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ABSTRACT
The cost of moving data between the memory/storage units and
the compute units is a major contributor to the execution time and
energy consumption of modern workloads in computing systems.
A promising paradigm to alleviate this data movement bottleneck is
near-memory computing (NMC), which consists of placing com-
pute units close to the memory/storage units. There is substantial
research effort that proposes NMC architectures and identifieswork-
loads that can benefit from NMC. System architects typically use
simulation techniques to evaluate the performance and energy con-
sumption of their designs. However, simulation is extremely slow,
imposing long times for design space exploration. In order to enable
fast early-stage design space exploration of NMC architectures, we
need high-level performance and energy models.

We present NAPEL, a high-level performance and energy estima-
tion framework for NMC architectures. NAPEL leverages ensemble
learning to develop a model that is based on microarchitectural
parameters and application characteristics. NAPEL training uses a
statistical technique, called design of experiments, to collect rep-
resentative training data efficiently. NAPEL provides early design
space exploration 220× faster than a state-of-the-art NMC simulator,
on average, with error rates of to 8.5% and 11.6% for performance
and energy estimations, respectively, compared to the NMC sim-
ulator. NAPEL is also capable of making accurate predictions for
previously-unseen applications.

1 INTRODUCTION
Current computing systems are compute-centric: all computation
takes place in the compute units while thememory/storage units are
passive components. As a result, modern workloads (e.g., machine
learning, graph processing, bioinformatics), spend a large fraction
of execution time and energy on moving data between the mem-
ory/storage units and the compute units. A way to alleviate this
datamovement bottleneck [12, 27] is near-memory computing (NMC),
which consists of placing processing elements closer to memory.
NMC is enabled by new memory integration technologies such as
3-D stacked memory [22, 23, 29], where multiple DRAM layers are
stacked in the same chip with a logic layer that can embed pro-
cessing elements. Past works [1, 2, 4–7, 14, 15, 19] show that NMC
architectures can be employed effectively for a wide range of ap-
plications, including graph processing, databases, neural networks,
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bioinformatics. However, a common challenge all such past works
face is how to evaluate the performance and energy consumption
of the NMC architectures for different workloads systematically
and accurately in a reasonable amount of time [27, 34].

In the early design stage, system architects use simulation tech-
niques (e.g., [2, 4, 7, 15, 20]) for architectural performance and en-
ergy evaluation. However, this approach is extremely slow, because
a single simulation for a real-world application with a represen-
tative dataset typically takes hours or even days. Specifically, the
speed of a cycle-accurate simulator is in the range of a few thousand
instructions per second [33], which is orders of magnitude slower
than native execution.

Our goal is to enable fast early-stage design space exploration of
NMC architectures without having to rely on time-consuming sim-
ulations. To this end, we propose the NMC Application performance
and energy Prediction framework using Ensemble machine Learning
(NAPEL). The key idea is to use ensemble learning to build a model
that, once trained for a fraction of programs on a number of ar-
chitecture configurations, can predict the performance and energy
consumption of different applications on the same NMC architec-
ture. The ensemble learning mechanism we use is random forest
(RF) [8]. NAPEL can make performance and energy predictions
for an average application on a specific architecture 220× faster
than using simulation. Previous ML-based approaches [9, 35, 37]
perform extrapolations to predict, for example, the performance
of a known application for a bigger dataset. In contrast, NAPEL
can make predictions for previously-unseen applications, after be-
ing trained with data from applications that are different from the
applications that we want to predict.

NAPEL still needs to run simulations to gather training data
that is required to construct its predictive model. As discussed
above, running simulations is very time-consuming if we apply
a brute-force approach to run all the application-input configura-
tions needed for training data. To alleviate this problem, we use a
technique called design of experiments (DoE) [28] to extract repre-
sentative data with a small number of experimental runs (between
11 and 31 for the evaluated applications). Specifically, we employ a
DoE variant called central composite design (CCD), which allows us
to explore the interactions and nonlinear effects between the appli-
cation input parameters and the output response (i.e., performance
and energy consumption).

