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Abstract

Modern computing systems are overwhelmingly designed to move data to computation. This design choice goes
directly against at least three key trends in computing that cause performance, scalability and energy bottlenecks:
(1) data access is a key bottleneck as many important applications are increasingly data-intensive, and memory
bandwidth and energy do not scale well, (2) energy consumption is a key limiter in almost all computing platforms,
especially server and mobile systems, (3) data movement, especially off-chip to on-chip, is very expensive in terms
of bandwidth, energy and latency, much more so than computation. These trends are especially severely-felt in the
data-intensive server and energy-constrained mobile systems of today.

At the same time, conventional memory technology is facing many technology scaling challenges in terms of
reliability, energy, and performance. As a result, memory system architects are open to organizing memory in different
ways and making it more intelligent, at the expense of higher cost. The emergence of 3D-stacked memory plus logic,
the adoption of error correcting codes inside the latest DRAM chips, proliferation of different main memory standards
and chips, specialized for different purposes (e.g., graphics, low-power, high bandwidth, low latency), and the necessity
of designing new solutions to serious reliability and security issues, such as the RowHammer phenomenon, are an
evidence of this trend.

This chapter discusses recent research that aims to practically enable computation close to data, an approach we call
processing-in-memory (PIM). PIM places computation mechanisms in or near where the data is stored (i.e., inside the
memory chips, in the logic layer of 3D-stacked memory, or in the memory controllers), so that data movement between
the computation units and memory is reduced or eliminated. While the general idea of PIM is not new, we discuss
motivating trends in applications as well as memory circuits/technology that greatly exacerbate the need for enabling
it in modern computing systems. We examine at least two promising new approaches to designing PIM systems
to accelerate important data-intensive applications: (1) processing using memory by exploiting analog operational
properties of DRAM chips to perform massively-parallel operations in memory, with low-cost changes, (2) processing
near memory by exploiting 3D-stacked memory technology design to provide high memory bandwidth and low memory
latency to in-memory logic. In both approaches, we describe and tackle relevant cross-layer research, design, and
adoption challenges in devices, architecture, systems, and programming models. Our focus is on the development of
in-memory processing designs that can be adopted in real computing platforms at low cost. We conclude by discussing
work on solving key challenges to the practical adoption of PIM.

Keywords: memory systems, data movement, main memory, processing-in-memory, near-data processing,
computation-in-memory, processing using memory, processing near memory, 3D-stacked memory, non-volatile
memory, energy efficiency, high-performance computing, computer architecture, computing paradigm, emerging
technologies, memory scaling, technology scaling, dependable systems, robust systems, hardware security, system
security, latency, low-latency computing

December 5, 2020



Contents

1 Introduction 2

2 Major Trends Affecting Main Memory 4

3 The Need for Intelligent Memory Controllers
to Enhance Memory Scaling 6

4 Perils of Processor-Centric Design 9

5 Processing-in-Memory (PIM): Technology
Enablers and Two Approaches 12
5.1 New Technology Enablers: 3D-Stacked

Memory and Non-Volatile Memory . . 12
5.2 Two Approaches: Processing Using

Memory (PUM) vs. Processing Near
Memory (PNM) . . . . . . . . . . . . . 13

6 Processing Using Memory (PUM) 14
6.1 RowClone . . . . . . . . . . . . . . . . 14
6.2 Ambit . . . . . . . . . . . . . . . . . . 15
6.3 Gather-Scatter DRAM . . . . . . . . . 17
6.4 In-DRAM Security Primitives . . . . . 17

7 Processing Near Memory (PNM) 18
7.1 Tesseract: Coarse-Grained Application-

Level PNM Acceleration of Graph Pro-
cessing . . . . . . . . . . . . . . . . . . 19

7.2 Function-Level PNM Acceleration of
Mobile Consumer Workloads . . . . . . 20

7.3 Programmer-Transparent Function-
Level PNM Acceleration of GPU
Applications . . . . . . . . . . . . . . . 21

7.4 Instruction-Level PNM Acceleration
with PIM-Enabled Instructions (PEI) . . 21

7.5 Function-Level PNM Acceleration of
Genome Analysis Workloads . . . . . . 22

7.6 Application-Level PNM Acceleration of
Time Series Analysis . . . . . . . . . . 23

8 Enabling the Adoption of PIM 24
8.1 Programming Models and Code Genera-

tion for PIM . . . . . . . . . . . . . . . 24
8.2 PIM Runtime: Scheduling and Data

Mapping . . . . . . . . . . . . . . . . . 25
8.3 Memory Coherence . . . . . . . . . . . 27
8.4 Virtual Memory Support . . . . . . . . 27
8.5 Data Structures for PIM . . . . . . . . . 28
8.6 Benchmarks and Simulation Infrastruc-

tures . . . . . . . . . . . . . . . . . . . 29
8.7 Real PIM Hardware Systems and Proto-

types . . . . . . . . . . . . . . . . . . . 30
8.8 Security Considerations . . . . . . . . . 30

9 Conclusion and Future Outlook 31

1. Introduction

Main memory, built using the Dynamic Random Ac-
cess Memory (DRAM) technology, is a major compo-
nent in nearly all computing systems, including servers,
cloud platforms, mobile/embedded devices, and sensor
systems. Across all of these systems,the data working
set sizes of modern applications are rapidly growing,
while the need for fast analysis of such data is increas-
ing. Thus, main memory is becoming an increasingly
significant bottleneck across a wide variety of computing
systems and applications [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16]. Alleviating the main memory bot-
tleneck requires the memory capacity, energy, cost, and
performance to all scale in an efficient manner across
technology generations. Unfortunately, it has become
increasingly difficult in recent years, especially the past
decade, to scale all of these dimensions [1, 2, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
and thus the main memory bottleneck has been worsen-
ing.

A major reason for the main memory bottleneck is the
high energy and latency cost associated with data move-
ment. In modern computers, to perform any operation
on data that resides in main memory, the processor must
retrieve the data from main memory. This requires the
memory controller to issue commands to a DRAM mod-
ule across a relatively slow and power-hungry off-chip
bus (known as the memory channel). The DRAM mod-
ule sends the requested data across the memory channel,
after which the data is placed in the caches and regis-
ters. The CPU can perform computation on the data
once the data is in its registers. Data movement from the
DRAM to the CPU incurs long latency and consumes
a significant amount of energy [7, 50, 51, 52, 53, 54].
These costs are often exacerbated by the fact that much
of the data brought into the caches is not reused by the
CPU [52, 53, 55, 56], providing little benefit in return
for the high latency and energy cost.

The cost of data movement is a fundamental issue
with the processor-centric nature of contemporary com-
puter systems. The CPU is considered to be the master
in the system, and computation is performed only in the
processor (and accelerators). In contrast, data storage
and communication units, including the main memory,
are treated as unintelligent workers that are incapable of
computation. As a result of this processor-centric design
paradigm, data moves a lot in the system between the
computation units and communication/ storage units so
that computation can be done on it. With the increasingly
data-centric nature of contemporary and emerging appli-
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cations, the processor-centric design paradigm leads to
great inefficiency in performance, energy and cost. For
example, most of the real estate within a single compute
node is already dedicated to handling data movement
and storage (e.g., large caches, memory controllers, in-
terconnects, and main memory) [57, 58, 59, 60, 61], and
our recent work shows that more than 62% of the entire
system energy of a mobile device is spent on data move-
ment between the processor and the memory hierarchy
for widely-used mobile workloads [62].

The large overhead of data movement in modern sys-
tems along with technology advances that enable better
integration of memory and logic have recently prompted
the re-examination of an old idea that we will generally
call Processing in Memory (PIM). The key idea is to
place computation mechanisms in or near where the data
is stored (i.e., inside the memory chips, in the logic layer
of 3D-stacked memory, in the memory controllers, or
inside large caches), so that data movement between
where the computation is done and where the data is
stored is reduced or eliminated, compared to contempo-
rary processor-centric systems. Processing-in-memory
is also known as near-data processing (NDP), enables
the ability to perform operations and execute software
tasks either using (1) the memory itself, or (2) some
form of processing logic (e.g., accelerators, simple cores,
reconfigurable logic) inside the memory subsystem.

The idea of PIM has been around for at least five
decades [63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 80]. However, past efforts were not
widely adopted for various reasons, including 1) the dif-
ficulty of integrating processing elements with DRAM,
2) the lack of critical memory-related scaling challenges
that current technology and applications face today, and
3) that the data movement bottleneck was not as critical
to system cost, energy and performance as it is today.
As a result of advances in modern memory architec-
tures, e.g., the integration of logic and memory in a 3D-
stacked manner, various recent works explore a range of
PIM architectures for multiple different purposes (e.g.,
[7, 13, 50, 51, 52, 53, 62, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,
102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,
113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123]).
We believe it is crucial to re-examine PIM today with a
fresh perspective (i.e., with novel approaches and ideas),
by exploiting new memory technologies, with realistic
workloads and systems, and with a mindset to ease adop-
tion and feasibility.

In this chapter, we explore two new approaches to
enabling processing-in-memory in modern systems. The
first approach minimally changes memory chips to per-

form simple yet powerful common operations that the
chip is inherently efficient at or could be made efficient
at performing [11, 40, 97, 104, 105, 106, 107, 108, 109,
110, 111, 112, 116, 120, 121, 122, 123, 124, 125, 126,
127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137,
138, 139, 140, 141, 142, 143, 144]. We call this approach
processing using memory [11, 120, 124, 145]. Some so-
lutions that fall under this approach take advantage of
the existing DRAM design to cleverly and efficiently per-
form bulk operations (i.e., operations on an entire row of
DRAM cells), such as bulk copy, data initialization, and
bitwise operations, using the analog operational princi-
ples of DRAM [108, 109, 111, 112, 120, 124, 125, 145].
Other solutions take advantage of the analog operational
principles of emerging non-volatile memory technolo-
gies to perform similar bulk operations [104] or other
specialized computations like convolutions and matrix
multiplications [107, 132, 133, 134, 135, 136, 137, 138,
139, 140, 141, 142, 143, 144, 146].

The second approach enables PIM in a more general-
purpose manner by taking advantage of computation
capability in conventional memory controllers [50, 51]
or the logic layer(s) of the relatively new 3D-stacked
memory technologies [7, 13, 52, 53, 62, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99, 100,
101, 103, 113, 114, 115, 117, 118, 119, 147]. We call
this general approach processing near memory [11]. This
approach is especially catalyzed by recent advancements
in 3D-stacked memory technologies that include a logic
processing layer underneath memory layers [148, 149].
In order to stack multiple layers of memory, 3D-stacked
chips use vertical through-silicon vias (TSVs) to con-
nect the layers to each other, and to the I/O drivers of
the chip [149]. The TSVs provide much greater inter-
nal bandwidth within the 3D stack layers than is avail-
able externally on the memory channel. Several such
3D-stacked memory architectures, such as the Hybrid
Memory Cube [150, 151] and High-Bandwidth Mem-
ory [149, 152], include a logic layer, where designers
can add some processing logic (e.g., accelerators, simple
cores, reconfigurable logic) to take advantage of this high
internal bandwidth. Future die-stacking technologies,
like monolithic 3D [153, 154, 155, 156, 157, 158, 159],
can amplify the benefits of this approach by greatly im-
proving internal bandwidth and the number of logic lay-
ers between memory layers.

Regardless of the approach taken to PIM, there are
key practical adoption challenges that system architects
and programmers must address to enable the widespread
adoption of PIM across the computing landscape and in
different domains of workloads. In addition to describing
work along the two key approaches, we also discuss these
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challenges in work paper, along with existing work that
addresses these challenges.

Before we describe in detail the two modern ap-
proaches to PIM in Section 5, we first describe major
trends affecting main memory (Section 2), then demon-
strate many reasons why we need to have intelligent
memory controllers to enhance memory scaling into
the future (Section 3), followed by an analysis of the
major shortcomings of the processor-centric computing
paradigm which PIM intends to augment, disrupt, and
perhaps in some cases displace (Section 4).

2. Major Trends Affecting Main Memory

Main memory is a major, critical component of all
computing systems, including cloud and server plat-
forms, desktop computers, mobile and embedded de-
vices, and sensors. It constitutes one of the main pillars
of any computing platform, together with 1) the process-
ing elements (or computational elements), which can
include CPU cores, GPU cores, accelerators, or recon-
figurable devices, and 2) the communication elements,
which can include interconnects, network interfaces, and
network processing units.

Due to its relatively low cost and low latency, Dy-
namic Random Access Memory (DRAM) [160] is the
predominant data storage technology that is used to
build main memory. The growing data working set
sizes of modern applications [1, 2, 3, 4, 5, 6, 7, 161,
162, 163, 164, 165] impose an ever-increasing demand
for higher DRAM capacity and performance. Unfor-
tunately, DRAM technology scaling is becoming in-
creasingly challenging: it is increasingly difficult to
enlarge DRAM chip capacity at low cost while also
maintaining maintain DRAM performance, energy effi-
ciency, and reliability [1, 2, 20, 24, 43, 45, 46, 166, 167]
Thus, fulfilling the increasing memory needs of mod-
ern workloads is becoming increasingly costly and dif-
ficult [2, 3, 4, 14, 17, 18, 19, 21, 22, 23, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 44, 45,
46, 47, 49, 52, 53, 86, 121, 168, 169, 170, 171, 172].

If CMOS technology scaling is coming to an
end [173], the projections are significantly worse for
DRAM technology scaling [174]. DRAM technology
scaling affects all major characteristics of DRAM, in-
cluding capacity, bandwidth, latency, reliability, energy,
and cost. We next describe the key issues and trends in
DRAM technology scaling and discuss how these trends
motivate the need for intelligent memory controllers, i.e.,
controllers that have intelligence and computation capa-
bility to enable better scaling of main memory in terms

of all metrics of interest. Such intelligent memory con-
trollers can also more easily pave the way to and be used
as a starting substrate for processing in memory.

The first key concern is the difficulty of scaling DRAM
capacity (i.e., density, or cost per bit), bandwidth and
latency at the same time. While the processing core
count doubles every two years, the DRAM capacity
doubles only every three years, as shown by [29], and
the latter is slowing down. This trend causes the mem-
ory capacity per core to drop by approximately 30%
every two years [29]. The trend is even worse for
memory bandwidth per core – in the approximately
two decades between 1999 and 2017, DRAM chip
storage capacity (for the most commonly-used DDRx
chip of the time) has improved approximately 128×
while DRAM bandwidth has improved only approxi-
mately 20× [31, 32, 40], as shown in Figure 1. In the
same period of about two decades, DRAM latency (as
measured by the row cycling time) has remained al-
most constant (i.e., reduced by only 30%, as shown in
Figure 1), making it a significant performance bottle-
neck for many modern workloads, including in-memory
databases [62, 97, 112, 175, 176, 177, 178, 179], graph
processing [15, 52, 53, 180, 181], data analytics [177,
182, 183, 184], datacenter workloads [4], neural net-
works [7, 14, 93, 185, 186, 187, 188], and consumer
workloads [7]. As low-latency computing is becoming
ever more important [1, 2, 3, 12, 13, 189, 190, 191, 192],
e.g., due to the ever-increasing need to process large
amounts of data at real time, and predictable perfor-
mance continues to be a critical concern in the design of
modern computing systems [2, 25, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202], it is increasingly critical
to design low-latency main memory chips.

The second key concern is that DRAM technology
scaling to smaller nodes adversely affects DRAM relia-
bility. A DRAM cell stores one bit of data in the form
of charge in a capacitor, which is accessed via an ac-
cess transistor and peripheral circuitry. For a DRAM
cell to operate correctly, both the capacitor and the ac-
cess transistor (as well as the peripheral circuitry) need
to operate reliably. As the size of the DRAM cell re-
duces, both the capacitor and the access transistor be-
come less reliable, more leaky, and generally more vul-
nerable to electrical noise and disturbance. As a result,
reducing the size of the DRAM cell increases the diffi-
culty of correctly storing and detecting the desired orig-
inal value in the DRAM, as shown in various recent
works that study DRAM reliability by analyzing data
retention and other reliability issues of modern DRAM
chips cell [1, 20, 23, 24, 38, 41, 42, 45, 46, 166, 167,
170, 171, 206, 207, 208, 209, 210, 211]. Hence, mem-
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Figure 1: Scaling of DRAM capacity, bandwidth and latency between
1999 and 2017, normalized to the value in 2017. Data depicted for the
most common type of DDRx chip of each year. Reproduced from [203].
Originally presented in [31, 204, 205].

ory technology scaling causes memory errors to appear
more frequently. For example, a study of Facebook’s
entire production datacenter servers showed that mem-
ory errors, and thus the server failure rate, are strongly
positively correlated with the density of the chips em-
ployed in the servers [212]: the higher the density of
the chip used in a server, the more likely the server is to
experience a memory error and server failure. Thus, it is
critical to make the main memory system more reliable
to build reliable computing systems on top of it.

