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Executive Summary

• Motivation: A promising paradigm to alleviate data movement bottleneck is near-
memory computing (NMC), which consists of placing compute units close to the
memory subsystem

• Problem: Simulation times are extremely slow, imposing long run-time especially
in the early-stage design space exploration

• Goal: A quick high-level performance and energy estimation framework for NMC
architectures

• Our contribution: NAPEL
• Fast and accurate performance and energy prediction for previously-unseen applications using

ensemble learning
• Use intelligent statistical techniques and micro-architecture-independent application features to

minimize experimental runs

• Evaluation
• NAPEL is, on average, 220x faster than state-of-the-art NMC simulator
• Error rates (average) of 8.5% and 11.5% for performance and energy estimation

2We open source Ramulator-PIM: https://github.com/CMU-SAFARI/ramulator-pim/
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DDR I/O

DDR chip

* R. Nair et al., “Active memory cube: A processing-in memory architecture for exascale systems”,  IBM J. Research Develop., vol. 59, no. 2/3, 2015

System-level power break down*

Data Movement

Data Access

ProcessorCompute Centric Approach

• Memory hierarchies take advantage of locality

• Spatial locality 

• Temporal locality

• Not suitable for all workloads

• Graph processing

• Neural networks

• Data access consumes a major part

– Applications are increasingly data hungry

• Data movement energy dominates compute

– Especially true for off-chip movement
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Data movement bottleneck
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NMC Simulators

• Simulation for:

• Design space exploration (DSE) 

• Workload suitability analysis

• NMC Simulators:

• Sinuca, 2015

• HMC-SIM, 2016

• CasHMC, 2016

• Smart Memory Cube (SMC), 2016

• CLAPPS, 2017

• Gem5+HMC, 2017

• Ramulator-PIM1, 2019
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than native-execution!!! 
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Idea: Leverage ML with statistical techniques for 

quick NMC performance/energy prediction

1Ramulator-PIM: https://github.com/CMU-SAFARI/ramulator-pim/



NAPEL: 
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NAPEL Model Training



Phase 1: LLVM Analyzer
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Phase 2: Microarchitecture Simulation 
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Central composite design of experiments technique to minimize the number of 
experiments while data collection



Phase 3: Ensemble ML Training
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Application Features

Instruction Mix

ILP

Reuse distance

Memory traffic

Register traffic

Memory footprint

Architecture Features

Core type

#PEs

Core frequency

Cache line size

DRAM layers

Cache access fraction

DRAM access fraction



NAPEL Framework
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NAPEL Prediction
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Experimental Setup

• Host System

• IBM POWER9

• Power: AMESTER

• NMC Subsystem
• Ramulator-PIM1

• Workloads

• PolyBench and Rodinia

• Heterogeneous workloads such as image processing, machine learning, graph 
processing etc.

• Accuracy in terms of mean relative error (MRE)

13
1https://github.com/CMU-SAFARI/ramulator-pim/



NAPEL Accuracy: Performance and 
Energy Estimates
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MRE of 8.5% and 11.6% for performance and energy 
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220x (up to 1039x) faster than NMC simulator 
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Use Case: NMC Suitability Analysis

• Assess the potential of 
offloading a workload to NMC

• NAPEL provides accurate 
prediction of NMC suitability

• MRE between 1.3% to 26.3% 
(average 14.1%)
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Conclusion and Summary

• Motivation: A promising paradigm to alleviate data movement bottleneck is near-
memory computing (NMC), which consists of placing compute units close to the
memory subsystem

• Problem: Simulation times are extremely slow, imposing long run-time especially
in the early-stage design space exploration

• Goal: A quick high-level performance and energy estimation framework for NMC
architectures

• Our contribution: NAPEL
• Fast and accurate performance and energy prediction for previously-unseen applications using

ensemble learning
• Use intelligent statistical techniques and micro-architecture-independent application features to

minimize experimental runs

• Evaluation
• NAPEL is, on average, 220x faster than state-of-the-art NMC simulator
• Error rates (average) of 8.5% and 11.5% for performance and energy estimation

17We open source Ramulator-PIM: https://github.com/CMU-SAFARI/ramulator-pim/
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