapping Metadata
Core Management — Mapping
Unit Table

Should I evict my cached word

at address 0?

Prefetcher Cache
Metadata Metadata
Table Table

SAFARI 36

MetaSys: Operation (LOOKUP)

6 Lookup metadata a Check metadata table

(with address) (with metadata id)
Main Memory
Mapping Metadata
Core Management — Mapping
l]} Metadata ID Table

It is used frequently (hot)
| I will not evict address 0

. Metadata
| “Hot"

Prefetcher Cache

Metadata Metadata

“0"

SAFARI 37

* MetaSys

e FPGA Prototype

* Case Studies
e Prefetching
e Memory Safety and Protection

* Characterizing a General Metadata Management System

SAFARI 38

FPGA Prototype (I)

Cycle-accurate simulators

FPGA prototypes

\\\\\\

""""

1. Accurately evaluate feasibility of the metadata management system
« Implement all components (e.g., ports, wires, buffers)

2. Quickly run experiments
« Run workloads fast compared to simulation

3. Develop RTL as a basis for future work
« E.g., accurately measure area and power using synthesis tools

SAFARI 39

FPGA Prototype (II)

Zedboard Zynq
FPGA board

DDR4 Chips

Metadata
Mapping
Table

SAFARI

RISC-V Rocket Chip

In-order
Rocket
Core

TLB

Metadata
Lookup Unit

Mapping Management
Unit

Metadata
Mapping
Cache

Optimization
Client

Metadata
Table

40

MetaSys is Open Source

https://qgithub.com/CMU-SAFARI/MetaSys

& CMU-SAFARI [MetaSys ' Public £\ Notifications % Fork 3 ¢ Star 3 v

<> Code () Issues 19 Pullrequests () Actions [Projects @ Security [~ Insights Link tO SOL[I"C@ COde

¥ main ~ Go to file About

Metasys is the first open-source

olgunataberk Update README.md ... onJul 9, 2021 12 FPGA-based infrastructure with a
prototype in a RISC-V core, to
M common Initial commit last year enable the rapid implementation
fm riscv-tools Add tools directory last year and evaluation of a wide ranga of
cross-layer software/hardware
B rocket-chip Initial commit last year cooperative techniques techniques
in real hardware. Described in our
B testchipip Initial commit last year i
pre-print:
» zedboard Initial commit last year https://arxiv.org/abs/2105.08123
LICENSE Initial commit last year 0 Readme
0O
[README.md Update README.md last year &8 View license
¥¢ 3stars
[metasys_rea... Update metasys_readme.md last year .
& 4 watching
% 3 forks
:= README.md

SAFARI 41

https://github.com/CMU-SAFARI/MetaSys

* Case Studies
e Prefetching
e Memory Safety and Protection

* Characterizing a General Metadata Management System

SAFARI 42

Cross-Layer Prefetching Techniques

Handle challenging access patterns

* Graph processing

* Pointer chasing @ o
NZ (NY)
. (0,1,1)
» Linear algebra P s @ v
® o
[J :\:)Yl(r;c))de) . I \
Example Prior Work | _~ @ i

[Ainsworth+, [CS*16]
[Talati+, HPCA'21] (000

Case Study #1
New cross-layer prefetching technique for graph applications

* Leverage graph data structure semantics
e Instead of relying on program context or memory access history

SAFARI 43

Graph Representation

Compressed sparse row (CSR) format

WorkList Q11121314

OffsetsList |0 | 0|2 |31|41|7

EdgesList [3|44]|10]|2|3|4

Properties

SAFARI 44

Traversing the Graph

WorkList |0|1|12|31]4 Two types of indirection:
OffsetsList |01 02 |3|4]7 ﬂ Using a single value
\
—, ' — @ Using a range of values
EdgesList [31414 |10]|2|3|4

Properties Metadata required for prefetching:
* Type of indirection

 Base address of the next list

e Size of elements in both lists

SAFARI 45

Graph Prefetching Using MetaSys

Initialize metadata

Q Map metadata IDs to work, offset, and edges lists

CREATE metadata to express the characteristics
@ {type, base, base_next, size, size_next}
of edch list |