The third key issue is that the reliability problems
caused by aggressive DRAM technology scaling can lead
to new security vulnerabilities. The RowHammer phe-
nomenon [20, 24, 45, 46] shows that it is possible to pre-
dictably induce errors (bit flips) in most modern DRAM
chips. Repeatedly reading the same row in DRAM can
corrupt data in physically-adjacent rows. Specifically,
when a DRAM row is opened (i.e., activated) and closed
(i.e., precharged) repeatedly (i.e., hammered), enough
times within a DRAM refresh interval, one or more bits
in physically-adjacent DRAM rows can be flipped to the
wrong value. A very simple user-level program [213]
can reliably and consistently induce RowHammer errors
in vulnerable DRAM modules. The seminal paper that
introduced RowHammer [20] showed that more than
85% of the chips tested, built by three major vendors be-
tween 2010 and 2014, were vulnerable to RowHammer-
induced errors. In particular, all DRAM modules from
2012 and 2013 are vulnerable, as shown by the Figure 2
which depicts the observed RowHammer error vulnera-
bility of DRAM modules manufactured between 2008
and 2014 by all three major DRAM manufacturers A, B,
C [20]. A recent technology scaling study [45] of 1580

DRAM chips belonging to three different DRAM types
and various different technology node sizes experimen-
tally demonstrated that the RowHammer vulnerability is
getting much worse at the circuit level: fewer number of
activates to a row can cause bit flips in the most recent
chips and recent chips experience higher bit flip rates
due to RowHammer. The same work [45] also showed
that existing RowHammer mitigation mechanisms will
not be effective in future DRAM chips that will be much
more vulnerable to RowHammer, and thus RowHammer
remains to be an open vulnerability to securely protect
against.

All modules from 2012–2013	are vulnerable

First
Appearance

Recent DRAM Is More Vulnerable

Figure 2: RowHammer vulnerability for DRAM modules manufac-
tured between 2008 and 2014. Reproduced from [214]. Originally
presented in [20, 215].

The RowHammer phenomenon entails a real reliabil-
ity, and perhaps even more importantly, a real and preva-
lent security issue. It breaks physical memory isolation
between two addresses, one of the fundamental build-
ing blocks of memory, on top of which system security
principles are built. With RowHammer, accesses to one
row (e.g., an application page) can modify data stored in
another memory row (e.g., an OS page). This was con-
firmed in 2015 by researchers from Google Project Zero,
who developed a user-level attack that uses RowHammer
to gain kernel privileges [216, 217]. Other researchers
have shown how RowHammer vulnerabilities can be
exploited in various ways to gain privileged access to
various systems: in a remote server RowHammer can
be used to remotely take over the server via the use
of JavaScript [218]; a virtual machine can take over
another virtual machine by inducing errors in the vic-
tim virtual machine’s memory space [219]; a malicious
application without permissions can take control of an
Android mobile device [220]; or an attacker can gain
arbitrary read/write access in a web browser on a Mi-
crosoft Windows 10 system [221]. Over the past six

5



years, many security attacks were developed to exploit
RowHammer [216, 217, 218, 219, 220, 221, 222, 223,
224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234,
235, 236, 237, 238, 239]. Very recently, the TRRespass
attack [167] showed that existing DRAM chips that are
advertised to be RowHammer-resistant, as described by
various DRAM vendors [240, 241], are actually vulnera-
ble because these mitigation mechanisms can be circum-
vented with a new type of RowHammer attack called
many-sided hammering. For a more detailed treatment
of the RowHammer problem and its consequences, as
well as its root causes, modeling, and analyses, we refer
the reader to [20, 24, 45, 46, 167, 211, 242].

The fourth key issue is the power and energy con-
sumption of main memory. DRAM is inherently a power
and energy hog, as it consumes energy even when it is
not used (e.g., it requires periodic memory refresh [23]),
due to its charge-based nature. And, energy consump-
tion of main memory is becoming worse due to three
major reasons. First, main memory’s capacity, band-
width, parallelism, and complexity are all increasing,
causing energy consumption to naturally increase due
to higher amount of dynamic activity and higher over-
all static power consumption. Second, main memory
has remained off the main processing chip and thus did
not benefit from many energy reduction mechanisms
that come with better integration, even though many
other platform components have been integrated into the
processing chip and have benefited from the aggressive
energy/voltage scaling mechanisms and the low-energy
communication substrate on-chip. Third, the difficulties
in DRAM technology scaling are making DRAM energy
reduction very difficult with technology generations. In
fact, some of the mechanisms that are added to DRAM
chips to compensate for reliability problems in smaller
technology generations, e.g., in-DRAM error correcting
codes [17, 41, 170, 171, 243, 244, 245] and higher re-
fresh rates [171, 246, 247, 248], directly increase energy
consumption. As a result of these three major issues
that make main memory a larger energy bottleneck, the
fraction of the entire system power consumed by main
memory is increasing over the last two decades. In 2003,
Lefurgy et al. [249] showed that, in large commercial
servers designed by IBM, the off-chip memory hierarchy
(including, at that time, DRAM, interconnects, mem-
ory controller, and off-chip caches) consumed between
40% and 50% of the total system energy. The trend has
become even worse over the course of the one-to-two
decades. In recent computing systems with CPUs or
GPUs, only DRAM itself is shown to account for more
than 40% of the total system power [34, 43, 250, 251].
Hence, the power and energy consumption of main mem-

ory is increasing relative to that of other components in
computing platform. As energy efficiency and sustain-
ability are critical necessities in computing platforms to-
day, it is critical to reduce the energy and power consump-
tion of main memory [34, 43, 49, 252, 253, 254, 255].

3. The Need for Intelligent Memory Controllers to
Enhance Memory Scaling

A key promising approach to solving the four major
issues above is to design intelligent memory controllers
that can manage main memory better. If the memory
controller is designed to be more intelligent and more
programmable, it can, for example, incorporate flexi-
ble mechanisms to overcome various types of reliability
issues (including RowHammer), manage latencies and
energy/power consumption better based on a deep un-
derstanding of the DRAM chip and application charac-
teristics, provide enough support for programmability
to prevent security and reliability vulnerabilities that
are discovered in the field, and manage various types
of memory technologies that are put together as a hy-
brid main memory to enhance the scaling of the main
memory system. We provide a few examples of how an
intelligent memory controller can help overcome circuit-
and device-level issues modern computing systems are
facing at the main memory level. We believe having
intelligent memory controllers can greatly alleviate the
scaling issues encountered with main memory today, as
we have described in an earlier position paper [1]. This
is a direction that is also supported by key hardware
manufacturers in computing industry today, as described
in an informative paper written collaboratively by Intel
and Samsung engineers on DRAM technology scaling
issues [17].

In this section, we give several examples of how an
intelligent memory controller can help overcome major
scaling challenges of modern DRAM. First, a slightly
more intelligent memory controller than today’s con-
trollers can prevent the RowHammer vulnerability by
probabilistically refreshing rows that are physically adja-
cent to an activated row, with a very low probability. This
solution, called PARA (Probabilistic Adjacent Row Acti-
vation) [20] was shown to provide strong, programmable,
robust guarantees against RowHammer, with very little
power, performance and chip area overheads [20]. It re-
quires a slightly more intelligent memory controller that
1) knows (or that can figure out) the physical adjacency
of rows in a DRAM chip, 2) is programmable enough to
adjust the probability of adjacent row activation depend-
ing on the vulnerability of a chip, and 3) can issue refresh
requests to physically-adjacent rows accordingly to the
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probability supplied by the system or discovered online.
As described by prior work [20, 24, 45, 46, 242], this
solution has much lower performance and energy over-
heads than increasing the refresh rate across the board
for the entire main memory, which is the RowHammer
solution employed by existing systems in the field that
have simple and rigid memory controllers [46, 248].

Second, an intelligent memory controller can greatly
alleviate the refresh problem in DRAM, and hence its
negative consequences on energy, performance, pre-
dictability, and technology scaling, by understanding
the retention time characteristics of different rows well.
It is well known that the retention time of different cells
in DRAM are widely different due to process manufac-
turing variation [23, 166]. A very large fraction of all
DRAM cells are strong (i.e., they can retain data for
hundreds of seconds), whereas only a small fraction of
DRAM cells are weak (i.e., they can retain data for only
64 ms), as demonstrated in Figure 3 [23, 166]. Yet, to-
day’s memory controllers treat every cell as equal and
refresh all rows every 64 ms, which is the worst-case re-
tention time that is allowed. This worst-case refresh rate
leads to a large number of unnecessary refreshes, and
thus great energy waste and performance loss. Refresh
is also shown to be the key technology scaling limiter
of DRAM [17], and as such refreshing all DRAM cells
at the worst case rates is likely to make DRAM technol-
ogy scaling difficult. An intelligent memory controller
can overcome the refresh problem by 1) identifying the
minimum data retention time of each row (during on-
line operation) and 2) refreshing each row at the rate
it really requires to be refreshed at or 3) by decommis-
sioning weak rows such that data is not stored in them.
As shown by a recent body of work whose aim is to
design such an intelligent memory controller that can
perform online profiling of DRAM cell retention times
and online adjustment of refresh rate on a per-row ba-
sis [23, 41, 166, 206, 207, 208, 209, 210], including
the works on RAIDR [23, 166], AVATAR [210] and
REAPER [41], such an intelligent memory controller
can eliminate more than 75% of all refreshes at very
low cost, leading to significant energy reduction, perfor-
mance improvement, and quality of service benefits, all
at the same time, at the system level. Thus, the down-
sides of DRAM refresh can potentially be overcome with
the design of intelligent memory controllers.

Third, an intelligent memory controller can enable
performance improvements that can overcome the limi-
tations of memory scaling. As we discuss in Section 2,
DRAM latency has remained almost constant over the
last decades, despite the fact that low-latency comput-
ing has become even more important during that time.

Data Retention in Memory [Liu et al., ISCA 2013]

n Retention Time Profile of DRAM looks like this:

Location dependent
Stored value pattern dependent

Time dependent

Figure 3: Data retention times of different DRAM cells, represented
as a cartoon based on experimental data obtained from real DRAM
chips [256]. Reproduced from [214]. Originally presented in [257,
258].

Similar to how intelligent memory controllers handle the
refresh problem, the controllers can exploit the fact that
not all cells in DRAM need the same amount of time
to be accessed. Modern DRAM specifications require
worst-case timing parameters that define the amount of
time required to perform a memory access. In order to
guarantee correct operation, the timing parameters are
chosen to ensure that the worst-case cell in any DRAM
chip that is acceptable (to satisfy a yield rate) can still
be accessed correctly at worst-case operating temper-
atures [31, 33, 35, 42, 44, 47, 169]. However, we find
that access latency to cells is very heterogeneous due to
variation in operating conditions (e.g., across different
temperatures and operating voltage levels), manufactur-
ing process (e.g., across different chips and different parts
of a chip), and access patterns (e.g., based on whether
or not the cell was recently accessed). We give eight
examples of how an intelligent memory controller can
exploit the various different types of heterogeneity in
access latency.

(1) At low temperature, DRAM cells contain more
charge, and as a result, can be accessed much faster
than at high temperatures. We find that, averaged across
115 real DRAM modules from three major manufactur-
ers, read and write latencies of DRAM can be reduced
by 33% and 55%, respectively, when operating at rel-
atively low temperature (55 ◦C) compared to operating
at worst-case temperature (85 ◦C) [33, 259]. Thus, a
slightly intelligent memory controller can greatly reduce
memory latency by adapting the access latency to oper-
ating temperature.

(2) Due to manufacturing process variation, we find
that the majority of cells in DRAM (across different chips
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or within the same chip) can be accessed much faster
than the manufacturer-provided timing parameters [31,
33, 35, 40, 44, 259]. An intelligent memory controller
can profile the DRAM chip and identify which cells
can be accessed reliably at low latency, and use this
information to reduce access latencies by as much as
57% [31, 35, 44].

(3) In a similar fashion, an intelligent memory con-
troller can use similar properties of manufacturing pro-
cess variation to reduce the energy consumption of a
computer system, by exploiting the minimum voltage
required for safe operation of different parts of a DRAM
chip [34, 40]. The key idea is to reduce the operating
voltage of a DRAM chip from the standard specification
and tolerate the resulting errors by increasing access la-
tency on a per-bank basis, while keeping performance
degradation in check.

(4) Bank conflict latencies can be dramatically re-
duced by making modifications in the DRAM chip such
that different subarrays in a bank can be accessed mostly
independently, and designing an intelligent memory con-
troller that can take advantage of requests that require
data from different subarrays (i.e., exploit subarray-level
parallelism) [21, 22]. A similar approach is also shown
to reduce the performance impact of refresh by enabling
parallelization of refresh and access operations to a
bank [260].

(5) Access latency to a portion of the DRAM bank
can be greatly reduced by partitioning the DRAM array
such that a subset of rows can be accessed much faster
than the other rows and having an intelligent memory
controller that decides what data should be placed in fast
rows versus slow rows [32, 42, 110, 121, 169, 259].

(6) We find that a recently-accessed or recently-
refreshed memory row can be accessed much more
quickly than the standard latency if it needs to be ac-
cessed again soon, since the recent access and refresh to
the row has replenished the charge of the cells in the row.
An intelligent memory controller can thus keep track of
the charge level of recently-accessed/refreshed rows and
use the appropriate access latency that corresponds to the
stored charge level [39, 47, 168], leading to significant
reductions in both access and refresh latencies. Thus,
the poor scaling of DRAM latency and energy can poten-
tially be overcome with the design of intelligent memory
controllers that can facilitate a large number of effective
latency and energy reduction techniques.

(7) Two recent works [172, 261] observe that the
latency-reliability tradeoff in modern DRAM devices
can be exploited by an intelligent memory controller to
1) generate true random numbers at low latency and high
throughput [172], and 2) to evaluate physical unclonable

functions quickly using a DRAM device [261]. These
works exploit the heterogeneity in the latency-reliability
tradeoff of different cells: some cells fail truly randomly
and some cells fail very consistently, when accessed with
a low latency that violates the timing parameters. The
former type of cells are used as true random number
generator cells and the latter type of cells can be used as
part of the challenge-response space of a DRAM-based
physical unclonable function (PUF). An intelligent con-
troller would determine the different types of cells using
profiling mechanisms and enable the generation of true
random numbers or PUF responses.

(8) An intelligent controller can use application and
data characteristics to carefully map data across hybrid
memories that consist of multiple different types of mem-
ories with different characteristics to maximize the ben-
efits obtained from each memory type while avoiding
the downsides of each memory type. Figure 4 depicts
an example of such hybrid main memory composed of
DRAM and PCM memories, as described by several
works [27, 262, 263, 264].

Figure 4: Hybrid main memory. Reproduced from [203]. Originally
presented in [27].

Many proposals exist for such intelligent controllers
that manage hybrid memories, e.g., [27, 36, 262, 263,
264, 265, 266, 267, 268], indicating that such an intelli-
gent controller can enhance memory scaling by enabling
the best of multiple technologies. For example, the idea
of Heterogeneous Reliability Memory [36] uses an in-
telligent memory controller that can communicate with
both applications and memory devices to map each data
element to different types of memories depending on the
error vulnerability characteristics of the data element,
thereby reducing memory cost. Similarly, EDEN [14]
uses a memory controller that can communicate with a
neural network application to map different neural net-
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work layers to different DRAM partitions with different
access latency and voltage parameters, depending on
the error tolerance characteristics of each layer, thereby
greatly improving energy efficiency and performance of
neural network inference tasks. With increasing reliance
on hybrid memories as well as increasing heterogeneity
within each memory type to solve key memory scal-
ing issues, it has become necessary to have intelligent
controllers to manage data allocation, migration, and
movement across the different heterogeneous parts.

Intelligent controllers are already in widespread use
in another key part of a modern computing system. In
solid-state drives (SSDs) consisting of NAND flash mem-
ory, the flash memory controllers that manage the SSDs
are designed to incorporate a significant level of intelli-
gence in order to improve both performance and reliabil-
ity [36, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278,
279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289].
Figure 5 shows one of our real experimental infrastruc-
tures (from [277]) used for the design and evaluation of
intelligent flash memory controllers.

Aside: Intelligent Controller for NAND Flash
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Virtex-II Pro
(USB controller)

Virtex-V FPGA
(NAND Controller)
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USB Daughter Board

NAND Daughter Board

1x-nm
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Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.
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Figure 5: Example of an intelligent flash memory controllers. The
figure depicts a picture of one of our real experimental infrastructures
(from [277]) used for the design and evaluation of intelligent flash
memory controllers. Reproduced from [203].