In this paper, we make the following contributions:

(1) We propose NAPEL, a new, fast high-level performance and
energy estimation framework for NMC architectures. NAPEL
is the first such model to leverage ensemble learning tech-
niques, specifically random forest, to quickly estimate the
performance and energy consumption of previously-unseen
applications in early stages of design space exploration for
NMC architectures.



(2) We reduce the simulation time needed to gather training
data for NAPEL by employing a DoE technique [25], which
selects a small number of application-input configurations
that well represent the entire space of input configurations.

(3) We show that NAPEL can provide performance and energy
estimates 220× faster than a state-of-the-art microarchitec-
ture simulator with an average error rate of 8.5% (perfor-
mance) and 11.6% (energy) compared to the simulator.

(4) We show that we can use NAPEL to accurately determine
if, and by how much, executing a certain workload on a
specific NMC architecture can improve performance and
reduce energy consumption versus execution on a CPU.

2 NAPEL
NAPEL is a performance and energy estimation framework that
targets the early stages of NMC system design. In this section, we
describe the main components of the framework. First, we give an
overview of NAPEL training and prediction (Section 2.1). Second,
we describe the target NMC architecture we consider in this work
(Section 2.2). Third, we explain the code-instrumentation process
for the applications used to generate training datasets and for the
applications under performance and energy prediction (Section 2.3).
Fourth, we describe the two most important components of NAPEL
training: the design of experiments methodology (Section 2.4) and
the ensemble machine learning (ML) technique (Section 2.5).
2.1 Overview
NAPEL is based on ensemble learning. Thus, it needs to be trained
before it can predict performance and energy consumption. Figure 1
depicts the key components of NAPEL training and prediction.

Figure 1: Overview of NAPEL training and prediction

Model Training. NAPEL training consists of three phases. The
first phase ( 1 in Figure 1) is an LLVM-based [21] kernel analysis
phase (Section 2.3), which extracts architecture-independent work-
load characteristics. First, we instrument applications or parts of
them that we use to gather data for model training. We consider
the instrumented codes for execution on NMC compute units with
a specific architecture configuration. Second, we characterize the
instrumented codes in a microarchitecture-independent manner by
using a specialized plugin of the LLVM compiler framework [3].
This type of characterization excludes any hardware dependence
and captures the inherent characteristics of workloads.

In the second phase 2 , microarchitectural simulations are per-
formed to gather architectural responses for training. For the simu-
lations, we use central composite design (CCD) [25], a technique for
the design of experiments (DoE) method [26]. With CCD, we can

minimize the number of simulation experiments to gather training
data for NAPEL while ensuring good quality of the training data
(Section 2.4). The generated simulator responses along with appli-
cation properties from the first phase and the microarchitectural
parameters form the input to our ML algorithm.

In the third phase 3 , we train our ML algorithm (Section 2.5).
During this phase, we perform additional tuning of our ML algo-
rithm’s hyper-parameters. Hyper-parameters are sets of ML algo-
rithm variables that can be tuned to optimize the accuracy of the
prediction model. We validate the prediction model against perfor-
mance and energy simulation results from the second phase. Once
trained, the framework can predict the performance and energy of
a previously-unseen application on a specific NMC architecture.
Model Prediction. NAPEL prediction has only two phases. The
first phase (A in Figure 1) is the same LLVM-based kernel analy-
sis phase as in NAPEL training. This phase extracts architecture-
independent features of the workload for which NAPEL will predict
the performance and energy consumption. The second phase B
performs the prediction by using the trained model. We feed the
model with the architecture-independent workload features and
the model provides the performance and energy estimations.

2.2 NMC Architecture
Figure 2 depicts the reference computing platform that we consider
in this work. It contains a host processor and an external memory
equipped with NMC compute units.
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Figure 2: Overview of a system with NMC capability. On the
right, an abstract view of application code with kernels that
are offloaded to NMC