Prefetch

g Load/store instruct\n triggers
metadata lookup in pNefetcher

find what the application will access nex! using ietadata

Example
Edges List in4 0j2/3/4 base_p¥operties +

Properties . (size_properties *)
SAFARI 46

Evaluation Methodology

CPU 25 MHz, in-order Rocket core
TLB 16 entry data TLB, LRU policy
L1 D&I$ 16 KiB, 4-way, 4 cycle, 64 B cache line, LRU, 2 MSHRs
DRAM DDR3 1066 MT/s
Metadata Cache NMRU policy, 128 entries, 38 bits/entry, 512 B granularity
Metadata Table 256 entries, 64 B entry

Workloads from the Ligra benchmark (graph applications):

» PageRank (PR), Shortest Path (SSSP), Collaborative Filtering (CF),
Teenage Follower (TF), Triangle Counting (TC), Breadth-First Search (BFS), Radius
Estimation (Radii), Connected Components (CC)

Evaluated configurations:

* Stride: Baseline system + a hardware stride prefetcher
* GraphPref: Specialized graph prefetcher

* MetaSys: Graph prefetching using MetaSys

SAFARI 47

1.2 [Stride [1 GraphPref [MetaSys —
Q
-
O
v 1.0 == -- - == - N -1-- ==
v
Q
n

008 I | I | | | I | |

PR SSSP TF CF TC Radii BFS CcC AVG

MetaSys improves performance by 11.2% on average

Performs similar to the specialized prefetcher GraphPref
(within 0.2%)

SAFARI 48

e Case Studies

e Memory Safety and Protection
* Characterizing a General Metadata Management System

SAFARI 49

Memory Safety

Certain programming models are vulnerable to:

* Buffer overflows cause unintentional memory modifications

Memory-unsafe: When there is no bounds checking for pointers
char buffer|6];

T

string copy (buffer, “buffer overflow”)

olvie|r|(f|l|o|w

 Software bounds checking: Computationally expensive
* Hardware bounds checking: Too specialized

MetaSys allows bounds checking without additional hardware

SAFARI 50

Bounds Checking with MetaSys (I)

Array A = malloc (16 KB); G Allocate 16 KB of memory
MAP(Metadata ID M, Array A); Map Metadata ID M != 0 to Array A
for(i=0;i<17 KB;i++) g Loop exceeds allocated memory range
_ Execute a CREATE instruction withID =M
CREATE(M); before each STORE
STORE A[i], 1337; g Eventually, will cause buffer overflow
Metadata , Bounds Check
Lookup Unit Unit

Array A Out-of-bounds

SAFARI 51

Bounds Checking with MetaSys (I)

Array A = malloc (16 KB); G Allocate 16 KB of memory
MAP(Metadata ID M, Array A); Map Metadata ID M != 0 to Array A
for(i=0;i<17 KB;i++) g Loop exceeds allocated memory range
CREATE(M): I Execute a CREATE instruction with ID = M
i before each STORE
STORE A[i], 1337 ;‘ g Eventually, will cause buffer overflow

- @D

Metadata < > Bounds Check
Lookup Unit Unit

Array A Out-of-bounds

SAFARI 52

Bounds Checking with MetaSys (I)

Array A = malloc (16 KB);
MAP(Metadata ID M, Array A);
for(i=0;i<17 KB; i++)
CREATE(M); I

STORE A[i], 1337;‘

Metadata
Lookup Unit

G Allocate 16 KB of memory
Map Metadata ID M != 0 to Array A

Loop exceeds allocated memory range
Execute a CREATE instruction withID =M
before each STORE
g Eventually, will cause buffer overflow

- @D

> Bounds Check

Fail

bounds
check

Unit

Out-of-bounds

SAFARI

53

Bounds Checking with MetaSys (II)

Evaluation Methodology
* Mapping granularity of 64 B

e Each 64 B non-contiguous memory location has an ID
 Evaluate Olden benchmarks
* Compare against a software bounds checker

o 2
- £
¥ -|
s S B g o
€ = O SW Bounds Check @ MetaSys Bounds Check
2 8 0 | | — | I — | | — | | —| | | —| | —
o Bisort EM3D Health MST Perimeter Power Treeadd TSP