Modern flash controllers need to take into account
a wide variety of issues such as remapping data, per-
forming wear leveling to mitigate the limited lifetime of
NAND flash memory devices, refreshing data based on
the current wearout of each NAND flash cell, optimizing
voltage levels to maximize memory lifetime, employing
sophisticated error correction and recovery techniques
to maximize lifetime and minimize error rates, and en-
forcing fairness across different applications accessing
the SSD. Much of the complexity in flash controllers
is a result of mitigating issues related to the scaling of
NAND flash memory [36, 269, 270, 271, 272, 275, 276,

277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287,
288, 289]. A comprehensive review of scaling issues
of NAND flash memory and related mitigation tech-
niques can be found in [275] (Figure 6) and [269, 270].
We argue that in order to overcome scaling issues in
main memory (DRAM), the time has come for main
memory controllers to also incorporate significant intel-
ligence. Yet, incorporating sophisticated intelligence in
the DRAM controller is more challenging than doing so
in a flash controller due to the much lower access latency
and much higher access bandwidth of modern DRAM
devices.

Aside: Intelligent Controller for NAND Flash
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Figure 6: A comprehensive review article on scaling issues of NAND
flash memory and related mitigation techniques [275] Reproduced
from [203].

As we describe above, introducing intelligence into
the memory controller can help us overcome a number
of key challenges in memory scaling. In particular, a
significant body of work has demonstrated that the key
reliability, refresh, and latency/energy issues in memory
can be mitigated effectively with an intelligent memory
controller that intelligently and meticulously manages
the many different characteristics of underlying memory
chips, which may consist of different types of memory
technology. As we discuss in Section 4, such intelligence
can go even further, by enabling the memory controllers
(and the broader memory system) to perform application
computation in order to overcome the significant data
movement bottleneck in modern and future computing
systems.

4. Perils of Processor-Centric Design

As described earlier, a major reason for performance
and energy degradation in modern computing systems
is the large amount of data movement present in the
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systems. Such data movement is a natural consequence
of the processor-centric execution model and design
paradigm [290], which creates a dichotomy between
computation and memory/storage. The processor-centric
design paradigm separates computation capability and
memory/storage capability into two completely-separate
system components (i.e., the computing unit versus the
memory/storage unit) that are connected by long and
energy-hungry interconnects: processing is done only in
the computing unit, while data is stored in a completely
separate place. As a result, data has to continuously
move back and forth between the memory/storage unit
and the computing unit (e.g., CPU cores or accelerators),
for any computation to be performed.

In order to perform an operation on data that is stored
within memory, a costly process is invoked. First, the
CPU (or an accelerator) must issue a request to the mem-
ory controller, which in turn sends a series of commands
across the off-chip bus to the DRAM module. Second,
the data is read from the DRAM module and returned to
the memory controller. Third, the data is placed in the
CPU cache and registers, where it is accessible by the
CPU cores. Finally, the CPU can operate (i.e., perform
computation) on the data. All these steps consume sub-
stantial time and energy in order to bring the data into
the CPU chip [4, 7, 291, 292].

In current computing systems, the CPU (or any ac-
celerator) is the only system component that is able to
perform computation on data. The rest of system compo-
nents are devoted to only data storage (memory, caches,
disks) and data movement (interconnects); they are in-
capable of performing computation. As a result, cur-
rent computing systems are grossly imbalanced, which
leads to large amounts of energy inefficiency and lost
performance. As empirical evidence to the gross imbal-
ance caused by the processor-memory dichotomy in the
design of computing systems today, we have recently
observed that more than 62% of the entire system en-
ergy consumed by four major commonly-used mobile
consumer workloads (including the Chrome browser,
TensorFlow machine learning inference engine, and the
VP9 video encoder and decoder) [7]. Thus, the fact
that current systems can perform computation only in
the computing unit (CPU cores and hardware accelera-
tors) is causing significant waste in terms of energy by
necessitating data movement across the entire system.

At least five factors contribute to the performance loss
and the energy waste associated with data movement
between processor and memory. We briefly describe
these next, to demonstrate the sweeping negative impact
of data movement in modern computing systems.

First, the width of the off-chip bus between the mem-
ory controller and the main memory is narrow, due to
pin count and cost constraints, leading to relatively low
bandwidth and high latency to/from main memory. This
makes it difficult to send a large number of requests
to memory in parallel to enable higher levels of paral-
lelism and to tolerate the long main memory latency.
As a result, systems that require higher levels of con-
currency and lower latency require much higher cost
because they require wider processor-memory intercon-
nects or more processor-memory channels, both of which
lead to higher power consumption and higher hardware
area overheads [2, 43, 49].

Second, current computing systems employ many
sophisticated mechanisms to tolerate the data access
from main memory. These mechanisms include com-
plex multi-level cache hierarchies with sophisticated in-
sertion/promotion/eviction policies and sophisticated la-
tency tolerance/hiding mechanisms (e.g., sophisticated
caching algorithms at many different caching levels, mul-
tiple complex prefetching techniques, high amounts of
multithreading, complex and power-hungry out-of-order
execution mechanisms). These components, while some-
times effective at improving performance, are costly in
terms of both die area and energy consumption, as well
as the additional latency required to access/manage them.
When these components are not effective at improving
performance, they result in a net energy waste and la-
tency overheads that hurt the very performance that they
are designed to improve. These components significantly
increase the complexity of the system. Hence, the ar-
chitectural and microarchitectural techniques used in
modern systems to tolerate the consequences of the di-
chotomy between processing unit and main memory,
lead to significant energy waste and additional system
complexity. As such, we are in a vicious cycle in sys-
tem design due to the processor-centric design paradigm:
1) data movement between the processor and memory
already causes significant energy waste and latency; 2)
to tolerate the latency of such data movement, existing
systems employ many complex mechanisms whose ef-
fectiveness varies depending on the workloads; 3) these
complex mechanisms in turn cause additional energy
waste and latency overheads. The fundamental cause
of this vicious cycle is the processor-centric execution
model and design paradigm, and hence breaking out
of this vicious cycle requires tackling this fundamental
cause by changing the paradigm (to a data-centric one).

Third, the many caches employed in computing sys-
tems are not always effective or efficient. Much of
the data brought into the caches is not reused by the
CPU [52, 53, 55, 56, 293], resulting in a large waste of
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hardware area and memory bandwidth. For example, 1)
random access to memory leads to poor locality, render-
ing caches almost completely ineffective, 2) strided ac-
cess to memory where stride is greater than a cache block
also renders caches ineffective, 3) even streaming access
to memory where all elements in a cache block are used
in a consecutive manner is inefficient to handle with large
caches because the block is not reused again. There are
many such access patterns in a wide variety of modern
workloads [49, 52, 53, 55, 56, 199, 293, 294, 295, 296]
that render caches either very inefficient or unnecessary,
exacerbating the energy waste due to data movement in
processor-centric systems.

Fourth, many modern applications, such as graph pro-
cessing [52, 53] and workloads that operate on sparse
data structures, such as sparse linear algebra [15, 297]
and sparse neural networks [298, 299, 300], produce
random memory access patterns. Figure 7 shows the ex-
ample of PageRank [301], a graph processing algorithm
with frequent random memory accesses and little amount
of computation. With such random access patterns, not
only the caches but also the main memory bus and the
main memory itself are very inefficient, since only a
small part of each memory row and cache line retrieved
all the way from main memory is actually used by the
CPU. Such random accesses are fundamentally difficult
to prefetch, rendering prefetchers ineffective. This exam-
ple demonstrates that modern memory hierarchies are
not designed to work well for random memory access
patterns that are found in many modern workloads.

Key Bottlenecks in Graph Processing
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for (v: graph.vertices) {
for (w: v.successors) {

w.next_rank += weight * v.rank;
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Figure 7: Random memory accesses in the PageRank graph processing
algorithm [301]. Reproduced from [214]. Originally depicted in [52,
302].

Fifth, the processor (as well as accelerators) and the
main memory are connected to each other via long,
power-hungry interconnects. These interconnects im-
pose significant additional latency to every data access

and represent a significant fraction of the energy spent
on moving data to/from the DRAM memory. In fact,
off-chip interconnect latency and energy consumption is
a key limiter of performance and energy in modern sys-
tems [7, 25, 32, 52, 97, 108], as it greatly exacerbates the
cost of data movement. Unfortunately, off-chip intercon-
nect latency and energy are not scaling (i.e., reducing)
well with the scaling of technology node generations,
which mainly benefits logic [303].

The increasing disparity between processing tech-
nology and memory/communication technology has re-
sulted in systems in which communication (data move-
ment) costs dominate computation costs in terms of en-
ergy consumption. The energy consumption of a main
memory access is between two to three orders of mag-
nitude the energy consumption of an addition operation
today. For example, [292] reports that the energy con-
sumption of a memory access is ∼ 115× the energy
consumption of an addition operation. Similarly, Fig-
ure 8 shows that compares the energy consumed by a
DRAM access is ∼ 800× the energy consumption of
a double precision addition operation, based on data
reported by [304]. As a result, data movement is em-
pirically shown to account for 40% [291], 35% [292],
and 62% [7] of the total system energy in scientific,
mobile, and consumer applications, respectively. This
energy waste due to data movement is a huge burden
that greatly limits the efficiency and performance of all
modern computing platforms, from datacenters with a
restricted power budget to mobile devices with limited
battery life.

Data Movement vs. Computation Energy

Dally, HiPEAC 2015

A memory access consumes ~100-1000X 
the energy of a complex addition 

Figure 8: Data movement versus computation energy. The figure
depicts the absolute amount of energy spent on various arithmetic and
data movement operations, including a double-precision floating point
addition and a single DRAM access. Reproduced from [214], based
on data reported in [304].
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Overcoming all the reasons that cause low perfor-
mance and large energy inefficiency (as well as high
system design complexity) in current computing systems
first requires the realization that all of these reasons are
caused by the processor-centric design paradigm em-
ployed by existing computing systems. As such, a funda-
mental solution to all of these reasons at the same time
requires a paradigm shift [305]. We believe that future
computing architectures should become data-centric:
they should (1) perform computation with minimal data
movement, and (2) compute where it makes sense (i.e.,
where the data resides), as opposed to computing solely
in the processor (i.e., CPU or accelerators). Thus, the
traditional rigid dichotomy between the computing units
and the memory/communication units needs to be bro-
ken and a new paradigm enabling computation where the
data resides needs to be invented and enabled. We refer
to this general data-centric execution model and design
paradigm as Processing-in-Memory (PIM).

5. Processing-in-Memory (PIM): Technology En-
ablers and Two Approaches

Large amounts of data movement is a major result of
the predominant processor-centric design paradigm of
modern computers. Eliminating unnecessary data move-
ment between memory and the processor is essential to
make future computing architectures high performance,
energy-efficient and sustainable. To this end, processing-
in-memory (PIM) equips the memory subsystem with
the ability to perform computation.

In this section, we first describe two new technology
enablers for PIM: 1) the emergence of 3D-stacked memo-
ries, and 2) the use of byte-addressable memories. These
two relatively new main memory technologies provide
new opportunities that can make it easier for modern
computing systems to introduce and adopt PIM.

Second, we introduce two promising approaches to
implementing PIM in modern architectures. The first
approach, processing using memory, exploits the exist-
ing DRAM architecture and the operational principles
of the DRAM circuitry to enable (bulk) processing oper-
ations within the main memory with minimal changes.
This minimalist approach can especially be powerful in
performing specialized computation in main memory by
taking advantage of what the main memory substrate is
extremely good at performing with minimal changes to
the existing memory chips. The second approach, pro-
cessing near memory, exploits the ability to implement a
wide variety of general-purpose processing logic in the
logic layer of 3D-stacked memory and thus the high in-
ternal bandwidth and low latency available between the

logic layer and the memory layers of 3D-stacked mem-
ory. This is a more general approach where the logic
implemented in the logic layer can be general purpose
and thus can benefit a wide variety of applications.

Below, we provide a more detailed general overview
of the two approaches, to show that the approaches are
more general than what we will describe in more detail.
It is important for the reader to keep in mind that the
two approaches can be applied to many different types of
memory technologies, even though our major focus will
be on DRAM, the predominant main memory technology
for several decades, in most of this section.

5.1. New Technology Enablers: 3D-Stacked Memory
and Non-Volatile Memory

Memory manufacturers are actively developing new
approaches for main memory system design, due to
the DRAM technology scaling issues we described in
detail in Section 2. Two promising technologies are
3D-stacked memory and byte-addressable Non-volatile
Memory (NVM), both of which can be exploited to over-
come prior barriers to introducing and implementing
PIM architectures.

5.1.1. 3D-Stacked Memory Architectures
The first major new approach to main memory design

is 3D-stacked memory [52, 149, 150, 151, 152, 306]. In
a 3D-stacked memory, multiple layers of memory (typ-
ically DRAM in already-existing systems) are stacked
on top of each other, as shown in Figure 9. These
layers are connected together using vertical through-
silicon vias (TSVs) [149, 306]. Using current manufac-
turing process technologies, thousands of TSVs can be
placed within a single 3D-stacked memory chip. As
such, the TSVs provide much greater internal mem-
ory bandwidth than the narrow memory channel. Ex-
amples of 3D-stacked DRAM available commercially
include High-Bandwidth Memory (HBM) [149, 152],
Wide I/O [307], Wide I/O 2 [308], and the Hybrid Mem-
ory Cube (HMC) [151]. Detailed analysis of such 3D-
stacked memories and their effects on modern workloads
can be found in [49, 148, 149].

In addition to the multiple layers of DRAM, a number
of prominent 3D-stacked DRAM architectures, includ-
ing HBM and HMC, incorporate a logic layer inside the
chip [149, 151, 152]. The logic layer is typically the bot-
tommost layer of the chip, and is connected to the same
TSVs as the memory layers. The logic layer provides
area inside the DRAM chip where architects can imple-
ment functionality that interacts with both the processor
and the DRAM cells. Currently, manufacturers make
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Figure 9: High-level overview of a 3D-stacked DRAM architecture.
Reproduced from [309].

limited use of the logic layer and there is significant
amount of area the logic layer can provide. This presents
a promising opportunity for architects to implement new
PIM logic in the available area of the logic layer. We
can potentially add a wide range of computational logic
(e.g., general-purpose cores, accelerators, reconfigurable
architectures, or a combination of all three types of logic)
in the logic layer, as long as the added logic meets area,
energy, and thermal dissipation constraints, which are im-
portant and potentially limiting constraints in 3D-stacked
systems.

5.1.2. Non-Volatile Memory (NVM) Architectures
The second major new approach to main memory

design is the development of byte-addressable resis-
tive nonvolatile memory (NVM). In order to circum-
vent DRAM scaling limitations, such as refresh due
to charge loss, as much as possible, researchers and
manufacturers have been developing new memory de-
vices that can store data at much higher densities than
the typical density available in existing DRAM man-
ufacturing process technologies. Manufacturers are
exploring at least three types of emerging NVMs to
augment or replace DRAM: (1) phase-change memory
(PCM) [26, 28, 264, 310, 311, 312, 313]. (2) magnetic
RAM (MRAM) [314, 315], and (3) metal-oxide resistive
RAM (RRAM) or memristors [316, 317, 318]. All three
of these NVM types are expected to provide memory ac-
cess latencies and energy usage that are competitive with
or close enough to DRAM, while enabling much larger
capacities per chip and nonvolatility in main memory.
Since they are emerging and their designs do not have
the long-term ”baggage” other main memories (DRAM)
have accumulated, NVMs present architects with an op-
portunity to redesign how the main memory subsystem
operates from the cell and chip levels all the way up
to software and algorithms. While it can be relatively
difficult to modify the design of DRAM arrays due to the
delicacy of DRAM manufacturing process technologies
as we approach scaling limitations, NVMs have yet to

approach such scaling limitations. As a result, archi-
tects can potentially design NVM memory arrays that
integrate PIM functionality from the getgo. A promising
direction for this functionality is the ability to manipulate
NVM cells at the circuit level in order to perform logic
operations using the memory cells themselves. A num-
ber of recent works have demonstrated that NVM cells
can be used to perform a complete family of Boolean
logic operations [104, 132, 133, 134, 135, 136], simi-
lar to such operations that can be performed in DRAM
cells [109, 111, 112, 120, 124]. NVMs have also been
shown to perform more sophisticated operations like
multiplication [93, 107, 146], which are more difficult to
implement in DRAM.