The NMC subsystem consists of a 3D-stacked memory [2, 22, 23,
29] with processing elements (PEs) embedded in its logic layer. The
memory is divided into several vertical DRAM partitions, called
vaults, each with its own DRAM controller in the logic layer. In
this work, we model NMC PEs as in-order, single-issue cores with
a private cache as proposed in previous work [2, 11], taking into
account the limited thermal and area budget in the logic layer.
NAPEL can be extended to support other types of general-purpose
cores and accelerators by selecting the appropriate architectural
features (see Table 1) for training the NAPEL model.
2.3 Code Instrumentation and Analysis
In the first phase of NAPEL training and prediction, the program-
mer annotates the region of the source code, called kernel (k), which
is a candidate for offloading to NMC (i.e., execution on NMC pro-
cessing elements). Then, that specific region is converted into an
LLVM intermediate-representation (IR), which provides the basis
for performing hardware-independent kernel analysis. Hardware-
independent profiling enables us to generate an application profile
p independently of the NMC design.

The application profile p(k, d) is obtained by executing the in-
strumented application kernel k while processing a dataset d. p(k,

2



d) is a vector where each parameter is a statistic about an applica-
tion feature f. Table 1 lists the main application features we extract
by using the LLVM-based PISA analysis tool [3]. We select these
features to analyze the memory access behavior of an application
(data reuse distance, memory traffic, memory footprint, etc.), which
is key for assessing the suitability of NMC for the application. Ulti-
mately, the application profile p has 395 features, which includes all
the sub-features of each metric we consider. Such a large number of
features enables complex relationships to be identified between the
analyzed application and its performance and energy consumption
on the underlying NMC architecture [25].

Table 1: Main application and architectural features

Application Feature Description

Instruction Mix Fraction of instruction types (integer, floating point,
memory read, memory write, etc.)

ILP Instruction-level parallelism on an ideal machine.
Data/Instruction reuse
distance

For a given distance δ , probability of reusing one
data element/instruction (in a certain memory lo-
cation) before accessing δ other unique data ele-
ments/instructions (in different memory locations).

Memory traffic Percentage of memory reads/writes that need to ac-
cess the main memory, assuming a cache of size equal
to the maximum reuse distance.

Register traffic Average number of registers per instruction.
Memory footprint Total memory size used by the application.
NMC Arch. Features Description

Core type In-order
#PEs Total number of near-memory processing units
Core frequency Operating frequency of the core
Cache line size Total size of a cache line (bytes)
#cache-lines Number of cache lines
DRAM layers Number of stacked DRAM layers
Size of DRAM Total size of memory (bytes)
Cache access fraction Cache hit ratio
DRAM access fraction Cache miss ratio

2.4 Central Composite Design
In the second phase of NAPEL training, we use the design of ex-
periments (DoE) method [26] as a way to minimize the number of
experiments to train NAPEL without sacrificing the amount and
quality of the information gathered by the experiments. DoE is a
set of statistical techniques meant to locate a small set of points in a
parameter space with the goal of representing the whole parameter
space. The traditional brute-force approach to collecting training
data is time-consuming: the sheer number of experiments renders
detailed simulations intractable. Thus, the DoE strategy to gather a
training dataset is a critical component of our model.

We apply the Box–Wilson central composite design (CCD) [25],
the goal of which is to minimize the uncertainty of a nonlinear
polynomial model that accounts for parameter interactions. While
applying CCD, we treat the application input dataset d as a pa-
rameter vector (e.g., dataset size, number of threads, etc.) and each
input configuration as a point in a multidimensional parameter
space. For example, application atax from the PolyBench bench-
mark suite [31] has two significant parameters (dimension, threads)
(see Table 2). In CCD, each input parameter in the vector d can have
one of five levels: minimum, low, central, high, maximum. First, we
select these levels for each parameter. For example, for atax, the
levels of dimension are (500, 1250, 1500, 2000, 2300). Second, we
place in the parameter space a point for each parameter combina-
tion (i.e., input configuration) with low and high levels (the corners

of the solid-line square in Figure 3). In the case of atax, the points
(dimension, threads) are (1250, 8), (1250, 32), (2000, 8), (2000, 32).
Third, we draw a multidimensional sphere (represented as a circle
in Figure 3) that circumscribes the initial square. This sphere gen-
eralizes the DoE to capture the nonlinearity in the system. Fourth,
we obtain additional points on the sphere by combining the central
level of each parameter with the maximum and minimum levels
of the other parameters. For atax, these points (dimension, threads)
are (1500, 4), (1500, 64), (500, 16), (2300, 16). Fifth, we include the
central configuration, which is (1500, 16) for atax.