(I) MetaSys bounds checking incurs 14% performance overhead on average

(II) Performs better than the software bounds checker

SAFARI 54

Return Address Protection with MetaSys

https://arxiv.orqg/pdf/2105.08123v2

MetaSys: A Practical Open-Source Metadata Management System to

Implement and Evaluate Cross-Layer Optimizations

NANDITA VIJAYKUMAR, University of Toronto, Canada

ATABERK OLGUN, ETH Zurich, TOBB ETU, Turkey

KONSTANTINOS KANELLOPOULOS, ETH Zurich, Switzerland

F. NISA BOSTANCI, ETH Zurich, TOBB ETU, Turkey

HASAN HASSAN, ETH Zurich, Switzerland

MEHRSHAD LOTFI, Max Plank Institute, Germany

PHILLIP B. GIBBONS, Carnegie Mellon University, USA

ONUR MUTLU, ETH Zurich, Switzerland

This paper introduces the first open-source FPGA-based infrastructure, MetaSys, with a prototype in a RISC-V system, to enable the
rapid implementation and evaluation of a wide range of cross-layer techniques in real hardware. Hardware-software cooperative
techniques are powerful approaches to improving the performance, quality of service, and security of general-purpose processors.

They are however typically challenging to rapidly implement and evaluate in real hardware as they require full-stack changes to the

hardware, system software, and instruction-set architecture (ISA).

SAFARI 55

https://arxiv.org/pdf/2105.08123v2

* Characterizing a General Metadata Management System

SAFARI 56

Characterizing MetaSys

Sources of system overhead:

1. Handling dynamic metadata
e Communicating metadata SW - HW at runtime

2. Metadata management and lookups
e Components retrieve metadata IDs

3. Scaling to multiple components
e Multiple components access shared metadata support

Conduct detailed characterization study
to understand the overheads

SAFARI 57

Methodology

- Multiple workloads

« Polybench, Ligra, and memory-intensive
microbenchmarks

- Baseline MetaSys configuration (reminder)
- 512 B mapping granularity
» 128 entry metadata mapping cache
» 256 entry metadata table
- 64 B metadata

- Stress the metadata management system
e Perform metadata lookups for every memory access

SAFARI 58

Overhead of Accessing Metadata

Q
- £
=
T 5
=
2§
ZX

w

Polybench

Average real workload lookup overhead is low: 2.7%
(~0% min, ~14% max)

Low spatial & temporal locality workloads have high overheads
(Random: 27%)

Miss-only and all-access are similar in performance

(0.05% difference)
SAFARI 59

Effect of Mapping Granularity

Mapping Granularity
o 13 H64 E128 W256 512 [J1024 [J2048 MW 4096
£
= 1.2
§ 11
5 .]
[1- | |
] : \
& 0.9 : , 1.
X ¥ ¥9 2T EQ Q3L g E g
« S A 2 @© &8 =& s 5 =2 0 <
2 s 5 "“ & 8 8 = 3
a & 2 8 8 ?
Ligra Polybench

Most workloads have small performance overhead
even at the smallest mapping granularity

Some workloads experience high overhead
even at the largest mapping granularity

SAFARI 60

Effect of Multiple Clients

Client 0: Lookup on all memory accesses
Client 1: Lookup on all page table walk requests

1.3
“E’ B One Client O Two Clients
T £1.2
Q '_ -
N
= c
(] o 1-1
T i lm“mulﬂl
O O B
3 L nifwlre
x
w 0-9 77
8L EEHREELSEFTEDS 2
e @ OB £ 78423588
w o S kK o 8 8
a a 2 8 8
Ligra Polybench pbenchmarks

Average real workload overhead is 0.3%
(over one client)

Microbenchmarks experience higher overhead with more clients
In the paper: Investigate mechanisms to alleviate their overheads

SAFARI 61

SAFARI 62

More in the Paper

- More details on MetaSys Design
e OS Support
« Coherence/Consistency
« Timing Sensitivity of Metadata Lookups
 Software Library

» Area overhead (@ 22nm): 0.03 mm?
« 0.02% of an Intel Ivy Bridge CPU core

- In-depth characterization analysis

o Effects of address translation
o Effects of Metadata Mapping Cache size
e Performance overhead of MAP/CREATE instructions

SAFARI 63

MetaSys Paper

https://dl.acm.orq/doi/full/10.1145/3505250

MetaSys: A Practical Open-source Metadata Management
System to Implement and Evaluate Cross-layer Optimizations

Authors: Nandita Vijaykumar, Ataberk Olgun, Konstantinos Kanellopoulos, F. Nisa Bostanci, Hasan Hassan,

Mehrshad Lotfi, 0 Phillip B. Gibbons, Onur Mutlu Authors Info & Claims

ACM Transactions on Architecture and Code Optimization, Volume 19, Issue 2 « June 2022 « Article No.: 26, pp 1—
29 « https://doi.org/10.1145/3505250

Published: 24 March 2022 Publication History M) Check for updates

99 0 A~ 800 '} LI © View all Formats

I Abstract

This article introduces the first open-source FPGA-based infrastructure, MetaSys, with a prototype in a
RISC-V system, to enable the rapid implementation and evaluation of a wide range of cross-layer
techniques in real hardware. Hardware-software cooperative techniques are powerful approaches to
improving the performance, quality of service, and security of general-purpose processors. They are,
however, typically challenging to rapidly implement and evaluate in real hardware as they require full-

stack changes to the hardware, system software, and instruction-set architecture (ISA).