5.2. Two Approaches: Processing Using Memory
(PUM) vs. Processing Near Memory (PNM)

Many recent works take advantage of the memory
technology innovations that we discuss in Section 5.1
to enable and implement PIM. We find that these works
generally take one of two approaches, which are cat-
egorized in Table 1: (1) processing using memory or
(2) processing near memory. We briefly describe each
approach here. Sections 6 and 7 will provide example
approaches and more detail for both.

Table 1: Summary of enabling technologies for the two approaches to
PIM used by recent works. Adapted from [309].

Approach Enabling Technologies

Processing Using Memory

SRAM
DRAM
Phase-change memory (PCM)
Magnetic RAM (MRAM)
Resistive RAM (RRAM)/memristors

Processing Near Memory
Logic layers in 3D-stacked memory
Silicon interposers
Logic in memory controllers

Processing using memory (PUM) exploits the ex-
isting memory architecture and the operational princi-
ples of the memory circuitry to enable operations within
main memory with minimal changes. PUM makes use
of intrinsic properties and operational principles of the
memory cells and cell arrays themselves, by inducing
interactions between cells such that the cells and/or cell
arrays can perform useful computation. Prior works
show that processing using memory is possible using
static RAM (SRAM) [105, 106, 130, 131], DRAM [108,
109, 110, 111, 112, 120, 124, 145, 319], PCM [104],
MRAM [132, 133, 134], or RRAM/memristive [107,
135, 136, 137, 138, 139, 140, 141, 142, 143, 144] de-
vices. Processing using memory architectures enable a
wide range of different functions, such as bulk as well
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as finer-grained data copy/initialization [106, 108, 110,
121, 123], bulk bitwise operations (e.g., a complete set
of Boolean logic operations) [31, 46, 104, 106, 109, 111,
112, 116, 120, 122, 129, 132, 133, 134, 320], and simple
arithmetic operations (e.g., addition, multiplication, im-
plication) [105, 106, 107, 116, 128, 130, 131, 135, 136,
137, 138, 139, 140, 141, 142, 143, 144, 319].

Processing near memory (PNM) involves adding or
integrating PIM logic (e.g., accelerators, simple pro-
cessing cores, reconfigurable logic) close to or inside
the memory (e.g., [7, 13, 50, 51, 52, 53, 62, 81, 82,
83, 84, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100,
102, 103, 113, 115, 117, 118, 119, 178, 179, 321, 322,
323, 324, 325, 326, 327]) Many of these works place
PIM logic inside the logic layer of 3D-stacked memo-
ries or at the memory controller, but recent advances
in silicon interposers (in-package wires that connect
directly to the through-silicon vias in a 3D-stacked
chip) [118, 147, 152] also allow for separate logic chips
to be placed in the same die package as a 3D-stacked
memory while still taking advantage of the TSV band-
width.

Note that more functionality can be potentially inte-
grated into a memory chip using PNM than using PUM,
but both approaches can be combined to get even higher
benefit from PIM. In Section 6, we provide a detailed
overview of PUM within the commodity DRAM tech-
nology. In Section 7, we provide a detailed overview
of PNM within the 3D-stacked DRAM technology. We
note that the described approaches and techniques in Sec-
tions 6 and 7 are applicable to other types of technologies
as well, with small modifications.

6. Processing Using Memory (PUM)

The PUM approach to processing-in-memory modi-
fies existing DRAM architectures minimally to extend
their functionality with computing capability. This ap-
proach takes advantage of the existing interconnects
in and analog operational behavior of conventional
DRAM architectures (e.g., DDRx, LPDDRx, HBM),
without the need for a dedicated logic layer or logic
processing elements, and usually with very low over-
heads. Mechanisms that use this approach take advan-
tage of the high internal bandwidth available within
each DRAM cell array. There are a number of exam-
ple PIM architectures that make use of the PUM ap-
proach [40, 108, 109, 110, 111, 112, 120, 124, 125]. In
this section, we first focus on two such designs: Row-
Clone, which enables in-DRAM bulk data movement
operations [108] and Ambit, which enables in-DRAM
bulk bitwise operations [109, 111, 112, 120]. Then, we

describe a low-cost substrate that performs data reorga-
nization for non-unit strided access patterns [97].

6.1. RowClone
Two important classes of bandwidth-intensive mem-

ory operations are (1) bulk data copy, where a large
quantity of data is copied from one location in physi-
cal memory to another; and (2) bulk data initialization,
where a large quantity of data is initialized to a specific
value. We refer to these two operations as bulk data
movement operations. Prior research [4, 328, 329] has
shown that operating systems and data center workloads
spend a significant portion of their time performing bulk
data movement operations. For example, a paper by
Google shows that close to 5% of the execution time
in Google’s data center workloads is spent on executing
only two data movement function calls, memset and mem-
copy. Therefore, accelerating these operations will likely
improve system performance and energy efficiency.

We have developed a mechanism called Row-
Clone [108], which takes advantage of the fact that bulk
data movement operations do not require any compu-
tation on the part of the processor. RowClone exploits
the internal organization and operation of DRAM to per-
form bulk data copy/initialization quickly and efficiently
inside a DRAM chip. A DRAM chip contains multiple
banks, where the banks are connected together and to ex-
ternal I/O circuitry by a shared internal bus. Each bank is
divided into multiple subarrays [21, 108, 260]. Each sub-
array contains many rows of DRAM cells, where each
column of DRAM cells is connected together across the
multiple rows using bitlines.

RowClone consists of two mechanisms that take ad-
vantage of the existing DRAM structure. The first mech-
anism, Fast Parallel Mode, copies the data of a row inside
a subarray to another row inside the same DRAM subar-
ray by issuing back-to-back activate (i.e., row open) com-
mands to the source and the destination row. Figure 10 il-
lustrates the two steps of RowClone’s Fast Parallel Mode.
The first step activates source row A, which enables the
capture of the entire row’s data in the row buffer. The
second step activates destination row B, which enables
the copying of the contents of the row buffer into row
B. Thus, the back-to-back activate in the same subarray
enables the copying of source row A to destination row
B by using the row buffer as a temporary buffer for row
A’s contents. The second mechanism, Pipelined Serial
Mode, can transfer an arbitrary number of bytes from a
row in one bank to another row in another bank using
the shared internal bus among banks in a DRAM chip.

RowClone significantly reduces the raw latency and
energy consumption of bulk data copy and initialization,
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RowClone: In-DRAM Row Copy
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Figure 10: RowClone Fast Parallel Mode. Reproduced from [214].

leading to 11.6× latency reduction and 74.4× energy re-
duction for a 4kB bulk page copy (using the Fast Parallel
Mode), at very low cost (only 0.01% DRAM chip area
overhead) [108]. This reduction directly translates to
improvement in performance and energy efficiency of
systems running copy or initialization-intensive work-
loads. Our MICRO 2013 paper [108] shows that the
performance of six copy/initialization-intensive bench-
marks (including the fork system call, Memcached [330]
and a MySQL [331] database) improves between 4% and
66%. For the same six benchmarks, RowClone reduces
the energy consumption between 15% and 69%.

Recent works have improved upon the RowClone ap-
proach in various ways. First, Low-cost Interlinked Sub-
Arrays (LISA) [110] provides mechanisms to enable the
rapid transfer of data between one subarray to and adja-
cent subarray in the same bank, by enhancing the con-
nectivity of subarrays using isolation transistors. LISA
reduces inter-subarray copy latency by 9.2× and DRAM
energy by 48×, approaching the intra-subarray latency
and energy improvements of RowClone’s Fast Parallel
Mode. Second, FIGARO [121] improves upon LISA by
enabling fine-grained (i.e., column granularity) data copy
across subarrays within a bank using the shared global
I/O structures of the bank as an intermediate location.
This work shows significant benefit from FIGARO when
its principles and techniques are used to build a highly-
effective yet low-cost in-DRAM cache. Third, Network-
on-Memory (NoM) [123] improves the parallelism of
bank-to-bank copy as well as bank read/write opera-
tions by providing more connectivity between different
banks and chip I/O structures using the logic layer in 3D-
stacked memory. Fifth, the ComputeDRAM work [122]
shows that one can mimic the effect of RowClone’s back-
to-back activation mechanism in off-the-shelf DRAM

chips by violating the timing parameters such that two
wordlines in a subarray are activated back-to-back as
in Rowclone. This work shows that such a version of
RowClone can operate reliably in a variety of off-the-
shelf DRAM chips tested using the SoftMC infrastruc-
ture [38, 332]. Sixth, the PINATUBO work [104] show
that RowClone can effectively be performed in emerging
resistive memory chips, including Phase Change Mem-
ory (PCM) [26, 264].

We believe that RowClone provides very low-cost spe-
cialized support for a critical and often-used operation:
data copy and initialization. In latency-critical systems,
such as virtual machines, modern software is written
to, as much as possible, avoid large amounts of data
copy exactly because data copy is expensive in mod-
ern systems (because it goes through the processor over
a bandwidth-bottlenecked memory bus). Eliminating
copies as much as possible complicates software design,
making it less maintainable and readable. If RowClone
is implemented in real chips, perhaps the need for avoid-
ing data copies will greatly diminish due to the more-
than-an-order-of-magnitude latency reduction of page
copy, leading to easier-to-write and easier-to-maintain
software. As such, we believe that an idea as simple
as RowClone (and the work that builds on it) can have
exciting and forward-looking implications on making
both systems and software much faster, more efficient
and overall better.

6.2. Ambit

In addition to bulk data movement and initializa-
tion, many applications make use of bulk bitwise oper-
ations, i.e., bitwise operations on large bit vectors [333,
334]. Examples of such applications include bitmap in-
dices [335, 336, 337, 338] used in databases, bitwise
scan acceleration [339] in databases, accelerated doc-
ument filtering for web search [340], DNA sequence
alignment [13, 115, 190, 191, 192, 341, 342], encryp-
tion algorithms [343, 344, 345], graph processing [104],
and networking [334]. Accelerating bulk bitwise oper-
ations can thus significantly boost the performance and
energy efficiency of a wide range applications.

In order to avoid data movement bottlenecks when
the system performs these bulk bitwise operations, we
have recently proposed a new Accelerator-in-Memory
for bulk Bitwise operations (Ambit) [109, 111, 112]. Un-
like prior approaches, Ambit uses the analog operation
of existing DRAM technology to perform bulk bitwise
operations. Ambit consists of two components. The first
component, Ambit–AND–OR, implements a new op-
eration called triple-row activation, where the memory
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controller simultaneously activates three rows. Triple-
row activation, depicted in Figure 11, performs a bitwise
majority function across the cells in the three rows, due
to the charge sharing principles that govern the operation
of the DRAM array. In the initial state, all three rows are
closed 1 . In the example of Figure 11, two cells are in
the charged state. When the three wordlines are raised
simultaneously 2 , charge sharing results in a positive
deviation of the bitline. After sense amplification 3 , the
sense amplifier drives the bitline to VDD, and as a result,
fully charges the three cells. By controlling the initial
value of one of the three rows (e.g., C), we can use triple-
row activation to perform a bitwise AND or OR of the
other two rows, since the bitwise majority function can
be expressed as C(A + B) + C̄(AB). The second compo-
nent, Ambit–NOT, takes advantage of the two inverters
that are part of each sense amplifier in a DRAM subarray.
Ambit–NOT exploits the fact that, at the end of the sense
amplification process, the voltage level of one of the
inverters represents the negated logical value of the cell.
The Ambit design adds a special row to the DRAM array,
which is used to capture the negated value that is present
in the sense amplifiers. One possible implementation of
the special row [112] is a row of dual-contact cells (a
2-transistor 1-capacitor cell [346, 347]) that connect to
both inverters inside the sense amplifier. With the ability
to perform AND, OR, and NOT operations, Ambit is
functionally complete: It can reliably perform any bulk
bitwise operation completely using DRAM technology,
even in the presence of significant process variation (see
[112] for details).
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access transistor is called the wordline. We refer to the wire
on the other end of the sense ampli�er as bitline (“bitline bar”).

Figure 3 shows the state transitions involved in extracting
the state of the DRAM cell. In this �gure, we assume that the
cell capacitor is initially charged. The operation is similar if
the capacitor is initially empty. In the initial precharged state
 , both the bitline and bitline are maintained at a voltage level
of 1

2VDD . The sense ampli�er and the wordline are disabled.

The ACTIVATE command triggers an access to the cell.
Upon receiving the ACTIVATE, the wordline of the cell is
raised À, connecting the cell to the bitline. Since the capac-
itor is fully charged, and thus, at a higher voltage level than
the bitline, charge �ows from the capacitor to the bitline un-
til both the capacitor and the bitline reach the same voltage
level 1

2VDD + �. This phase is called charge sharing Ã. Af-
ter charge sharing is complete, the sense ampli�er is enabled
Õ. The sense ampli�er senses the di�erence in voltage level
between the bitline and bitline. The sense ampli�er then am-
pli�es the deviation to the stable state where the bitline is at
the voltage level of VDD (and the bitline is at 0). Since the ca-
pacitor is still connected to the bitline, the capacitor also gets
fully charged (i.e., restored) Œ. If the capacitor was initially
empty, then the deviation on the bitline would be negative
(towards 0), and the sense ampli�er would drive the bitline
to 0. Each ACTIVATE command operates on an entire row of
cells (typically 8 KB of data across a rank).

After the cell is activated, data can be accessed from the
bitline by issuing a READ or WRITE to the column containing
the cell (not shown in Figure 3; see [28, 45, 59, 67, 68, 71] for
details). When data in a di�erent row needs to be accessed,
the memory controller takes the subarray back to the initial
precharged state   using the PRECHARGE command. Upon
receiving this command, DRAM �rst lowers the raised word-
line, thereby disconnecting the capacitor from the bitline. Af-
ter this, the sense ampli�er is disabled, and both the bitline
and the bitline are driven to the voltage level of 1

2VDD .

3. Ambit-AND-OR
The �rst component of our mechanism, Ambit-AND-OR,

uses the analog nature of the charge sharing phase to perform
bulk bitwise AND and OR directly in DRAM. It speci�cally
exploits two facts about DRAM operation:

1. In a subarray, each sense ampli�er is shared by many
(typically 512 or 1024) DRAM cells on the same bitline.

2. The �nal state of the bitline after sense ampli�cation de-
pends primarily on the voltage deviation on the bitline
after the charge sharing phase.

Based on these facts, we observe that simultaneously activat-
ing three cells, rather than a single cell, results in a bitwise ma-
jority function—i.e., at least two cells have to be fully charged
for the �nal state to be a logical “1”. We refer to simultaneous
activation of three cells (or rows) as triple-row activation. We
now conceptually describe triple-row activation and how we
use it to perform bulk bitwise AND and OR operations.

3.1. Triple-Row Activation (TRA)
A triple-row activation (TRA) simultaneously connects a

sense ampli�er with three DRAM cells on the same bitline.
For ease of conceptual understanding, let us assume that the
three cells have the same capacitance, the transistors and bit-
lines behave ideally (no resistance), and the cells start at a
fully refreshed state. Then, based on charge sharing princi-
ples [57], the bitline deviation at the end of the charge sharing
phase of the TRA is:

� =
k.Cc.VDD + Cb.

1
2
VDD

3Cc + Cb
� 1

2
VDD

=
(2k � 3)Cc

6Cc + 2Cb
VDD (1)

where, � is the bitline deviation, Cc is the cell capacitance,
Cb is the bitline capacitance, and k is the number of cells in
the fully charged state. It is clear that � > 0 if and only if
2k � 3 > 0. In other words, the bitline deviation is positive if
k = 2, 3 and it is negative if k = 0, 1. Therefore, we expect
the �nal state of the bitline to be VDD if at least two of the
three cells are initially fully charged, and the �nal state to be
0, if at least two of the three cells are initially fully empty.

Figure 4 shows an example TRA where two of the three
cells are initially in the charged state  . When the wordlines
of all the three cells are raised simultaneously À, charge shar-
ing results in a positive deviation on the bitline. Therefore,
after sense ampli�cation Ã, the sense ampli�er drives the bit-
line to VDD , and as a result, fully charges all the three cells.2
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Figure 4: Triple-row activation

If A, B, and C represent the logical values of the three
cells, then the �nal state of the bitline is AB + BC + CA
(the bitwise majority function). Importantly, we can rewrite
this expression as C(A + B) + C(AB). In other words, by
controlling the value of the cell C , we can use TRA to execute
a bitwise AND or bitwise OR of the cells A and B. Since
activation is a row-level operation in DRAM, TRA operates
on an entire row of DRAM cells and sense ampli�ers, thereby
enabling a multi-kilobyte-wide bitwise AND/OR of two rows.