y

x
Min Low Central High Max

Min

Low

Central

High

Max Figure 3: Central com-
posite DoE for two
parameters (x, y). For
example, for atax (x, y)
are (dimension, threads)

Table 2: Evaluated applications and their DoE parameters
(“DoE param.”). For eachDoE parameter, we show its five lev-
els (minimum, low, central, high, maximum) and test input

Application DoE Parameter Levels
Name Description DoE Param. Min Low Central High Max Test
atax Matrix Transpose

and Vector Mult.
Dimensions
Threads

500
4

1250
8

1500
16

2000
32

2300
64

8000
32

bfs Breadth-first
Search

Nodes
Weights
Threads
Iterations

400k
1
1
30

800k
2
9
40

900k
4
16
65

1.2m
25
32
70

1.4m
49
64
80

1.0m
4
32
95

bp Back-propagation Layer Size
Seed
Threads
Iterations

800k
2
4
1

1m
4
8
3

2m
5
16
9

3.5m
10
32
16

4m
12
64
25

1.1m
5
32
9

chol Cholesky
Decomposition

Dimensions
Threads
Iterations

64
4
10

384
8
20

128
16
30

320
32
50

512
64
80

2000
32
60

gemv Vector Multiply
and Matrix
Addition

Dimensions
Threads
Iterations

500
4
50

750
8
60

1250
16
80

2000
32
100

2250
64
150

8000
32
60

gesu Scalar, Vector, and
Matrix Mult.

Dimensions
Threads
Iterations

500
4
10

750
8
20

1250
16
40

2000
32
50

2250
64
60

8000
32
50

gram Gram-Schmidt
Process

Dimensioni
Dimensionj
Threads

64
64
4

384
384
8

128
128
16

320
320
32

512
512
64

2000
2000
32

kme K-Means
Clustering

Data Size
Clusters
Threads
Iterations

100k
3
1
10

300k
5
9
20

700k
6
1
30

900k
7
32
40

1.2m
8
64
50

819k
5
32
30

lu LU Decomposition Dimensions
Threads
Iterations

196
4
98

256
8
128

320
16
256

420
32
420

512
64
512

2000
32
2000

mvt Matrix Vector
Product

Dimensions
Threads
Iterations

500
4
10

750
8
20

1250
16
30

2000
32
50

2250
64
60

2000
32
40

syrk Symmetric Rank-k
Operations

Dimensioni
Dimensionj
Threads

64
64
4

128
128
8

320
320
16

512
512
32

640
640
64

2000
2000
32

trmm Triangular Matrix
Multiply

Dimensioni
Dimensionj
Threads

196
196
4

256
256
8

320
320
16

420
420
32

512
512
64

2000
2000
32

We run these DoE-selected application-input configurations on
different architectural configurations to collect the training dataset.
Table 2 lists the parameter levels for the evaluated applications. We
include a test configuration, which we use in Section 3.4.

2.5 Ensemble Machine Learning
The third phase of NAPEL training is the training of the ML algo-
rithm. As we retrieve hundreds of application features from the
application analysis, we make use of the random forest (RF) [8]
algorithm, which embeds automatic procedures to screen many
input features. RF is an ensemble ML algorithm, which, starting
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from a root node, constructs a tree and iteratively grows the tree by
associating it with a splitting value for an input variable to generate
two child nodes. Each node is associated with a prediction of the tar-
get metric equal to the mean observed value in the training dataset
for the input subspace the node represents. This input subspace is
randomly sampled from the entire training dataset.

We employ RF to capture the intricacies of new NMC architec-
tures by predicting instructions per cycle (IPC) when executing
an application near memory. Formally, we predict IPC(p, a) ∼

IPC(k, d, a), where p is the hardware-independent application
profile representation of kernel k when processing input dataset
d on an architecture configuration a. The input data gathered to
train our RF model has three parts: (1) a hardware-independent
application profile p(k, d), (2) an architectural design configuration
a, and (3) responses corresponding to each pair (p, a). To gather the
architectural responses, kernel k belonging to training set T with
input dataset d is executed on an architectural simulator, simulating
an architecture configuration a. This produces IPC(k, d, a) for that
configuration and is used as a label while training our RF algorithm.