SAFARI 64

https://dl.acm.org/doi/full/10.1145/3505250

Executive Summary

Motivation: Hardware-software cooperative (cross-layer) techniques
improve performance, quality of service, and security

Problem: Cross-layer techniques are challenging to implement and evaluate in real hardware
because they require modifications across the stack

Our Goal is twofold:
1) Enable rapid implementation and evaluation of cross-layer techniques in real hardware
2) Quantify the overheads associated with a general metadata management system

Key Idea:

Develop a metadata management system (MetaSys) with hardware and software components
that are reusable across cross-layer techniques to minimize programmer effort

Prototype: Xilinx Zedboard prototype using RISC-V Rocket Chip:

Low on-chip storage (0.2%) and memory storage (0.2%) overhead metadata management

Evaluation: Graph prefetching and memory protection case studies,
extensive overhead characterization

* MetaSys-based graph prefetcher performs similar to state-of-the-art specialized prefetcher
* Low-overhead bounds-checking (14%) and return address protection (1.2%)
e Single general metadata management system scales well

SAFARI 65

MetaSys is Open Source

https://qgithub.com/CMU-SAFARI/MetaSys

& CMU-SAFARI [MetaSys ' Public £\ Notifications % Fork 3 ¢ Star 3 v

<> Code () Issues 19 Pullrequests () Actions [Projects @ Security [~ Insights Link tO SOL[I"C@ COde

¥ main ~ Go to file About

Metasys is the first open-source

olgunataberk Update README.md ... onJul 9, 2021 12 FPGA-based infrastructure with a
prototype in a RISC-V core, to
M common Initial commit last year enable the rapid implementation
fm riscv-tools Add tools directory last year and evaluation of a wide ranga of
cross-layer software/hardware
B rocket-chip Initial commit last year cooperative techniques techniques
in real hardware. Described in our
B testchipip Initial commit last year i
pre-print:
» zedboard Initial commit last year https://arxiv.org/abs/2105.08123
LICENSE Initial commit last year 0 Readme
0O
[README.md Update README.md last year &8 View license
¥¢ 3stars
[metasys_rea... Update metasys_readme.md last year .
& 4 watching
% 3 forks
:= README.md

SAFARI 66

https://github.com/CMU-SAFARI/MetaSys

Updated Version on ArXiv
https://arxiv.org/abs/2111.00082

yx Search... All fields Al Search
= I' ,\lV > ¢s > arXiv:2105.08123 YR e
Computer Science > Hardware Architecture
- Download:
[Submitted on 17 May 2021 (v1), last revised 2 Jan 2022 (this version, v3)] e PDF
MetaSys: A Practical Open-Source Metadata Management System to » Other formats
Implement and Evaluate Cross-Layer Optimizations
Current browse context:
Nandita Vijaykumar, Ataberk Olgun, Konstantinos Kanellopoulos, Nisa Bostanci, Hasan Hassan, Mehrshad Lotfi, ‘t’:':e | next>
v
Phillip B. Gibbons, Onur Mutlu new | recent | 2105
This paper introduces the first open-source FPGA-based infrastructure, MetaSys, with a prototype in a RISC-V core, to Sshange to browse by:
enable the rapid implementation and evaluation of a wide range of cross-layer techniques in real hardware. Hardware-
software cooperative techniques are powerful approaches to improve the performance, quality of service, and security of References & Citations
general-purpose processors. They are however typically challenging to rapidly implement and evaluate in real hardware as « NASA ADS

* Google Scholar

they require full-stack changes to the hardware, OS, system software, and instruction-set architecture (ISA). :
+ Semantic Scholar