2Modern DRAMs use an open-bitline architecture [29, 57, 71, 79], where cells
are also connected to bitline. The three cells in our example are connected to
the bitline. However, based on the duality principle of Boolean algebra [104],
i.e., not (A and B) ⌘ (not A) or (not B), TRA works seamlessly even if all
the three cells are connected to bitline.

4

Figure 11: Triple-row activation in Ambit. Reproduced from [112].

Averaged across seven commonly-used bitwise opera-
tions (not, and, or, nand, nor, xor, xnor), Ambit with 8
DRAM banks improves bulk bitwise operation through-
put by 44× compared to an Intel Skylake processor [348],
and 32× compared to the NVIDIA GTX 745 GPU [349].
Compared to the DDR3 standard, Ambit reduces en-
ergy consumption of these operations by 35× on aver-
age. Compared to HMC 2.0 [151], Ambit improves

bulk bitwise operation throughput by 2.4×. When inte-
grated directly into the HMC 2.0 device, Ambit improves
throughput by 9.7× compared to processing in the logic
layer of HMC 2.0.

The Ambit work also shows that porting bitmap-index
based databases as well as the BitWeaving database to ex-
ecute Ambit can greatly improve query latencies. For ex-
ample, Ambit reduces the end-to-end query latencies by
5.4× to 6.6× for bitmap-based databases, with larger im-
provements coming from cases where more data needs to
be scanned in the database. For the BitWeaving database,
which is specifically designed to maximize bitwise oper-
ations so that the database can be relatively easily accel-
erated on modern GPUs, Ambit reduces the end-to-end
query latencies by 4× to 12×, again with larger improve-
ments coming from cases where more data needs to be
scanned in the database. These results are clearly very
promising on two important data-intensive applications.

A number of Ambit-like bitwise operation substrates
have been proposed in recent years, making use of
emerging resistive memory technologies, e.g., phase-
change memory (PCM) [26, 28, 264, 310, 311, 313],
SRAM [105, 106, 130, 131], or specialized computa-
tional DRAM [116, 122, 129, 134, 319]. These sub-
strates can perform bulk bitwise operations in a spe-
cial DRAM array augmented with computational cir-
cuitry [116, 128] and in resistive memories [104] like
PCM. Substrates similar to Ambit can perform simple
arithmetic operations in SRAM [105, 106] and arith-
metic and logical operations in memristors [107, 135,
136, 137, 138]. All of these works have shown signifi-
cant benefits from performing bitwise operations using
memory, for a wide variety of applications, including
databases, machine learning, graph processing, genome
analysis, and using a variety of different memory tech-
nologies, including DRAM, SRAM, PCM, memristors.

Recently, the ComputeDRAM work [122] showed
that carefully violating timing parameters between ac-
tivation commands can mimic the triple-row-activation
operation of Ambit in some existing off-the-shelf DRAM
chips, using the SoftMC infrastructure [38]. Thus, in-
DRAM AND and OR operations can be performed in
some real off-the-shelf DRAM chips even though clearly
such chips are not designed to perform such Ambit oper-
ations. This proof-of-concept demonstration shows that
the ideas presented in Ambit may not be far from reality:
if some existing DRAM chips that are not even designed
for in-DRAM bulk bitwise operations can perform such
operations, then DRAM chips that are carefully designed
for such operations will hopefully be even more capable!

We believe it is extremely important to continue ex-
ploring such low-cost Ambit-like substrates, as well
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as more sophisticated computational substrates, for all
types of memory technologies, old and new. Resistive
memory technologies are fundamentally non-volatile and
amenable to in-place updates, and as such, can lead to
even less data movement compared to DRAM, which
fundamentally requires some data movement to sense,
amplify and restore the data. Thus, we believe it is very
promising to examine the design of both charge-based
conventional and emerging resistive memory chips that
can incorporate Ambit-like bitwise operations and other
types of suitable computation capability. Going forward,
it is also critical to research frameworks that can enable
ease-of-programming of such substrates such that many
algorithms can take advantage of the massive bit-level
parallelism offered by Ambit-like PUM substrates.

6.3. Gather-Scatter DRAM
Many applications access data structures with different

access patterns at different points in time. Depending on
the layout of the data structures in the physical memory,
some access patterns require non-unit strides. As cur-
rent memory systems are optimized to access sequential
cache lines, non-unit strided accesses exhibit low spatial
locality, leading to memory bandwidth waste and cache
space waste.

Gather-Scatter DRAM (GS-DRAM) [97] is a low-cost
substrate that addresses this problem. It performs in-
DRAM data structure reorganization by accessing multi-
ple values that belong to a strided access pattern using
a single read/write command in the memory controller.
GS-DRAM uses two key new mechanisms. First, GS-
DRAM remaps the data of each cache line to different
DRAM chips such that multiple values of a strided ac-
cess pattern are mapped to different chips. This enables
the possibility of gathering different parts of the strided
access pattern concurrently from different DRAM chips.
Figure 12 show an example mapping on four DRAM
chips. Adjacent values and/or adjacent pairs of values
are swapped. Second, instead of sending separate re-
quests to each chip, the GS-DRAM memory controller
communicates a pattern ID to the memory module, as
Figure 12 shows. With the pattern ID, each DRAM chip
computes the address to be accessed independently via
a custom column translation logic (CTL) hardware that
is part of the DRAM module. This way, the returned
cache line contains different values of the strided pattern
gathered from different DRAM chips.

GS-DRAM achieves near-ideal memory bandwidth
and cache utilization in real-world workloads, such as
in-memory databases and matrix multiplication. For
in-memory databases, GS-DRAM outperforms a transac-
tional workload with column-store layout by 3× and an

Figure 12: GS-DRAM (Gather-Scatter DRAM) data mapping and chip
control overview. CTL refers to Column Translation Logic hardware
in the DRAM module. Reproduced from [97].

analytics workload with row-store layout by 2×, thereby
providing the best performance for both transactional
and analytical queries on databases (which in general
benefit from different types of data layouts). For ma-
trix multiplication, GS-DRAM is 10% faster than the
best-performing tiled implementation of the matrix multi-
plication algorithm. We note that the idea of GS-DRAM
is completely independent of memory technology, and
thus GS-DRAM can be used in any type of memory
module, including DRAM, SRAM, PCM, memristors,
STT-MRAM, RRAM.

6.4. In-DRAM Security Primitives

Secure computation is of critical importance in mod-
ern computing systems. Therefore, it is important for a
PIM system to support fundamental security primitives
that enable secure computation and security functions.
Doing so would enable PIM systems to execute a wider
range of workloads and do so securely. To this end, re-
cent work shows that Processing Using Memory can pro-
vide two basic security primitives: by carefully violating
DRAM access timing parameters and taking advantage
of the resulting characteristics of different DRAM cells
(i.e., whether they always/never fail or fail randomly), it
is possible to use DRAM to generate Physical Unclon-
able Functions (PUFs) [261] and true random numbers
(TRNs) [172].

PUFs are commonly used in cryptography to identify
devices based on the uniqueness of their physical mi-
crostructures. DRAM-based PUFs have two key advan-
tages: (1) DRAM is present in many modern computing
systems, and (2) DRAM has high capacity and thus can
provide many unique identifiers. However, traditional
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DRAM PUFs exhibit unacceptably high latencies and
are not runtime-accessible. Our recent work, the DRAM
Latency PUF [261], proposes a new class of fast, reliable
DRAM PUFs that are runtime-accessible, i.e., that can
be used during online operation with low latency. The
key idea is to reduce DRAM read access latency below
the reliable datasheet specifications using software-only
system calls. Doing so results in error patterns that re-
flect the compound effects of manufacturing variations in
various DRAM structures (e.g., capacitors, wires, sense
amplifiers). Some DRAM cells fail always or not at all,
and a combination of a set of such cells can be used to
generate a unique identifier for the device. Figure 13
illustrates the key idea of using the pattern of predictable
access latency failures in a DRAM subarray to generate
a unique DRAM device identifier. An experimental char-
acterization of 223 LPDDR4 DRAM chips from all three
major manufacturers shows that these error patterns (1)
satisfy runtime-accesible PUF requirements, and (2) are
quickly generated (i.e., at 88.2ms) irrespective of oper-
ating temperature. The DRAM latency PUF does not
require any modification to existing DRAM chips – it
only requires an intelligent memory controller that can
change timing parameters and identify DRAM regions
and cells that can be reliably used as PUFs.
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Figure 13: Key idea of DRAM latency PUF. Reproduced from [350].

Intentionally violating DRAM access timing parame-
ters can also be used to generate true random numbers
inside DRAM. The technique we propose in [172] de-
creases the DRAM row activation latency (timing param-
eter tRCD) below the datasheet specifications to induce
read errors, or activation failures. As a result, some
DRAM cells, called TRNG (True Random Number Gen-
erator) cells, fail truly randomly. By aggregating the
resulting data from multiple such TRNG cells, our tech-
nique, called D-RaNGe, provides a high-throughput and

low-latency TRNG. Figure 14 illustrates the key idea
of D-RaNGe: finding and using the TRNG cells in a
DRAM subarray to generate true random values.

We demonstrate the effectiveness of D-RaNGe in 282
LPDDR4 devices from the three major manufacturers,
and observe that the produced random data remains ro-
bust over both time and temperature variation. D-RaNGe
(1) successfully passes all NIST statistical tests for ran-
domness, and (2) generates true random numbers with
over two orders of magnitude higher throughput than the
state-of-the-art DRAM-based TRNG. D-RaNGe does
not require any modification to existing DRAM chips –
it only requires an intelligent memory controller that can
change timing parameters and identify DRAM cells that
can be reliably used as TRNG cells.
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Figure 14: Key idea of D-RaNGe. Reproduced from [351].

D-RaNGe and the DRAM Latency PUF show that
commodity DRAM devices can be reliably used to gen-
erate true random numbers and unique keys with high
throughput, low latency, and low power. As a result, PIM
systems can effectively generate true random numbers
and unique keys directly using DRAM itself. Doing
so can improve the security and privacy of the system:
PIM applications can directly generate random num-
bers or unique keys within DRAM and do not require
off-DRAM devices to generate them and transfer them
over the CPU to DRAM bus. Thus, random numbers
or unique keys are no longer transferred across buses,
and security-critical computations can securely happen
inside memory, which likely vastly improves the security
guarantees of a PIM-enabled system.

7. Processing Near Memory (PNM)

Processing near memory (PNM) involves adding or
integrating PIM logic (e.g., accelerators, simple process-
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ing cores, reconfigurable logic) close to or inside the
memory (e.g., [7, 13, 50, 51, 52, 53, 62, 81, 82, 83, 84,
86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 103,
113, 115, 117, 118, 119, 178, 179, 321, 322, 323, 324,
325, 326, 327]) Many of these works place PIM logic
inside the logic layer of 3D-stacked memories [149].
This PIM processing logic, which we also refer to as
PIM cores or PIM engines, interchangeably, can execute
portions of applications (from individual instructions to
functions) or entire threads and applications, depending
on the design of the architecture. Such PIM engines have
high-bandwidth and low-latency access to the memory
stacks that are on top of them, since the logic layer and
the memory layers are connected via high-bandwidth
vertical connections [149], e.g., through-silicon vias. In
this section, we discuss several examples of how systems
can make use of relatively simple PIM engines within
the logic layer to avoid data movement and thus obtain
significant performance and energy improvements on a
wide variety of application domains.

7.1. Tesseract: Coarse-Grained Application-Level PNM
Acceleration of Graph Processing

A promising approach to using PNM is to enable
coarse-grained acceleration of entire applications that
are heavily memory bound. In such a fundamentally
coarse-grained (i.e., application-granularity) approach,
an entire application is re-written to completely execute
on the PNM substrate, potentially using a specialized pro-
gramming model and specialized architecture/hardware.
This approach is especially promising because it can
provide the maximum performance and energy benefits
achievable from PNM acceleration of a given applica-
tion, since it enables the customization of the entire PNM
system for the application. We believe this approach can
be especially promising for widely-used data-intensive
applications, such as graph processing, machine learning,
databases, media processing, genome analysis.

A popular modern application is large-scale graph pro-
cessing [113, 352, 353, 354, 355, 356, 357, 358, 359,
360, 361]. Graph processing has broad applicability and
use in many domains, from social networks to machine
learning, from data analytics to bioinformatics. Graph
analysis workloads are known to put significant pres-
sure on memory bandwidth due to (1) large amounts of
random memory accesses across large memory regions
(leading to very limited cache efficiency and very large
amounts of unnecessary data transfer on the memory
bus) and (2) very small amounts of computation per each
data item fetched from memory (leading to very limited
ability to hide long memory latencies and exacerbating

the energy bottleneck by exercising the huge energy dis-
parity between memory access and computation). These
two characteristics make it very challenging to scale up
such workloads despite their inherent parallelism, es-
pecially with conventional architectures based on large
on-chip caches and relatively scarce off-chip memory
bandwidth for random access.

We can exploit the high bandwidth as well as the po-
tential computation capability available within the logic
layer of 3D-stacked memory to overcome the limitations
of conventional architectures for graph processing. To
this end, we design a programmable PNM accelerator
for large-scale graph processing, called Tesseract [52],
depicted at a high level in Figure 15. Tesseract con-
sists of (1) a new hardware architecture that effectively
utilizes the available memory bandwidth in 3D-stacked
memory by placing simple in-order processing cores in
the logic layer and enabling each core to manipulate
data only on the memory partition it is assigned to con-
trol, (2) an efficient method of communication between
different in-order cores within a 3D-stacked memory
to enable each core to request computation on data el-
ements that reside in the memory partition controlled
by another core, and (3) a message-passing based pro-
gramming interface, similar to how modern distributed
systems are programmed, which enables remote function
calls on data that resides in each memory partition. The
Tesseract design moves functions (i.e., computations and
temporary values) to data that is to be updated rather than
moving data elements across different memory partitions
and cores. It also includes two hardware prefetchers
specialized for memory access patterns of graph process-
ing, which operate based on the hints provided by our
programming model. Our comprehensive evaluations us-
ing five state-of-the-art graph processing workloads with
large real-world graphs show that the proposed Tesseract
PIM architecture improves average system performance
by 13.8× and achieves 87% average energy reduction
over conventional systems.

A significant amount of recent research has built upon
Tesseract to enable the graph processing PNM system to
be much more powerful [324, 325, 326, 327]. Among
these, GraphP [325] proposes a new graph partitioning
scheme that greatly reduces the costly communication
across 3D-stacked memory chips. Better partitioning is
also proposed in GraphH [324], together with a reconfig-
urable double mesh network that provides higher band-
width across 3D-stacked memory chips. GraphQ [327]
employs static and structured communication patterns to
eliminate irregular communication, which is one of the
key bottlenecks of Tesseract. Hetraph [326] combines
memristor-based analog computation units and CMOS-
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Figure 15: Overview of the Tesseract system for graph processing.
Reproduced from [214]. Originally presented in [52, 302].

based digital compute cores on the logic layer of 3D-
stacked memory chips, in order to use the most suitable
one for each phase of computation. Overall, combining
the multiple proposals reported by these works, using
the Tesseract-based PNM approach to accelerate graph
processing can lead to more than two orders of magni-
tude improvement both in performance as well as energy
efficiency compared to a conventional processor-centric
system with high-bandwidth memory. This demonstrates
the potential promise of designing an entire PNM sys-
tem from the ground up completely for an important
data-intensive application.

7.2. Function-Level PNM Acceleration of Mobile Con-
sumer Workloads

Another promising approach to using PNM, function-
level offloading, is less intrusive than Tesseract’s
application-granularity approach described in Sec-
tion 7.1. This approach can still be coarse-grained since
the function that is offloaded to the PNM logic can be
potentially arbitarily long. However, the entire applica-
tion does not need to be re-written. This approach is
promising because it can enable easier adoption of PNM
while still providing significant benefits. The key ques-
tion in this approach is which functions in an application
should be offloaded for PNM acceleration. Several re-
cent works tackle this question for various applications,
e.g., mobile consumer workloads [7], GPGPU work-
loads [86, 87], graph processing and in-memory database
workloads [62, 179], and a wide variety of workloads
from many domains [16]. We will discuss function-level
PNM acceleration of mobile consumer workloads in this
section, focusing on our recent work on the topic [7].

A very popular domain of computing today consists of
consumer devices, which include smartphones, tablets,
web-based computers such as Chromebooks, and wear-
able devices. In consumer devices, energy efficiency is
a first-class concern due to the limited battery capacity
and the stringent thermal power budget. We find that
data movement is a major contributor to the total system
energy and execution time in modern consumer devices.
Across all of the popular modern mobile consumer ap-
plications we study (described in the next paragraph),
we find that 62.7% of the total system energy, on av-
erage, is spent on data movement across the memory
hierarchy [7]. As described before, this large fraction
consumed on data movement is directly the result of the
processor-centric design paradigm of modern computing
systems.