We improve NAPEL training by tuning the algorithm’s hyper-
parameters [30]. Hyper-parameter tuning can provide better per-
formance estimates for some applications. First, we perform as
many iterations of the cross-validation process as hyper-parameter
combinations. Second, we compare all the generated models by
evaluating them on the testing set, and select the best one.

After training our RF algorithm, we can predict the IPC of a
kernel that is not in the training set. The predicted IPC can be
used for performance evaluation of a kernel on an NMC system.
The execution time ΠNMC of the kernel offloaded to NMC can
be calculated as ΠNMC =

Ioffload
I PC .fcore

, where fcore is the frequency
of the NMC processing cores and Ioffload is the total number of
offloaded instructions. Similarly, we build another model for energy
prediction where we use energy consumption as a label when we
train our RF algorithm.

3 EXPERIMENTAL RESULTS
3.1 Experimental Setup
We consider different workloads from the PolyBench [31] and Ro-
dinia [10] benchmark suites that cover a wide range of domains,
such as image processing, machine learning, graph processing,
radio astronomy. First, we instrument the region of code that is
considered for offloading to NMC processing elements. Second,
we apply CCD to these workloads to select a small set of appli-
cation input configurations that represent the space of possible
input configurations. Third, we carry out the LLVM-based [21]
microarchitecture-independent characterization to extract applica-
tion metrics (Table 1) by using the PISA analysis tool [3].

We evaluate host performance on a real IBM POWER9 sys-
tem [16] and NMC performance on a state-of-the-art simulator,
Ramulator [20]. We extend Ramulator with a 3D-stacked memory
model to simulate the NMC processing elements [32]. Table 3 sum-
marizes the system details used for the host system and the NMC
system. We collect dynamic execution traces of the instrumented
code with a Pin tool. We feed the acquired traces to Ramulator. We
use the simulation results as training data for our RF algorithm.

Once trained, we use NAPEL to predict the performance and energy
consumption of previously-unseen applications.

Table 3: System parameters and configuration
Host CPU System
Configuration IBM® POWER9 AC922 @2.3 GHz, 16 cores (4-way SMT),

32 KiB L1 cache, 256 KiB L2 cache, 10 MiB L3 cache, 32GiB
RDIMM DDR4 2666 MHz

NMC System
Cores 32× single issue, in-order execution @ 1.25 GHz
L1-I/D 2-way, cache size = 2 cache lines, 64B per cache line
DRAM Module 32 vaults, 8 stacked-layers, 256B row buffer; 4GB total

size; closed-row policy
Off-chip Link 16-bit full duplex high-speed serializer/deserializer

(SerDes) I/O link @ 15 Gbps [29]

3.2 Model Training and Prediction Time
Table 4 shows the time for performing training simulations (see
“DoE run (mins)”) with the selected DoE configurations (“#DoE
conf.”) to gather training data. The table also includes the time for
training and tuning (“Train+Tune (mins)”) and the prediction time
(“Pred. (mins)”) for each application. Once the model is trained, the
DoE simulation time is amortized every time we predict perfor-
mance and energy consumption for a previously unseen application.
Thus, quick exploration and large prediction time savings compared
to simulation are possible for a previously unseen application.

Table 4: Number of DoE configurations (“#DoE conf”) for
gathering training data (“DoE run (mins)”), NAPEL training
time (“Train+Tune (mins)”), including tuning, and NAPEL
prediction time (“Pred. (mins)”)

Application Training/Prediction Time
Name #DoE conf. DoE run (mins) Train+Tune (mins) Pred. (mins)
atax 11 522 34.9 0.49
bfs 31 1084 34.2 0.48
bp 31 1073 43.8 0.47
chol 19 741 34.9 0.49
gemv 19 741 24.4 0.51
gesu 19 731 36.1 0.51
gram 19 773 36.5 0.52
kme 31 742 36.9 0.55
lu 19 633 37.9 0.51
mvt 19 955 38.0 0.54
syrk 19 928 35.7 0.51
trmm 19 898 37.6 0.48