MetaSys implements a rich hardware-software interface and lightweight metadata support that can be used as a common

basis to rapidly implement and evaluate new cross-layer techniques. We demonstrate MetaSys's versatility and ease-of-use DBLP - CS Bibliography
by implementing and evaluating three cross-layer techniques for: (i) prefetching for graph analytics; (ii) bounds checking in listing | bibtex
memory unsafe languages, and (iii) return address protection in stack frames; each technique only requiring ~100 lines of Nandita Vijaykumar
Chisel code over MetaSys. Hasan Hassan

. Y . . i i . Mehrshad Lotfi
Using MetaSys, we perform the first detailed experimental study to quantify the performance overheads of using a single Phillip B. Gibbons
metadata management system to enable multiple cross-layer optimizations in CPUs. We identify the key sources of Onur Mutlu
bottlenecks and system inefficiency of a general metadata management system. We design MetaSys to minimize these Export Bibtex Citation

inefficiencies and provide increased versatility compared to previously-proposed metadata systems. Using three use cases
and a detailed characterization, we demonstrate that a common metadata management system can be used to efficiently

support diverse cross-layer techniques in CPUs.

Bookmark

SAFARI 67

https://arxiv.org/abs/2111.00082

MetaSys

A Practical Open-source Metadata Management System
to Implement and Evaluate Cross-layer Optimizations

Nandita Vijaykumar, Ataberk Olgun, Konstantinos Kanellopoulos,
F. Nisa Bostanci, Hasan Hassan, Mehrshad Lotfi, Phillip B. Gibbons, Onur Mutlu

SAFARI

Carnegie . UNIVERSITY OF
ETH: . el ¥ TORONTO

University

Backup Slides

OS Support

Support for:
1) managing MMT in physical address space
2) flushing PMTs on context switch

3) updating MMT tags and invalidating MMC
on page swaps

4) trap into OS to perform checks
(e.g., on bounds check failure)

SAFARI 70

Coherence/Consistency

* Private metadata tables of private components (e.g., L1 cache) are not coherent

* Private metadata tables of shared components are coherent automatically
- Updates in PMTs due to CREATESs are visible to all threads immediately
- Guaranteeing consistency requires use of barriers and fences

* Metadata mapping table shared across threads of the same process
- Point of coherence is the mapping table, on a MAP, MMC entries in other cores are invalidated

- Consistency still requires barriers and fences

SAFARI 71

Timing Sensitivity of Metadata

3 modes on how to handle a lookup:

* Force stall: Memory instruction that triggered a lookup cannot
commit until the optimization is complete
- Security use cases

* No stall: Metadata lookups never stall the core, but they are

always resolved
- E.g., in page placement, cache replacement

* Best effort: Lookups may be dropped before they complete
- E.g., prefetcher training

SAFARI 72

Software Library

Table 2. The MetaSys software library function calls.

Library Function Call

Description

CREATE(ClientID, TagID, *meta)

ClientID -> PMT[TagID] = *metadata

MAP(start*, end”, TagID)

MMT [start...end] = TagID

UNMAP(start*, end”)

MMT |start...end] = 0

SAFARI

73

MetaSys vs XMem

Key difference:
* The whole system is open-sourced

Differences in interfaces:

Table 3. Comparison between MetaSys and XMem interfaces.

Operator XMem [164] MetaSys
CREATE Compiler pragma to communicate static metadata at program load Selects a hardware optimization, dynamically associates metadata with an ID, and
time. communicates both to hardware at runtime (implemented as a new instruction).

Associate memory ranges with tag IDs (implemented as new instruc-

(UNYMAP tions).

Same semantics and implementation as XMem.

Enable/disable optimizations associated with a tag ID (implemented

(DE)ACTIVATE as new instructions).

Does not exist as the same functionality can now be done with CREATE.

SAFARI 74

Existing Cross-Layer Infrastructure

PARD: Enable quality-of-service techniques
* Tag programs with an ID
* Propagate program ID with memory requests

« Hardware enforces QoS requirements on memory requests

Cheri: Fine-grained memory protection

 Capability registers replace address operands
* Tag capabilities with an ID
* Propagate capability IDs with memory requests

* Hardware enforces bounds checking, pointer integrity, etc.

