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Executive Summary
• Motivation: Stencil computation is an essential part of weather prediction applications

• Problem: Memory bound with limited performance and high energy consumption on
multi-core architectures

• Goal: Mitigate the performance bottleneck of compound weather prediction kernels in an
energy-efficient way

• Our contribution: NERO
• First near High-Bandwidth Memory (HBM) FPGA-based accelerator for representative kernels from a

real-world weather prediction application

• Detailed roofline analysis to show weather prediction kernels are constrained by DRAM bandwidth on
a state-of-the-art CPU system

• Data-centric caching with precision-optimized tiling for a heterogeneous memory hierarchy

• Scalability analysis for both DDR4 and HBM-based FPGA boards

• Evaluation
• NERO outperforms a 16-core IBM POWER9 system by 4.2x and 8.3x when running two compound

stencil kernels

• NERO reduces energy consumption by 22x and 29x with an energy efficiency of 1.5 GFLOPS/Watt
and 17.3 GFLOPS/Watt

2



Outline

Background

•
Setup

Results

CPU Roofline Analysis

FPGA-based Platform

NERO:

•

SetupEvaluation

SetupSummary

Setup
Performance Analysis

Setup
Energy Efficiency Analysis

Precision-optimized Tiling

3



Stencil Computations and Applications

Stencil computations update values in a grid using a 

fixed pattern of grid points

Stencils are used in ~30% of high-performance                                   

computing applications

Image sources: http://www.flometrics.com/fluid-dynamics/computational-fluid-dynamics
Naoe, Kensuke et al. "Secure Key Generation for Static Visual Watermarking by Machine Learning in Intelligent Systems and Services" IJSSOE, 2010
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Stencil Characteristics

High-order stencil computations are cache unfriendly

• Limited arithmetic intensity

• Sparse and complex access pattern

Image source: Xu, Jingheng et al.  “Performance Tuning and Analysis for Stencil-Based Applications on POWER8 Processor” ACM TACO, 2018
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Stencil Computations in Weather Applications

COSMO (Consortium for Small-Scale Modeling)                                     
weather prediction application

• The essential part of the weather prediction models                                                   
is called dynamical core

• Around 80 different stencil compute motifs

• ~30 variables and ~70 temporary arrays (3D grids)

• Horizontal diffusion and vertical advection

• Complex stencil programs
Section of  

COSMO CDAG
(Courtesy CSCS/ETH

and Ronald Luijten)

Stencil VDP

18 arrays

Stencil VDT

14 arrays

VDTuvw

17 arrays

Stencil LH

2 arrays

VDQ

6 arrays

Halo Exchange

Halo Exchange

Bound Bound

Bound

Bound Bound

HAW

10 arrays

C

5 arrays

HAuv

8 arrays

VAuvw

13 arrays

HApptp

10 arrays
FWSCvdh

14 arrays

FWSCuv

14 arrays
VApptp

9 arrays
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Example Complex Stencil: Horizontal Diffusion

• Compound stencil kernel consists of a collection
of elementary stencil kernels

• Iterates over a 3D grid performing Laplacian                                                    
and flux operations

• Complex memory access behavior and                                                            
low arithmetic intensity

Horizontal diffusion 

composition
(Courtesy CSCS/ETH

and Ronald Luijten)

Laplace

Flux

New value

DFG source: Gysi, Tobias, et al. “MODESTO: Data-centric Analytic Optimization of Complex Stencil Programs on Heterogeneous Architectures” ICS, 2015 
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IBM POWER9 Roofline Analysis
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Silicon Alternatives

FPGAs are highly configurable!

CPUs

FLEXIBILITY

Control 

Unit 

(CU)

Registers

Arithmetic 

Logic Unit 

(ALU)

GPUs FPGAs ASICs

EFFICIENCY
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Heterogeneous System: CPU+FPGA

POWER9 AC922 HBM-based AD9H7 board 

CAPI2

Source: AlphaData
Source: IBM
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We evaluate two POWER9+FPGA systems:

1. HBM-based board AD9H7
Xilinx Virtex Ultrascale+™ XCVU37P-2



Heterogeneous System: CPU+FPGA

POWER9 AC922 DDR4-based AD9V3 board

CAPI2

Source: AlphaData
Source: IBM

12

2. DDR4-based board AD9V3
Xilinx Virtex Ultrascale+™ XCVU3P-2

We evaluate two POWER9+FPGA systems:

1. HBM-based board AD9H7
Xilinx Virtex Ultrascale+™ XCVU37P-2



FPGAs Have Tremendous Potential

AD9H7 FPGA+HBM (3.6 Tflops)
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NERO: A Near High-Bandwidth Memory Stencil 
Accelerator for Weather Prediction Modeling

• First near-HBM FPGA-based accelerator for representative kernels from a

real-world weather prediction application

• Data-centric caching with precision-optimized tiling for a heterogeneous

memory hierarchy

• In-depth scalability analysis for both DDR4 and HBM-based FPGA boards
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NERO Design Flow
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Weather data in the host DRAM

NERO Design Flow

input stream
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Cache-line transfer over CAPI2

NERO Design Flow

output stream

input stream
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Data mapping onto HBM

NERO Design Flow

output stream

input stream
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Data mapping onto HBM

NERO Design Flow

input stream
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Data mapping onto HBM

NERO Design Flow
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Main execution pipeline

NERO Design Flow
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Main execution pipeline

NERO Design Flow
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Complete design flow

NERO Design Flow
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NERO Application Framework

• NERO communicates to Host 

over CAPI2 (Coherent 

Accelerator Processor Interface)
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https://github.com/open-power/snap


NERO Application Framework

• NERO communicates to Host 

over CAPI2 (Coherent 

Accelerator Processor Interface)

• COSMO API handles offloading 

jobs to NERO

• SNAP (Storage, Network, and 

Analytics Programming) allows 

for seamless integration of the 

COSMO API

17
https://github.com/open-power/snap

https://github.com/open-power/snap


Outline

Background

•
Setup

Results

CPU Roofline Analysis

FPGA-based Platform

NERO:

•

SetupEvaluation

SetupSummary

Setup
Performance Analysis

Setup
Energy Efficiency Analysis

Precision-optimized Tiling

18



Precision-optimized Tiling

• The best window size            

is critical

• Formulate the search for the 

best window size as a multi-

objective auto-tuning problem 

• Taking into account the 

datatype precision

• We make use of OpenTuner

https://github.com/jansel/opentuner 19

https:///
https:///
https://github.com/jansel/opentuner


Precision-optimized Tiling
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Precision-optimized Tiling

Single Precision
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Precision-optimized Tiling

Half  PrecisionSingle Precision
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Half  PrecisionSingle Precision

Precision-optimized Tiling

Pareto-optimal tile size depends on 
the data precision
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NERO Performance Analysis

22

Vertical Advection



NERO Performance Analysis

Horizontal DiffusionVertical Advection
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Horizontal DiffusionVertical Advection

NERO Performance Analysis

NERO is 4.2x and 8.3x faster than 
a complete POWER9 socket
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How Energy Efficient is NERO?

24

Vertical Advection



How Energy Efficient is NERO?
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Vertical Advection

Enabling many HBM ports might not always be 
the determining factor



Vertical Advection

How Energy Efficient is NERO?

0
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Horizontal Diffusion



Horizontal DiffusionVertical Advection

How Energy Efficient is NERO?

NERO reduces energy consumption
by 22x and 29x compared to
a complete POWER9 socket

NERO provides energy efficiency of 

1.5 GFLOPS/Watt and 

17.3 GFLOPS/Watt
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Summary
• Motivation: Stencil computation is an essential part of weather prediction applications

• Problem: Memory bound with limited performance and high energy consumption on
multi-core architectures

• Goal: Mitigate the performance bottleneck of compound weather prediction kernels in an
energy-efficient way

• Our contribution: NERO
• First near High-Bandwidth Memory (HBM) FPGA-based accelerator for representative kernels from a

real-world weather prediction application

• Detailed roofline analysis to show weather prediction kernels are constrained by DRAM bandwidth on
a state-of-the-art CPU system

• Data-centric caching with precision-optimized tiling for a heterogeneous memory hierarchy

• Scalability analysis for both DDR4 and HBM-based FPGA boards

• Evaluation
• NERO outperforms a 16-core IBM POWER9 system by 4.2x and 8.3x when running two compound

stencil kernels

• NERO reduces energy consumption by 22x and 29x with an energy efficiency of 1.5 GFLOPS/Watt
and 17.3 GFLOPS/Watt

26



Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner,

Juan Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal

30th FPL, Sweden 

31th August 2020

NERO: 
A Near High-Bandwidth Memory Stencil Accelerator 

for Weather Prediction Modeling