For all the evaluated applications, we compare the prediction
time using trained NAPEL models to the prediction time using
Ramulator simulations. Figure 4 showsNAPEL’s prediction speedup
over Ramulator for 256 DoE configurations for all the evaluated
workloads. We observe that NAPEL is, on average, 220× (min. 33×,
max. 1039×) faster than simulation.
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3.3 Accuracy Analysis
We analyze the accuracy of NAPEL for previously unseen applica-
tions by performing cross-validation [30]. To evaluate the prediction
accuracy for a particular application, our training data comprises
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all the collected data (using an LLVM kernel analyzer and a mi-
croarchitecture simulator) for all applications except the application
for which the prediction will be made. We repeat the same process
to gather test prediction results for all applications, yet every time
we test for a particular application, we do not include it in the
training set. Therefore, when predicting performance and energy
consumption of an application on NMC, we do not use any data
related to that application. This makes the prediction more difficult
because the ML algorithm has no knowledge of the application to
be predicted. Thus, the test set differs from the training set as much
as applications differ from each other. We evaluate the accuracy of
the proposed model in terms of relative error ϵi to indicate how
close the predicted value y′i is to the actual value yi . We calculate
the mean relative error (MRE) for each application with Equation 1.

MRE =
1
N

N∑
i=1

ϵi =
1
N

N∑
i=1

|y′i − yi |

yi
(1)

Figure 5 shows NAPEL’s MRE for the workloads in Table 2.
NAPEL’s average MRE is 8.5% for performance predictions and
11.6% for energy-consumption predictions. The highest error is for
bfs, bp, and kmeans since these applications exhibit quite different
characteristics compared to the other evaluated applications. In
Figure 5, we also compare NAPEL to two other ML algorithms
that can be used to predict performance and energy consumption:
an artificial neural network (ANN) based on Ipek et al. [17] and a
linear decision tree used by Guo et al. [13]. We make the following
three observations. First, NAPEL is 1.7× (1.4×) and 3.2× (3.5×) more
accurate in terms of performance (energy) prediction than the ANN
and the linear decision tree, respectively. Second, the linear decision
tree is very inaccurate, as shown by its high MRE. Decision trees
are suitable mainly for linear regression, so they cannot capture
the nonlinearity present in NMC performance and energy. Third,
ANN is more accurate than the decision tree, but it is less accurate
than NAPEL for almost all workloads. ANN requires a much larger
training dataset to reach NAPEL’s accuracy. When running these
experiments, we also observe that the ANN takes more training
time than NAPEL with hyper-parameter tuning (up to 5×).
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Figure 5: Mean relative error for performance (a) and energy
(b) predictions using NAPEL vs. other methods

3.4 Use Case: NMC-Suitability Analysis
In this section, we use NAPEL to perform an NMC-suitability anal-
ysis, i.e., to assess the potential benefit of offloading a workload

to NMC. This analysis compares the energy-delay product (EDP)
of executing a workload on the NMC units, which we obtain from
NAPEL’s predicted NMC performance and energy consumption, to
the measured EDP of executing the workload on a host processor.
We use EDP as ourmajor metric of reference in this analysis because
both energy and performance are critical criteria for evaluating
NMC suitability.

In order to obtain EDP results for the host system, we use a
POWER9 system with 16 cores each supporting four-thread simul-
taneous multi-threading. We measure power consumption by moni-
toring built-in power sensors on our host system via the AMESTER1
tool. Figure 6 shows the execution time and energy consumption of
each workload on the POWER9. For the EDP results on the NMC
system, we use NAPEL with tuned hyper-parameters.
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Figure 6: Execution time and energy on an IBM POWER9