SAFARI [Huang+, CARRV’17] [Woodruf+, ISCA’14] 75

MetaSys: Return Address Protection

1) Map return addresses to metadata id 1

2) Return address protection client performs
metadata lookup on every store

3) If a store modifies a non-zero metadata

1

Bisort EM3D Health MST Perimeter Power Treeadd TSP AVG

=
N
(&

) [== o
I O Software Canary @ MetaSys J I
0.75 S 5 S S I

Normalized
Execution Time

1.2% average performance overhead

(in contrast to software canary’s 5.5%)

SAFARI 76

Additional Memory Accesses

8 2-5 [B Miss-Only O All-Access
'U
s <
;; Iﬂlﬂlﬂlﬂlﬂlﬂlﬂlﬂlﬂlhﬂlﬂlﬂlﬂlﬂlﬁlﬂmlﬂmlﬂlﬂlﬂlﬂlﬂlﬂlﬂlﬂlﬂ
w U B x = & O W L X X bng O o wn @ | > o
5858785 - g &3
Ligra Polybench pbenchmarks

SAFARI 77

Q
=)
T
as
=
-n
0
—
»
x
&
o0
=
S,
o,
=
=
-
-
=
.=
s
—=)
3
=

B Miss-Only [All-Access

W s 1

I

Ligra

1l

~®©TNO
(== NN
a1ey UH ININ

DAY
weans

wopuey
n

Aevny g
S1
WINYL
1NN
NWIN

n

S1
aciqooer
artiqooer
wnsan
pAol4
at-aiad
SoaduAq
AYASA
ATYASA
120a

110)

i1

L

dsssS
lipey

dd

1

00

Sd49

pbenchmarks

Polybench

78

SAFARI

Effect of Metadata Mapping Cache Size

ENo MMC M8-Entry M16-Entry [@32-Entry [@64-Entry ([O128-Entry

[
o g 13 2.28 J] 2.43 J| 9.00 21 1 1.47 JJ1.79 || 3.93 | 2.79 3.52 g 1.38 1.33 1.32 1.52 532] 2.29
S 1.2
= c
©
E_% 1.1 II
o O
2¢ I1 lnllm
% 0.9 i ; ’ .
w
£ 5 8 5 s ¢ ¥ 2 % £ 2 3 2 £ 5 g » § # 5 E 8
F1 & S Q o > 5 OI o @ ‘3 1 = = = = ° [<
« > a € = w & o o g < c 5
8 & 8 g 8 8 g =
Ligra Polybench pbenchmarks

SAFARI 79

7,
D
7
7,
m
aa
] _
~
% 3
> <
-
u py i
-
C "
g p
= n
- o
q°) 3
r [|
&)
oy
-
u
=Ty _
m% e e
= pocgeion

DAV
weans

wopuey
hl

Aeny Qg
SO

Sl
IWINYL
1NN
NN

n
aciqooer
atiqooef
wnsan
pAol4
at-aiad
SoaduAq
MYASA
ATYASA
10d

110)

i1

ol

dsss
lipey

dd

1

0

pbenchmarks

Polybench

Ligra

80

SAFARI

Effect of Address Translation

g °3 Defaul No Transl
- £ 12 W Default O No Translation
8=
K IH I FTIHI IH
£ 5 1 -
: ;. it il ek ok
wl W U W ox = a W ~ Ww A T [v 2 Vo> - 0]
£o5 &% hF S a 252#23:'«:-' E;E*g‘ggg
> 92 22 = 8 3 8 o < e =
8°%&8 &8 -8 &7
Ligra Polybench pbenchmarks

SAFARI 81

Alleviating Metadata Mapping Cache Contention

o g 1.7 3.2 2.36 M One Client

E i 1.5 OTwo Clients

g .9 1.3 sty .

e il B e

- g Il 1] EEEEEEENEE]) - sl | | S E—— M —

2 § 0.9 . -ﬂﬂ-. - . M Prioritized Insertion
w 3D Array Random Stream AVG

@ No-Stall
nbenchmarks

SAFARI 82

MAP /CREATE Instruction Overhead

o 13 | B No MAP/CREATE B Every eight LD/ST O Every two LD/ST |
§.§1.z
= 511
HHHIHHH o o o ol
gaQMnl nnnnmmnnnnmmnnﬂmnnnmmmnn
w = j-
‘3 o 5. E (G) § E = - a &u &
Ligra Polybench pbenchmarks

SAFARI 83

This work introduces MetaSys:
1) A general metadata management system

2) Various hardware and software components
in a real prototype to minimize developer effort

Application Expression
(Annotation/Profiling/Static Analysis)

o l Interface to)

Application
Expressive
Summarlze + Convey + Save] > Memory
Interface to €) XMem
O auery .
System/Arch:tectuB

[Vijaykumar+, ISCA’18b]