We comprehensively analyze the energy and perfor-
mance impact of data movement for several widely-used
Google consumer workloads [7], which account for a
significant portion of the applications executed on con-
sumer devices. These workloads include (1) the Chrome
web browser [362], which is a very popular browser
used in mobile devices and laptops; (2) TensorFlow Mo-
bile [363], Google’s machine learning framework, which
is used in services such as Google Translate, Google
Now, and Google Photos; (3) the VP9 video playback en-
gine [364], and (4) the VP9 video capture engine [364],
both of which are used in many video services such as
YouTube and Google Hangouts. We find that offloading
key functions to the logic layer can greatly reduce data
movement in all of these workloads. However, there
are challenges to introducing PIM in consumer devices,
as consumer devices are extremely stringent in terms
of the area and energy budget they can accommodate
for any new hardware enhancement. As a result, we
need to identify what kind of in-memory logic can both
(1) maximize energy efficiency and (2) be implemented at
minimum possible cost, in terms of both area overhead
and complexity.

We find that many of target functions for PIM in con-
sumer workloads are comprised of simple operations
such as memcopy, memset, basic arithmetic and bitwise
operations, and simple data shuffling and reorganiza-
tion routines. Therefore, we can relatively easily im-
plement these PIM target functions in the logic layer of
3D-stacked memory using either (1) a small low-power
general-purpose embedded core or (2) a group of small
fixed-function accelerators. Our analysis shows that the
area of a PIM core and a PIM accelerator take up no more
than 9.4% and 35.4%, respectively, of the area available
for PIM logic in an HMC-like [151] 3D-stacked memory
architecture. Both the PIM core and PIM accelerator

20



eliminate a large amount of data movement, and thereby
significantly reduce total system energy (by an average
of 55.4% across all the workloads) and execution time
(by an average of 54.2%).

As evident from these results, function-level acceler-
ation provides significant performance and energy ben-
efits, but the benefits are not as high as full application-
level offloading and customization of the PNM system,
as we have shown for Tesseract in Section 7.1. This
is expected since function-level offloading makes much
fewer changes to the system and the programming model
than application-level offloading, customization and re-
thinking of the system.

7.3. Programmer-Transparent Function-Level PNM Ac-
celeration of GPU Applications

In the last decade, Graphics Processing Units (GPUs)
have become the accelerator of choice for a wide va-
riety of data-parallel applications. They deploy thou-
sands of in-order, SIMT (Single Instruction Multiple
Thread) cores that run lightweight threads. The heavily-
multithreaded GPU architecture is devised to hide the
long latency of memory accesses by interleaving threads
that execute arithmetic and logic operations. Despite
that, many GPU applications are still very memory-
bound [365, 366, 367, 368, 369, 370, 371, 372, 373, 374,
375], because the limited off-chip pin bandwidth cannot
supply enough data to the running threads.

Processing near memory in 3D-stacked memory archi-
tectures presents a promising opportunity to alleviate the
memory bottleneck in GPU systems. GPU cores placed
in the logic layer of a 3D-stacked memory can be directly
connected to the DRAM layers with high-bandwidth
(and low-latency) connections. Figure 16 presents an ex-
ample configuration with a main GPU system connected
to four 3D-stacked memories. In the logic layer of each
3D-stacked memory, there are GPU cores (also known as
streaming multiprocessors, SMs) connected to memory
vault controllers via a crossbar switch. In order to lever-
age the potential performance benefits of such systems,
it is necessary to enable computation offloading and data
mapping to multiple such compute-capable 3D-stacked
memories, such that GPU applications can benefit from
processing-in-memory capabilities in the logic layers of
such memories.

TOM (Transparent Offloading and Mapping) [86] pro-
poses two mechanisms to address computation offloading
and data mapping in such a system in a programmer-
transparent manner. First, it introduces new compiler
analysis techniques to identify code sections in GPU
kernels that can benefit from offloading to PIM engines.
The compiler estimates the potential memory bandwidth
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ABSTRACT
Main memory bandwidth is a critical bottleneck for modern GPU
systems due to limited o�-chip pin bandwidth. 3D-stacked mem-
ory architectures provide a promising opportunity to signi�cantly
alleviate this bottleneck by directly connecting a logic layer to the
DRAM layers with high bandwidth connections. Recent work has
shown promising potential performance bene�ts from an architec-
ture that connects multiple such 3D-stacked memories and o�oads
bandwidth-intensive computations to a GPU in each of the logic
layers. An unsolved key challenge in such a system is how to enable
computation o�oading and data mapping to multiple 3D-stacked
memories without burdening the programmer such that any applica-
tion can transparently bene�t from near-data processing capabilities
in the logic layer.

Our paper develops two new mechanisms to address this key chal-
lenge. First, a compiler-based technique that automatically identi�es
code to o�oad to a logic-layer GPU based on a simple cost-bene�t
analysis. Second, a software/hardware cooperative mechanism that
predicts which memory pages will be accessed by o�oaded code,
and places those pages in the memory stack closest to the o�oaded
code, to minimize o�-chip bandwidth consumption. We call the com-
bination of these two programmer-transparent mechanisms TOM:
Transparent O�oading and Mapping.

Our extensive evaluations across a variety of modern memory-
intensive GPU workloads show that, without requiring any program
modi�cation, TOM signi�cantly improves performance (by 30% on
average, and up to 76%) compared to a baseline GPU system that
cannot o�oad computation to 3D-stacked memories.

1. Introduction
Main memory bandwidth is a well-known critical bottleneck
for many GPU applications [21, 44, 56]. Emerging 3D-stacked
memory technologies o�er new opportunities to alleviate this
bottleneck by enabling very wide, energy-e�cient interfaces
to the processor [29, 30]. In addition, a logic layer within a
3D memory stack provides the opportunity to place process-
ing elements close to the data in memory to further improve
bandwidth and reduce power consumption [12, 26, 59]. In
these near-data processing (NDP) systems, through-silicon
vias (TSVs) from the memory dies can provide greater band-
width to the processing units on the logic layer within the
stack, while simultaneously removing the need for energy-
consuming and long-distance data movement between chips.

Recent work demonstrates promising performance and
energy e�ciency bene�ts from using near-data processing in
GPU systems [55, 60]. Figure 1 shows a high level diagram of
an example near-data processing system architecture. This
system consists of 1) multiple 3D-stacked memories, called
memory stacks, each of which has one or more streaming
multiprocessors (SMs) on its logic layer, and 2) the main GPU
with multiple SMs. O�oading computation to the logic layer
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Off-chip cross-stack link

Off-chip GPU-to-memory link
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Main GPU SMs
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Figure 1: Overview of an NDP GPU system.

SMs reduces data tra�c between the memory stacks and
the main GPU, alleviating the o�-chip memory bandwidth
bottleneck and reducing power consumption of the power-
hungry o�-chip memory bus. Unfortunately, there are two
key challenges in such NDP systems that need to be solved
to e�ectively exploit the bene�ts of near data processing.
To solve these challenges, prior works required signi�cant
programmer e�ort [2, 55, 60], which we aim to eliminate in
this work.

Challenge 1. Which operations should be executed on the
SMs in the main GPU versus the SMs in the memory stack? In-
structions must be steered to the compute units they most e�-
ciently execute on. For example, memory-intensive blocks of
instructions could bene�t from executing at the logic layer of
memory stacks that hold the data they access, while compute-
intensive portions could bene�t from remaining on the main
GPU. Although programmers may have such knowledge, it
would be a large burden for them to designate the most appro-
priate execution engine for all parts of the program, which
may change dynamically due to program phase behavior and
di�erent input sets.

Challenge 2. How should data be mapped to di�erent 3D
memory stacks? In a system with multiple memory stacks,
such as the one in Figure 1, an application’s data is spread
across multiple memory stacks to maximize bandwidth uti-
lization of the main GPU. However, the e�ciency of an NDP
operation primarily depends on whether the data accessed by
the o�oaded operation is located within the same memory
stack. We thus need to map data in a way that: 1) maximizes
the code/data co-location for NDP operations, and 2) max-
imizes bandwidth utilization for the code executing on the
main GPU. Doing so is challenging because di�erent code
blocks and di�erent threads in a program access di�erent
parts of data structures at di�erent times during program
execution. Determining which part of memory is accessed by
which code block instances is di�cult, and requiring the pro-
grammer to do this places a large burden on the programmer.

Our goal is to solve both challenges transparently to the
programmer. To this end, we develop two new mechanisms,
the combination of which we refer to as TOM (Transpar-

1

Figure 16: Overview of a PNM GPU system with a powerful main GPU
and less powerful logic-layer GPUs distributed across four 3D-stacked
memories. Reproduced from [86].

savings for each code block. To this end, the compiler
compares the bandwidth consumption of the code block,
when executed on the regular GPU cores, to the band-
width cost of transmitting/receiving input/output reg-
isters, when offloading to the GPU cores in the logic
layers. At runtime, a final offloading decision is made
based on dynamic system conditions, such as contention
for processing resources in the logic layer. Second, a
software/hardware cooperative mechanism predicts the
memory pages that will be accessed by offloaded code,
and places such pages in the same 3D-stacked memory
where the code will be executed. The goal is to make
PIM effective by ensuring that the data needed by the
PIM cores is in the same memory stack as the code that
needs it. Both mechanisms are completely transparent to
the programmer, who only needs to write regular GPU
code without any explicit PIM instructions or any other
modification to the code. We find that TOM improves the
average performance of a variety of GPGPU workloads
by 30% and reduces the average energy consumption by
11% with respect to a baseline GPU system without PIM
offloading capabilities.

A related work [87] identifies GPU kernels that are
suitable for PIM offloading by using a regression-based
affinity prediction model. A concurrent kernel manage-
ment mechanism uses the affinity prediction model and
determines which kernels should be scheduled concur-
rently to maximize performance. This way, the proposed
mechanism enables the simultaneous exploitation of the
regular GPU cores and the in-memory GPU cores. This
scheduling technique improves performance and energy
efficiency by an average of 42% and 27%, respectively.

7.4. Instruction-Level PNM Acceleration with PIM-
Enabled Instructions (PEI)

A finer-grained approach to using PNM is instruction-
level offloading. With this approach, individual instruc-
tions can be offloaded to the PNM engine and acceler-
ated. As we describe below, this fine-grained approach
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can have significant benefits in terms of potential adop-
tion since existing processor-centric execution models
already operate (i.e., perform computation) at the granu-
larity of individual instructions and all such machinery
can be reused to aid offloading to be as seamless as
possible with existing programming models and system
mechanisms. PIM-Enabled Instructions (PEI) [53] aims
to provide the minimal processing-in-memory support
to take advantage of PIM using 3D-stacked memory, in
a way that can achieve significant performance and en-
ergy benefits without changing the computing system
significantly. To this end, PEI proposes a collection of
simple instructions, which introduce small changes to
the computing system and no changes to the program-
ming model or the virtual memory system, in a system
with 3D-stacked memory. These instructions, generated
by the compiler or programmer to indicate potentially
PIM-offloadable operations in the program, are opera-
tions that can be executed either in a traditional host CPU
(that fetches and decodes them) or the PIM engine in
3D-stacked memory.

PIM-Enabled Instructions are based on two key ideas.
First, a PEI is a cache-coherent, virtually-addressed host
processor instruction that operates on only a single cache
block. It requires no changes to the sequential execution
and programming model, no changes to virtual memory,
minimal changes to cache coherence, and no need for
special data mapping to take advantage of PIM (because
each PEI is restricted to a single memory module due
to the single cache block restriction it has). Second, a
Locality-Aware Execution runtime mechanism decides
dynamically where to execute a PEI (i.e., either the host
processor or the PIM logic) based on simple locality
characteristics and simple hardware predictors. This run-
time mechanism executes the PEI at the location that
maximizes performance. In summary, PIM-Enabled In-
structions provide the illusion that PIM operations are
executed as if they were host instructions: the program-
mer may not even be aware that the code is executing on
a PIM-capable system and the exact same program con-
taining PEIs can be executed on conventional systems
that do not implement PIM.

Figure 17 shows an example architecture that can be
used to enable PEIs. In this architecture, a PEI is exe-
cuted on a PEI Computation Unit (PCU). To enable PEI
execution in either the host CPU or in memory, a PCU is
added to each host CPU and to each vault in an HMC-
like 3D-stacked memory. While the work done in a PCU
for a PEI might have required multiple CPU instructions
in the baseline CPU-only architecture, the CPU only
needs to execute a single PEI instruction, which is sent
to a central PEI Management Unit (PMU in Figure 17).

The PMU, which is in charge of the Locality-Aware Exe-
cution, launches the appropriate PEI operation on one of
the PCUs, either on the CPU or in 3D-stacked memory.

Figure 17: Example architecture for PIM-enabled instructions. Repro-
duced from [309]. Originally presented in [53, 376].

Examples of PEIs are integer increment, integer mini-
mum, floating-point addition, hash table probing, his-
togram bin index, Euclidean distance, and dot prod-
uct [53]. Data-intensive workloads such as graph pro-
cessing, in-memory data analytics, machine learning,
and data mining can significantly benefit from these PEIs.
Across 10 key data-intensive workloads, we observe that
the use of PEIs in these workloads, in combination with
the Locality-Aware Execution runtime mechanism, leads
to an average performance improvement of 47% and an
average energy reduction of 25% over a baseline CPU,
on reasonably large data set sizes.

As such, the benefits provided by the fine-grained PEI
approach are quite promising: with minimal changes
to the system, performance and energy improve signifi-
cantly. We therefore believe that the PEI mechanism can
ease the adoption of PIM systems going into the future,
a key issue we discuss in detail next.

7.5. Function-Level PNM Acceleration of Genome Anal-
ysis Workloads

Genome analysis is a critical data-intensive do-
main that can greatly benefit from acceleration [12,
13, 189, 190, 191, 192, 342, 377, 378, 379], specif-
ically processing-in-memory acceleration. We find
that function-level PNM acceleration via algorithm-
architecture co-design is especially beneficial for data-
intensive genome analysis workloads, as demonstrated
in two of our recent works [13, 115].

GRIM-Filter [115] is an in-memory accelerator for
genome seed filtering. In order to read the genome (i.e.,
DNA sequence) of an organism, geneticists often need
to reconstruct the genome from small segments of DNA
known as reads, as current DNA extraction techniques
are unable to extract the entire DNA sequence. A genome
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read mapper can perform the reconstruction by match-
ing the reads against a reference genome, and a core
part of read mapping is a computationally-expensive dy-
namic programming algorithm that aligns the reads to
the reference genome. One technique to significantly
improve the performance and efficiency of read mapping
is seed filtering [190, 191, 192, 342, 380], which reduces
the number of reference genome seeds (i.e., segments)
that a read must be checked against for alignment by
quickly eliminating seeds with no probability of match-
ing. GRIM-Filter proposes a state-of-the-art filtering
algorithm, and places the entire algorithm inside mem-
ory [115].

GRIM-Filter represents the entire reference genome
by dividing it into short continuous segments, called bins,
and performs analyses on metadata associated to each
bin. This metadata, represented as a bitvector, stores
whether or not a particular token (a short DNA sequence)
is present in the associated bin. Bitvectors are stored
in DRAM in column order, such that a DRAM access
to a row fetches the bits of the same token across many
bitvectors, as the left block of Figure 18 shows. GRIM-
Filter places custom logic for each vault in the logic
layer of 3D-stacked memory (center block of Figure 18).
In each vault, there are multiple per-bin logic modules
which operate on the bitvector of a single bin. Each
logic module consists of an incrementer, accumulator,
and comparator, as the right block of Figure 18 shows.

Figure 18: Left block: GRIM-Filter bitvector layout within a DRAM
bank. Center block: 3D-stacked DRAM with tightly integrated logic
layer stacked underneath with TSVs for high inter-layer data transfer
bandwidth. Right block: Custom GRIM-Filter logic placed in the logic
layer, for each vault. Reproduced from [115].

GRIM-Filter introduces a communication protocol
between the read mapper and the filter. The commu-
nication protocol allows GRIM-Filter to be integrated
into a full genome read mapper (e.g., FastHASH [380],
mrFAST [381], BWA-MEM [382], Minimap2 [383], by
allowing (1) the read mapper to notify GRIM-Filter about
the DRAM addresses on which to execute customized in-
memory filtering operations, (2) GRIM-Filter to notify
the read mapper once the filter generates a list of seeds
for alignment. Across 10 real genome read sets, GRIM-
Filter improves the performance of a full state-of-the-art

read mapper by 3.65× over a conventional CPU-only
system [115].