Figure 7 shows estimated EDP reduction when executing each
application on the NMC system compared to executing the same ap-
plication on the host system using the test dataset (see Table 2). For
each application, we show two bars: (1) NAPEL’s estimated EDP re-
duction, and (2) the estimated EDP reduction obtained by simulating
the application using the cycle-accurate Ramulator [20] (“Actual”).
We make five observations. First, NAPEL estimates the same work-
loads to be NMC suitable as Ramulator does (i.e., workloads with
EDP reduction greater than 1). Second, the MRE of NAPEL’s EDP
prediction is between 1.3% and 26.3% (14.1% on average). Third,
gemver, gesummv, lu,mvt, syrk, and trmm are not suitable for NMC,
since their EDP reduction is less than 1. These applications have
enough data locality to leverage the host cache hierarchy. Fourth,
bfs, bp, cholesky, gramschmidt, and kmeans are good fits for NMC.
These applications are memory intensive and have irregular mem-
ory access patterns, so the host execution suffers from expensive
offchip data movement. Fifth, atax benefits from the host cache
hierarchy when performing vector multiplication, which has high
data locality. However, it also performs matrix transposition, which
is memory intensive. For atax-like workloads, the introduction of
a small cache or scratchpad memory in the NMC compute units
(larger than the 128B L1 cache in Table 3) can be beneficial, such
that the data locality of of the application can still be exploited.
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Figure 7: Estimated EDP reduction of offloading to NMC
units versus execution on the baseline host CPU. “Actual”
shows the estimation with Ramulator. “NAPEL” shows
NAPEL’s prediction results
1https://github.com/open-power/amester
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4 RELATEDWORK
The lack of evaluation tools is a critical challenge to the adoption of
near-memory computing (NMC) [27, 34]. The importance of archi-
tecture simulators is widely acknowledged. However, simulators
are generally very slow as they may take hours to simulate even a
single configuration [13, 33].

Recent works propose ML-based performance prediction meth-
ods for faster early-stage design space exploration of different ar-
chitectures. Table 5 lists recent works (including NAPEL) that use
different prediction techniques for several architectures. Joseph et
al. [18] and Guo et al. [13] use linear regression models to predict
CPU performance. Linear models cannot accurately capture nonlin-
earity between application and processor responses, as shown in
Figure 5.Wu et al. [36] use an ANN for GPU performance prediction
without applying the DoE technique. Unlike NAPEL, this work uses
traditional, time-consuming brute-force techniques to collect the
training dataset. In the HPC domain, Mariani et al. [25] predict the
performance of applications on cloud architectures using random
forest and genetic algorithms, which are trained using DoE tech-
niques. Ipek et al. [17] use an ANN with variance-based sampling
for CPU performance prediction. Likewise, Li et al. [24] use an ANN
with Latin hypercube sampling for design-space exploration of mul-
ticore CPUs. To our knowledge, NAPEL is the first performance
and energy-prediction framework for NMC architectures that uses
machine-learning models. NAPEL can make accurate predictions
for previously unseen applications on NMC architectures.

Table 5: Related works in different domains
Name Approach Architecture DoE

Joseph et al. [18] Linear Regression CPU D-optimal Design
Ipek et al. [17] ANN CPU Variance Based Sampling
Wu et al. [36] ANN GPU None
Guo et al. [13] Model Tree CPU None
Mariani et al. [25] Random Forest,

Genetic Algorithm
HPC D-optimal Design, CCD

SemiBoost [24] ANN CPU Latin Hypercube Sampling
NAPEL Random Forest NMC CCD

5 CONCLUSION
We introduce NAPEL, the first high-level machine learning-based
prediction framework for fast and accurate early-stage performance
and energy-consumption estimation on NMC architectures. NAPEL
avoids time-consuming simulations to predict the performance and
energy consumption of previously unseen applications on various
NMC architecture configurations. To achieve this, NAPEL relies
on random forest, an ensemble learning technique, to build its
prediction models.

NAPEL is 220× faster than a state-of-the-art NMC simulator,
with an accuracy loss in performance (energy) prediction of only
8.5% (11.6%) compared to the simulator. Compared to an artificial
neural network, NAPEL is 1.7× (1.4×) more accurate in perfor-
mance (energy) prediction. NAPEL can accurately perform fast
design-space exploration for different applications and NMC archi-
tectures. We hope the NAPEL approach enables faster development
of NMC systems and inspires the development of other alternatives
to simulation for NMC performance and energy estimation.
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