In a more recent work [13], we develop an algorithm-
architecture co-design to accelerate approximate string
matching (ASM), which is used at multiple points during
the mapping process of genome analysis. ASM enables
read mapping to account for sequencing errors and ge-
netic variations in the reads. Our work, GenASM, is
the first ASM acceleration framework for genome se-
quence analysis. GenASM performs bitvector-based
ASM, which can efficiently accelerate multiple steps
of genome sequence analysis. We modify the underly-
ing ASM algorithm (Bitap [384, 385]) to significantly
increase its parallelism and reduce its memory foot-
print. We accelerate this modified ASM algorithm, called
GenASM-DC for Distance Calculation, using an accel-
erator that performs very efficient Distance Calculation
between two input strings. We also develop a novel Bitap-
compatible algorithm for traceback (i.e., a method to col-
lect information about the different types of alignment
errors, or differences, between two input strings), called
GenASM-TB. Using our modified algorithm and the new
GenASM-TB algorithm, we design the first hardware
accelerator for Bitap. Figure 19 illustrates a high-level
overview of GenASM, depicting the flow of input and
intermediate data in the system as well as the commu-
nication paths of the two accelerators for GenASM-DC
and GenASM-TB. Our hardware accelerator, which is
placed in the logic layer of 3D-stacked memory to mini-
mize data movement overheads, consists of specialized
systolic-array-based compute units and on-chip SRAMs
that are designed to match the rate of computation with
memory capacity and bandwidth, resulting in an effi-
cient design whose performance scales linearly as we
increase the number of compute units working in par-
allel. Our detailed performance and energy evaluations
demonstrate that GenASM provides significant perfor-
mance and power benefits for three different use cases in
genome sequence analysis, outperforming the best prior
hardware accelerators as well as software baselines by
one or more orders of magnitude. We believe these re-
sults are quite promising and point to the need for further
exploration of PIM accelerators in genome analysis.

7.6. Application-Level PNM Acceleration of Time Series
Analysis

NATSA [118] is a near-memory processing acceler-
ator for time series analysis. Time series analysis is a
powerful technique for extracting and predicting events
with applications in epidemiology, genomics, neuro-
science, astronomy, environmental sciences, economics,
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Figure 19: Overview of GenASM. Different components are described
in detail in [13]. Figure reproduced from [13].

etc. NATSA implements matrix profile [386], the state-
of-the-art algorithm for time series analysis fully via
PNM. Matrix profile operates on large amounts of time
series data, but it has low arithmetic intensity. As a
result, data movement represents a major performance
bottleneck and energy waste, which NATSA alleviates
by performing the complete time series analysis process-
ing near memory using specialized accelerators. NATSA
places energy-efficient floating point arithmetic process-
ing units (PUs in Figure 20) close to 3D-stacked HBM
memory [149, 152], connected via silicon interposers,
as Figure 20 shows. NATSA improves performance by
up to 14.2× (9.9× on average) and reduces energy by
up to 27.2× (19.4× on average) over the state-of-the-art
multi-core implementation. NATSA also improves per-
formance by 6.3× and reduces energy by 10.2× over a
general-purpose PNM platform with 64 in-order cores.
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8. Enabling the Adoption of PIM

Pushing some or all of the computation for a program
from the CPU to memory introduces new challenges for
system architects and programmers to overcome. Fig-
ure 21 lists some of these key challenges. These chal-
lenges must be addressed carefully and systematically in
order for PIM to be adopted as a mainstream architecture
in a wide variety of systems and workloads, and in a
seamless manner that does not place heavy burden on
the vast majority of programmers. In this section, we
discuss several of these system-level and programming-
level challenges, and highlight a number of our works
that have addressed these challenges for a wide range of
PIM architectures. We believe future research should ex-
amine solutions to these challenges with an open mindset
that is keen on enabling adoption, since the widespread
success of the PIM paradigm critically depends on effec-
tive solutions to these challenges.

Barriers to Adoption of PIM

1. Functionality of PIM and applications/software for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime and compilation systems for adaptive scheduling, 
data mapping, access/sharing control

5. Infrastructures and models to assess benefits and feasibility

181

All can be solved with change of mindset

Figure 21: Potential barriers to adoption of PIM. Reproduced
from [203, 214].

8.1. Programming Models and Code Generation for
PIM

Two open research questions to enable the adoption
of PIM are 1) what should the programming models
be, and 2) how can compilers and libraries alleviate the
programming burden?

While PIM-Enabled Instructions [53] work well for
offloading fine-grained and small amounts of computa-
tion to memory, they can potentially introduce overheads
while taking advantage of PIM for large tasks, due to
the need to frequently exchange information between
the PIM processing logic and the CPU. Hence, there is
a need for researchers to investigate how to integrate
PIM instructions with other compiler-based methods or
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library calls that can support PIM integration, and how
these approaches can ease the burden on the program-
mer, by enabling seamless offloading of instructions or
function/library calls.

Such solutions can often be platform-dependent. One
of our recent works [86] examines compiler-based mech-
anisms to decide what portions of code should be of-
floaded to PIM processing logic in a GPU-based system
in a manner that is transparent to the GPU programmer.
Another recent work [87] examines system-level tech-
niques that decide which GPU application kernels are
suitable for PIM execution.

As described in Section 7 with multiple promising
examples, different granularities of code offloading in
Processing Near Memory architectures have different
implications for performance and energy as well as sys-
tem complexity. These different granularities also have
implications on programming and code generation com-
plexity. Adoption-minded solutions should clearly take
into account the granularity of code offloading and how
a PNM system supports code execution.

Similarly, programming and code generation frame-
works for Processing Using Memory approaches like
Ambit are also critical for such approaches to become
widely adopted. Programming model, compiler and li-
brary support for expressing, extracting and generating
bulk bitwise operations in a program can greatly help the
adoption of in-memory bulk bitwise execution models
like Ambit. We believe there is exciting research to do
in these directions.

Determining effective programming interfaces and the
necessary as well as useful compiler/library support to
effectively perform PIM remain open research and design
questions, which are important for future works to tackle.

8.2. PIM Runtime: Scheduling and Data Mapping

We identify four key runtime issues in PIM: (1) what
code to execute near data, (2) when to schedule execu-
tion on PIM (i.e., when is it worth offloading compu-
tation to the PIM cores), (3) how to map data to multi-
ple memory modules such that PIM execution is viable
and effective, and (4) how to effectively share/partition
PIM mechanisms/accelerators at runtime across multi-
ple threads/cores to maximize performance and energy
efficiency. We have already proposed several approaches
to solve these four issues, yet much research remains to
be done to enable a robust and effective PIM runtime
system that can be effective under many conditions.

The first key issue is to identify which portions of
an application are suitable for PIM. We call such por-
tions PIM offloading candidates. While PIM offloading

candidates can be identified manually by a programmer,
the identification would require significant programmer
effort along with a detailed understanding of the hard-
ware tradeoffs between CPU cores and PIM cores. For
architects who are adding custom PIM logic (e.g., fixed-
function accelerators, which we call PIM accelerators) to
memory, the tradeoffs between CPU cores and PIM ac-
celerators may not be known before determining which
portions of the application are PIM offloading candi-
dates, since the PIM accelerators are tailored for the PIM
offloading candidates. To alleviate the burden of manu-
ally identifying PIM offloading candidates, we develop a
systematic toolflow for identifying PIM offloading can-
didates in an application [7, 62, 179, 321]. This toolflow
uses a system that executes the entire application on the
CPU to evaluate whether each PIM offloading candidate
meets the constraints of the system under consideration.
For example, when we evaluate workloads for mobile
consumer devices (e.g., Chrome web browser, Tensor-
Flow Mobile, video playback, and video capture) [7],
we use hardware performance counters and our energy
model to identify candidate functions that could be PIM
offloading candidates. A function is a PIM offloading
candidate in a mobile consumer device if it meets the
following conditions:

1. It consumes a significant fraction (e.g., more than
30%) of the overall workload energy consumption,
since energy reduction is a primary objective in
mobile systems and workloads.

2. Its data movement consumes a significant fraction
(e.g., more than 30%) of the total workload energy
to maximize the potential energy benefits of offload-
ing to PIM.

3. It is memory-intensive (e.g., its last-level cache
misses per kilo instruction, or MPKI, is greater
than 10 [200, 387, 388, 389]), as the energy sav-
ings of PIM is higher when more data movement is
eliminated.

4. Data movement is the single largest component of
the function’s energy consumption.

Figure 22 shows two example functions in Google’s
Mobile TensorFlow machine learning inference frame-
work [363, 390] that are identified to be PIM offload-
ing candidates using the afore-described methodology:
packing/unpacking and quantization [7]. Note that these
functions are together responsible for more than 54%
of the data movement energy in the examined neural
networks for this workload, which spend more than 57%
of their execution energy on data movement, as depicted
in Figure 22.
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TensorFlow Mobile

57.3% of the inference energy is spent on
data movement

54.4% of the data movement energy comes from 
packing/unpacking and quantization

Inference Prediction

Figure 22: A majority of the data movement energy in TensorFlow
Mobile machine learning inference framework [363, 390] is caused
by two key functions. Reproduced from [214]. Originally presented
in [7, 391].

Some of our other recent works in PIM identify suit-
able PIM offloading candidates with different granular-
ities. PIM-Enabled Instructions [53] propose various
operations that can benefit from execution near or inside
memory, such as integer increment, integer minimum,
floating-point addition, hash table probing, histogram
bin index, Euclidean distance, and dot product. GPU
applications also contain several parts that are suitable
for offloading to PIM engines [86, 87]. Bulk memory
operations (copy, initialization) and bulk bitwise oper-
ations are good candidates for Ambit-like processing
using DRAM approaches [108, 109, 112, 125], as we
discussed earlier. For PUM approaches that can execute
more complex operations (e.g., addition, multiplication)
using memory, the operation complexity (i.e., the latency
of an operation for a certain data type) can determine
how beneficial offloading to PUM can be compared to
CPU execution. A recent analytical model [392] helps
to evaluate such offloading tradeoffs in memristor-based
PUM [136, 137, 138].

In several of our research works, we propose runtime
mechanisms for dynamic scheduling of PIM offloading
candidates, i.e., mechanisms that decide whether or not
to actually offload code that is marked to be potentially
offloaded to PIM engines. In [53], we develop a locality-
aware scheduling mechanism for PIM-enabled instruc-
tions. For GPU-based systems [86, 87], we explore the
combination of compile-time and runtime mechanisms
for identification and dynamic scheduling of PIM of-
floading candidates.

The best mapping of data and code that enables the
maximal benefits from PIM depends on the applications
and the computing system configuration as well as the

type of PIM employed in the system. For instance, in
order to be able operate on two source arrays inside
DRAM with PUM approaches [108, 109, 110, 111, 112,
120, 124, 145, 319], one key issue is how to guarantee
the alignment of the two arrays inside the same DRAM
subarray. Practical solutions for this issue need to involve
both the memory controller and the operating system to
enable that arrays aligned in virtual memory can also
be physically aligned in DRAM. he programmer and/or
the compiler also likely need to carefully annotate and
communicate computation patterns on large data blocks
so that the system software and the memory controller
can cooperatively map the data blocks in an appropriate
manner that is amenable to bulk bitwise computation
via PUM. Another key issue is how to move partial re-
sults generated in one DRAM subarray to other DRAM
subarrays to continue the execution with other input
operands residing in those subarrays. Several of our re-
cent works [108, 121, 123, 260] propose mechanisms
for in-DRAM internal data movement that can facilitate
gathering of data in appropriate rows/subarrays/banks in
a DRAM chip.

Programmer-transparent data and code mapping mech-
anisms are especially desirable for PIM adoption. In [86],
we present a software/hardware cooperative mechanism
to map data and code to several 3D-stacked memory
chips in regular GPU applications with relatively regular
memory access patterns. This work also deals with effec-
tively sharing PIM engines across multiple threads, as
GPU code sections can be offloaded from different GPU
cores to the PNM GPU cores in 3D-stacked memory
chips. Developing new approaches to data/code map-
ping and scheduling for a wide variety of applications
and possible core and memory configurations is still
necessary.

In summary, there are still several key research ques-
tions that should be investigated in runtime systems for
PIM, which perform scheduling and data/code mapping:

• What are simple mechanisms to enable and dis-
able PIM execution? How can PIM execution
be throttled for highest performance gains? How
should data locations and access patterns affect
where/whether PIM execution should occur?

• Which parts of a given application’s code should
be executed on PIM? What are simple mechanisms
to identify when those parts of the application code
can benefit from PIM?

• What are scheduling mechanisms to share PIM en-
gines between multiple requesting cores to maxi-
mize benefits obtained from PIM?
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• What are simple mechanisms to manage access to
a memory that serves both CPU requests and PIM
requests?

8.3. Memory Coherence
In a traditional multithreaded execution model that

makes use of shared memory, writes to memory must
be coordinated between multiple CPU cores, to ensure
that threads do not operate on stale data values. Since
CPUs include per-core private caches, when one core
writes data to a memory address, cached copies of the
data held within the caches of other cores must be up-
dated or invalidated, using a mechanism known as cache
coherence. Within a modern chip multiprocessor, the
per-core caches perform coherence actions over a shared
interconnect, with hardware coherence protocols.

Cache coherence is a major system challenge for en-
abling PIM architectures as general-purpose execution
engines, as PIM processing logic can modify the data
it processes, and this data may also be needed by CPU
cores. If PIM processing logic is coherent with the pro-
cessor, the PIM programming model is relatively simple,
as it remains similar to conventional shared memory
multithreaded programming, which makes PIM architec-
tures easier to adopt in general-purpose systems. Thus,
allowing PIM processing logic to maintain such a simple
and traditional shared memory programming model can
facilitate the widespread adoption of PIM. However, em-
ploying traditional fine-grained cache coherence (e.g., a
cache-block based MESI protocol [393]) for PIM forces
a large number of coherence messages to traverse the nar-
row processor-memory bus, potentially undoing the ben-
efits of high-bandwidth and low-latency PIM execution.
Unfortunately, solutions for coherence proposed by prior
PIM works [52, 53, 86] either place some restrictions on
the programming model (by eliminating coherence and
requiring message passing based programming) or limit
the performance and energy gains achievable by a PIM
architecture.

We have developed a new coherence protocol,
CoNDA [62, 179, 321], that maintains cache coherence
between PIM processing logic and CPU cores without
sending coherence requests for every memory access.
Instead, as shown in Figure 23, CoNDA enables efficient
coherence by having the PIM logic:

1. speculatively acquire coherence permissions for
multiple memory operations over a given period
of time (which we call optimistic execution; 1 in
the figure);

2. batch the coherence requests from the multiple
memory operations into a set of compressed co-
herence signatures ( 2 and 3 );

3. send the signatures to the CPU to determine whether
the speculation violated any coherence semantics.

Whenever the CPU receives compressed signatures from
the PIM core (e.g., when the PIM kernel finishes),
the CPU performs coherence resolution ( 4 ), where it
checks if any coherence conflicts occurred. If a con-
flict exists, any dirty cache line in the CPU that caused
the conflict is flushed, and the PIM core rolls back and
re-executes the code that was optimistically executed.

Figure 23: High-level operation of CoNDA, a new coherence mecha-
nism for near-data accelerators, including PNM and PUM. Reproduced
from [309]. Originally presented in [179].

As a result of this ”lazy” checking of coherence viola-
tions, CoNDA approaches near-ideal coherence behavior:
the performance and energy consumption of a PIM ar-
chitecture with CoNDA are, respectively, within 10.4%
and 4.4% the performance and energy consumption of
a system where coherence is performed at zero latency
and energy cost.

Despite the leap that CoNDA [62, 179, 321] represents
for memory coherence in computing systems with PIM
support, we believe that it is still necessary to explore
other solutions for memory coherence that can efficiently
deal with all types of workloads and PIM offloading
granularities as well as different approaches to PIM.

8.4. Virtual Memory Support

When an application needs to access its data inside
the main memory, the CPU core must first perform an
address translation, which converts the data’s virtual
address into a physical address within main memory. If
the translation metadata is not available in the CPU’s
translation lookaside buffer (TLB), the CPU must invoke
the page table walker in order to perform a long-latency
page table walk that involves multiple sequential reads
to the main memory and lowers the application’s perfor-
mance. In modern systems, the virtual memory system
also provides access protection mechanisms.

A naive solution to reducing the overhead of page
walks is to utilize PIM engines to perform page table
walks. This can be done by duplicating the content of
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the TLB and moving the page walker to the PIM pro-
cessing logic in main memory. Unfortunately, this is
either difficult or expensive for three reasons. First, co-
herence has to be maintained between the CPU’s TLBs
and the memory-side TLBs. This introduces extra com-
plexity and off-chip requests. Second, duplicating the
TLBs increases the storage and complexity overheads on
the memory side, which should be carefully contained.
Third, if main memory is shared across CPUs with differ-
ent types of architectures, page table structures and the
implementation of address translations can be different
across the different architectures. Ensuring compatibility
between the in-memory TLB/page walker and all possi-
ble types of virtual memory architecture designs can be
complicated and often not even practically feasible.

To address these concerns and reduce the overhead
of virtual memory, we explore a tractable solution for
PIM address translation as part of our in-memory pointer
chasing accelerator, IMPICA [89]. IMPICA exploits
the high bandwidth available within 3D-stacked memory
to traverse a chain of virtual memory pointers within
DRAM, without having to look up virtual-to-physical ad-
dress translations in the CPU translation lookaside buffer
(TLB) and without using the page walkers within the
CPU. IMPICA’s key ideas are 1) to use a region-based
page table, which is optimized for PIM acceleration,
and 2) to decouple address calculation and memory ac-
cess with two specialized engines. IMPICA improves
the performance of pointer chasing operations in three
commonly-used linked data structures (linked lists, hash
tables, and B-trees) by 92%, 29%, and 18%, respectively.
On a real database application, DBx1000, IMPICA im-
proves transaction throughput and response time by 16%
and 13%, respectively. IMPICA also reduces overall
system energy consumption (by 41%, 23%, and 10% for
the three commonly-used data structures, and by 6% for
DBx1000).

Beyond pointer chasing operations that are tackled by
IMPICA [89], providing efficient mechanisms for PIM-
based virtual-to-physical address translation (as well as
access protection) remains a challenge for the general-
ity of applications, especially those that access large
amounts of virtual memory [372, 373, 394].

Looking forward, we recently introduced a
fundamentally-new virtual memory framework, the
Virtual Block Interface (VBI) [395], which proposes
to delegate physical memory management duties
completely to the memory controller hardware as well
as other specialized hardware. Figure 24 compares
VBI to conventional virtual memory at a very high
level. Designing VBI-based PIM units that manage
memory allocation and address translation can help

fundamentally overcome this important virtual memory
challenge of PIM systems. We refer the reader to our
VBI work [395] for details.

VBI:	Overview
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Figure 24: The Virtual Block Interface versus conventional virtual
memory. Reproduced from [395].

8.5. Data Structures for PIM
Current systems with many cores run applications with

concurrent data structures to achieve high performance
and scalability, with significant benefits over sequential
data structures. Such concurrent data structures are often
used in heavily-optimized server systems today, where
high performance is critical. To enable the adoption
of PIM in such many-core systems, it is necessary to
develop concurrent data structures that are specifically
tailored to take advantage of PIM.

Pointer chasing data structures and contended data
structures require careful analysis and design to lever-
age the high bandwidth and low latency of 3D-stacked
memories [98]. First, pointer chasing data structures,
such as linked-lists and skip-lists, have a high degree of
inherent parallelism and low contention, but a naive im-
plementation in PIM cores is burdened by hard-to-predict
memory access patterns. By combining and partitioning
the data across 3D-stacked memory vaults, it is possible
to fully exploit the inherent parallelism of these data
structures. Second, contended data structures, such as
FIFO queues, are a good fit for CPU caches because they
expose high locality. However, they suffer from high
contention when many threads access them concurrently.
Their performance on traditional CPU systems can be
improved using a new PIM-based FIFO queue [98]. The
proposed PIM-based FIFO queue uses a PIM core to
perform enqueue and dequeue operations requested by
CPU cores. The PIM core can pipeline requests from
different CPU cores for improved performance.

As recent work [98] shows, PIM-managed concurrent
data structures can outperform state-of-the-art concur-
rent data structures that are designed for and executed
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on multiple cores. We believe and hope that future work
will enable other types of data structures (e.g., hash ta-
bles, search trees, priority queues) to benefit from PIM-
managed designs.

8.6. Benchmarks and Simulation Infrastructures
To ease the adoption of PIM, it is critical that we ac-

curately assess the benefits and shortcomings of PIM.
Accurate assessment of PIM requires (1) a preferably
large set of real-world memory-intensive applications
that have the potential to benefit significantly when ex-
ecuted near memory, (2) a rigorous methodology to
(automatically) identify PIM offloading candidates, and
(3) simulation/evaluation infrastructures that allow ar-
chitects and system designers to accurately analyze the
benefits and overheads of adding PIM processing logic
to memory and executing code on this processing logic.

In order to explore what processing logic should be
introduced near memory, and to know what properties
are ideal for PIM kernels, we believe it is important
to begin by developing a real-world benchmark suite
of a wide variety of applications that can potentially
benefit from PIM. While many data-intensive applica-
tions, such as pointer chasing and bulk memory copy,
can potentially benefit from PIM, it is crucial to exam-
ine important candidate applications for PIM execution,
and for researchers to agree on a common set of these
candidate applications to focus the efforts of the commu-
nity as well as to enable reproducibility of results, which
is important to assess the relative benefits of different
ideas developed by different researchers. We believe
that these applications should come from a number of
popular and emerging domains. Examples of potential
domains include data-parallel applications, neural net-
works, machine learning, graph processing, data analyt-
ics, search/filtering, mobile workloads, bioinformatics,
Hadoop/Spark programs, security/cryptography, and in-
memory data stores. Many of these applications have
large data sets and can benefit from high memory band-
width and low memory latency benefits provided by com-
putation near memory. In our prior work, we have started
identifying several applications that can benefit from
PIM in graph processing frameworks [52, 53], pointer
chasing [51, 89], databases [62, 89, 97, 179, 321], con-
sumer workloads [7], time series analysis [118], genome
analysis [13, 115], machine learning [7], and GPGPU
workloads [86, 87]. However, there is significant room
for methodical development of a large-scale PIM bench-
mark suite, which our very recent work [16] takes the
first steps for.

A systematic methodology for (automatically) iden-
tifying potential PIM kernels (i.e., code portions that

can benefit from PIM) within an application can, among
many other benefits, 1) ease the burden of programming
PIM architectures by aiding the programmer to identify
what should be offloaded, 2) ease the burden of and im-
prove the reproducibility of PIM research, 3) drive the
design and implementation of PIM functional units that
many types of applications can leverage, 4) inspire the
development of tools that programmers and compilers
can use to automate the process of offloading portions of
existing applications to PIM processing logic, and 5) lead
the community towards convergence on PIM designs and
offloading candidates. In a very recent work that is to
appear in 2021 [16], we take the first steps in developing
such a methodology and the first benchmark suite for
PIM. We refer the reader to that work [16] for detailed
description and analyses of the methodology and the new
PIM benchmark suite. We believe this work opens up
many more steps to extend the methodology and develop
other new methodologies for identifying PIM kernels
as well as automatic tools (e.g., profilers, compilers,
runtime systems) that implement these methodologies,
generate optimized code for PIM (potentially with help
from programmer annotations), coordinate offloading to
PIM cores, etc.

Along these lines, our NAPEL [119] work is an early
example of an ML-based performance and energy esti-
mation framework for PNM. NAPEL leverages ensemble
learning techniques to generate PNM performance and
energy prediction models that are based on microarchi-
tecture parameters and application characteristics. Fig-
ure 25 shows the high-level overview of NAPEL training
and prediction, the components of which are explained
in detail in [119]. Our evaluations show that NAPEL
can make fast yet accurate predictions of PIM offloading
suitability for previously-unseen applications on general-
purpose PNM architectures.
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Figure 25: Overview of NAPEL training and prediction. Components
are explained in detail in [119]. Figure reproduced from [119].

We also need simulation infrastructures to accurately
model the performance and energy of PIM hardware
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structures, available memory bandwidth, and communi-
cation overheads when we execute code near or inside
memory. Highly-flexible and commonly-used memory
simulators (e.g., Ramulator [148, 396], SoftMC [38,
332]) can be combined with full-system simulators
(e.g., gem5 [397], zsim [398], gem5-gpu [399], GPG-
PUSim [400]) to provide a robust environment that can
evaluate how various PIM architectures affect the entire
compute stack, and can allow designers to identify mem-
ory, workload, and system characteristics that affect the
efficiency of PIM execution. A powerful open-source
simulation infrastructure that provides such environment
is Ramulator-PIM [401], first introduced by our NAPEL
framework [119], which combines Ramulator [148, 396]
and zsim [398]. Ramulator-PIM can simulate a wide
range of configurations of PIM in-order and out-of-order
cores and accelerators with different memory technolo-
gies.

8.7. Real PIM Hardware Systems and Prototypes

As industry and academia push toward enabling the
PIM paradigm, it will be important to also provide real
PIM hardware or prototypes. Such hardware can greatly
enable and accelerate evaluations of both adoption and
research issues in PIM, leading to learnings from real
workloads executed on real systems and thus better PIM
systems over time. Such real hardware for PIM is very
much useful for both PUM and PNM approaches.

We are aware of at least two such real hardware sys-
tems. First, ComputeDRAM [122], which is based on the
SoftMC memory controller infrastructure [38] can po-
tentially provide the opportunity to test Rowclone (Sec-
tion 6.1) and Ambit (Section 6.2) PUM approaches on
real workloads, albeit likely at reduced reliability since
it exploits off-the-shelf DRAM chips, as we discussed in
Section 6.2.

Second, the recent UPMEM PIM architecture [402,
403], shown in Figure 26 is the first real-world publicly-
available PIM architecture. This PNM system consists
of one simple processors (called DRAM Processing Unit,
DPU) implemented next to each bank in a DRAM chip.
A DPU has high-bandwidth, low-latency, low-energy ac-
cess to all the data in its corresponding bank. UPMEM
has produced real DRAM modules that contain 16 PNM-
capable DRAM chips each. Each DRAM chip includes
eight 64-MB DRAM banks, each of which has a DPU
attached running at a few hundred MHz. A full-blown
UPMEM system configuration is expected to soon have
2560 DPUs capable of operating on 160 GB of DRAM
memory. We believe the existence of such real PIM
hardware can greatly enable and accelerate software and

adoption-related research for PIM, specifically PNM ar-
chitectures, and can set a promising and useful baseline
for future research in PNM systems.

UPMEM Processing-in-DRAM Engine (2019)
n Processing in DRAM Engine 
n Includes standard DIMM modules, with a large 

number of DPU processors combined with DRAM chips.

n Replaces standard DIMMs
q DDR4 R-DIMM modules

n 8GB+128 DPUs (16 PIM chips)
n Standard 2x-nm DRAM process

q Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
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Figure 26: UPMEM PIM architecture and hardware. Reproduced
from [214].

8.8. Security Considerations

As a new processing paradigm, PIM introduces new
security considerations related to its integration in real-
world computing systems. First, there is a need to pro-
vide security guarantees in systems with PIM capabil-
ities so that applications that offload code can execute
securely in PIM computation units. Naively providing
access to PIM computation units for all concurrently-
executing applications may lead to potentially unfore-
seen data leakage and other issues. Second, the ability to
perform computation inside or near memory using PIM
can enable the opportunity to specialize such computa-
tion mechanisms to enhance system security (as briefly
discussed in Section 6.4). We cover each of these topics
briefly but envision many future ideas related to them in
future PIM research and designs.

First, PIM computation units should provide at least
as good security primitives as processor-centric computa-
tion units of today. This means that there should at least
be isolation between concurrently-executing processes
on PIM computation units and access control to PIM re-
sources (both data storage and computation units) should
be securely managed. Partitioning of computation units,
as done in [395], can enable isolation. We believe new
approaches to virtualization and cross-layer design that
provide extensive hardware management capabilities in
the memory controllers, such as the Virtual Block In-
terface (VBI) [395] or Expressive Memory [404, 405]
can not only make PIM security mechanisms easier and
more effective to implement but can provide much more
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enhanced PIM security mechanisms than existing sys-
tems.

As in existing systems, reliability and data integrity
are important in PIM systems, especially in PUM ap-
proaches, where memory rows can be frequently ac-
tivated and deactivated. The RowHammer vulnerabil-
ity [20, 24, 45, 46, 167, 211] (Section 2) can potentially
become exacerbated in PIM systems but it can also be
more easily preventable using an intelligent memory
controller as in PIM. The cell wearout problem due to
endurance limitations in some modern NVM technolo-
gies can limit the reliability and thus effectiveness of
NVM-based PUM approaches [104, 136, 137, 138, 140]
and thus needs to be addressed. Employing in-memory
error correcting code (ECC) techniques [170, 171, 406]
is likely necessary in future PIM approaches and PIM
systems should likely be designed to support ECC tech-
niques to maintain data reliability in the presence of com-
putation mechanisms using/near memory and increasing
noise and reliability problems due to technology scaling.

Second, the PIM paradigm enables new opportuni-
ties to increase the security and privacy of computations
and data, and thus entire computing systems. If data
and computation stay within one chip, then the expo-
sure of such data and computation to many attacks will
likely be minimized. By eliminating data movement be-
tween memory and processor, the PIM paradigm takes a
large step towards getting rid of one of the most attacker-
exposed type of data movement, i.e., data movement
over the main memory bus. Enabling the secure and
private execution of computations in PIM systems can
therefore potentially enable fundamentally more secure
computing systems. This requires providing support
for such secure computation, as we discussed earlier in
Section 6.4. For example, our afore-described DRAM
latency PUF [261] and DRAM latency True Random
Number Generator [172] are notable examples of novel
in-DRAM security primitives that take advantage of Pro-
cessing Using Memory that were briefly discussed in
Section 6.4. We envision future works on PIM will pro-
vide many other security primitives, applications, and
use cases.

9. Conclusion and Future Outlook

Data movement is a major performance and energy
bottleneck plaguing modern computing systems. A large
fraction of system energy is spent on moving data across
the memory hierarchy into the processors (and accelera-
tors), the only place where computation is performed in
a modern system. Fundamentally, the large amounts of

data movement are caused by the processor-centric de-
sign paradigm of modern computing systems: processing
of data is performed only in the processors (and acceler-
ators), which are far away from the data, and as a result,
data moves a lot in the system, to facilitate computation
on it.

In this work, we argue for a paradigm shift in the de-
sign of computing systems toward a data-centric design
paradigm that enables computation capability in places
where data resides and thus performs computation with
minimal data movement. Processing-in-memory (PIM)
is a fundamentally data-centric design approach for com-
puting systems that enables the ability to perform oper-
ations in or near memory. Recent advances in modern
memory architectures have enabled us to extensively
explore two novel approaches to designing PIM archi-
tectures: PUM (Processing Using Memory) and PNM
(Processing Near Memory). First, we show that PUM
exploits the existing DRAM architecture and the oper-
ational principles of the DRAM circuitry, enabling a
number of important and widely-used operations (e.g.,
memory copy, data initialization, bulk bitwise opera-
tions, data reorganization) within DRAM, with minimal
changes to DRAM chips. Similar PUM approaches are
also applicable to other types of memory chips, and all
yield large performance and energy benefits. Second, we
demonstrate that PNM can exploit the embedded compu-
tation capability in the logic layer of 3D-stacked memory
in a variety of ways to provide significant performance
improvements and energy savings, across a large range
of application domains and computing platforms. Simi-
lar PNM approaches are applicable to different types of
memories and also to memory controllers.

Despite the extensive design space that we have stud-
ied so far, a number of key challenges remain to enable
the widespread adoption of PIM in future computing
systems [126, 127]. Important challenges include devel-
oping easy-to-use programming models for PIM (e.g.,
PIM application interfaces, compilers and libraries de-
signed to abstract away PIM architecture details from
programmers), and extensive runtime support for PIM
(e.g., scheduling PIM operations, sharing PIM logic
among CPU threads, cache coherence, virtual memory
support). We hope that providing the community with
(1) a large set of memory-intensive benchmarks that can
potentially benefit from PIM, (2) a rigorous methodology
to identify PIM-suitable parts within an application, and
(3) accurate simulation infrastructures for estimating the
benefits and overheads of PIM will empower researchers
to address remaining challenges for the adoption of PIM.

We firmly believe that it is time to design principled
system architectures to solve the data movement problem
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of modern computing systems, which is caused by the
rigid dichotomy and imbalance between the computing
unit (CPUs and accelerators) and the memory/storage
unit. Fundamentally solving the data movement problem
requires a paradigm shift to a more data-centric comput-
ing system design, where computation happens where
data resides (i.e., in or near memory/storage), with mini-
mal movement of data. Such a paradigm shift can greatly
push the boundaries of future computing systems, lead-
ing to orders of magnitude improvements in energy and
performance (as we demonstrated with some examples
in this work), potentially enabling new applications and
computing platforms.
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