## **NERO:**

### A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling

<u>Gagandeep Singh</u>, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal

> 30<sup>th</sup> FPL, Sweden 31<sup>th</sup> August 2020





## **Executive Summary**

- Motivation: Stencil computation is an essential part of weather prediction applications
- Problem: Memory bound with limited performance and high energy consumption on multi-core architectures
- **Goal:** Mitigate the performance bottleneck of compound weather prediction kernels in an energy-efficient way

#### Our contribution: NERO

- First near High-Bandwidth Memory (HBM) FPGA-based accelerator for representative kernels from a real-world weather prediction application
- Detailed roofline analysis to show weather prediction kernels are constrained by DRAM bandwidth on a state-of-the-art CPU system
- Data-centric caching with precision-optimized tiling for a heterogeneous memory hierarchy
- Scalability analysis for both DDR4 and HBM-based FPGA boards

#### • Evaluation

- NERO outperforms a 16-core IBM POWER9 system by 4.2x and 8.3x when running two compound stencil kernels
- NERO reduces energy consumption by 22x and 29x with an energy efficiency of 1.5 GFLOPS/Watt and 17.3 GFLOPS/Watt

## Outline

### Background

CPU Roofline Analysis

FPGA-based Platform

NERO: Near-HBM Accelerator for Weather Prediction Modeling

Precision-optimized Tiling

Evaluation

Performance Analysis

Energy Efficiency Analysis



## **Stencil Computations and Applications**

**Stencil computations** update values in a grid using a **fixed pattern** of grid points

## Stencils are used in ~30% of high-performance computing applications







e.g., 7-point Jacobi in 3D plane

Image sources: http://www.flometrics.com/fluid-dynamics/computational-fluid-dynamics Naoe, Kensuke et al. "Secure Key Generation for Static Visual Watermarking by Machine Learning in Intelligent Systems and Services" IJSSOE, 2010

## **Stencil Characteristics**

#### High-order stencil computations are cache unfriendly

- Limited arithmetic intensity
- Sparse and complex access pattern



Mapping of 7-point Jacobi from 3D plane onto 1D plane

## **Stencil Characteristics**

#### High-order stencil computations are cache unfriendly

- Limited arithmetic intensity
- Sparco and complex accoss nattorn

## Performance bottleneck



Image source: Xu, Jingheng et al. "Performance Tuning and Analysis for Stencil-Based Applications on POWER8 Processor" ACM TACO, 2018

## **Stencil Computations in Weather Applications**

#### **COSMO (Consortium for Small-Scale Modeling)** weather prediction application

- The essential part of the weather prediction models is called **dynamical core**
- Around 80 different stencil compute motifs
- ~30 variables and ~70 temporary arrays (3D grids)
- Horizontal diffusion and vertical advection
- Complex stencil programs



### **Example Complex Stencil: Horizontal Diffusion**

- Compound stencil kernel consists of a collection of elementary stencil kernels
- Iterates over a 3D grid performing Laplacian and flux operations
- **Complex** memory access behavior and **low** arithmetic intensity





## Outline

### Background

#### CPU Roofline Analysis

FPGA-based Platform

NERO: Near-HBM Accelerator for Weather Prediction Modeling

Precision-optimized Tiling

Evaluation

Performance Analysis

Energy Efficiency



## **IBM POWER9 Roofline Analysis**



## **IBM POWER9 Roofline Analysis**



## Weather kernels are DRAM bandwidth constrained



## Outline

Background

CPU Roofline Analysis

FPGA-based Platform

NERO: Near-HBM Accelerator for Weather Prediction Modeling

Precision-optimized Tiling

Evaluation

Performance Analysis

Energy Efficiency Analysis



## Silicon Alternatives



## Heterogeneous System: CPU+FPGA



We evaluate two POWER9+FPGA systems:

#### 1. HBM-based board AD9H7

Xilinx Virtex Ultrascale+<sup>™</sup> XCVU37P-2

## Heterogeneous System: CPU+FPGA



We evaluate two POWER9+FPGA systems:

#### 1. HBM-based board AD9H7

Xilinx Virtex Ultrascale+<sup>™</sup> XCVU37P-2

2. DDR4-based board AD9V3

Xilinx Virtex Ultrascale+<sup>™</sup> XCVU3P-2

### FPGAs Have Tremendous Potential



## Outline

Background

CPU Roofline Analysis

FPGA-based Platform

NERO: Near-HBM Accelerator for Weather Prediction Modeling

Precision-optimized Tiling

Evaluation

Performance Analysis

Energy Efficiency Analysis



**NERO:** A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling

• First near-HBM FPGA-based accelerator for representative kernels from a real-world weather prediction application

 Data-centric caching with precision-optimized tiling for a heterogeneous memory hierarchy

• In-depth scalability analysis for both DDR4 and HBM-based FPGA boards



## Weather data in the host DRAM



## **Cache-line transfer over CAPI2**



## Data mapping onto HBM



## Data mapping onto HBM



## Data mapping onto HBM



## Main execution pipeline



## Main execution pipeline



## **Complete design flow**

 NERO communicates to Host over CAPI2 (Coherent Accelerator Processor Interface)



- NERO communicates to Host over CAPI2 (Coherent Accelerator Processor Interface)
- **COSMO API** handles offloading jobs to NERO



- NERO communicates to Host over CAPI2 (Coherent Accelerator Processor Interface)
- **COSMO API** handles offloading jobs to NERO
- SNAP (Storage, Network, and Analytics Programming) allows for seamless integration of the COSMO API



#### https://github.com/open-power/snap

- NERO communicates to Host over CAPI2 (Coherent Accelerator Processor Interface)
- **COSMO API** handles offloading jobs to NERO
- SNAP (Storage, Network, and Analytics Programming) allows for seamless integration of the COSMO API



## Outline

Background

CPU Roofline Analysis

FPGA-based Platform

NERO: Near-HBM Accelerator for Weather Prediction Modeling

Precision-optimized Tiling

Evaluation

Performance Analysis

Energy Efficiency Analysis



- The **best window size** is **critical**
- Formulate the search for the best window size as a multiobjective **auto-tuning** problem
- Taking into account the datatype precision
- We make use of **OpenTuner**



**Single Precision** 



Half Precision **Single Precision** (GFlop/s) **3Flop/s** 64x2 64x64� 32x32 16 64x64 14 64x2 12 (a)(b) Performance Performance 10 8 hand-tuned hand-tuned 6 auto-tuned auto-tuned 12 14 16 18 5 6 10 8 9 Resource utilization (%) Resource utilization (%)



# Pareto-optimal tile size depends on the data precision



## Outline

Background

CPU Roofline Analysis

FPGA-based Platform

NERO: Near-HBM Accelerator for Weather Prediction Modeling

Precision-optimized Tiling

Evaluation

Performance Analysis

Energy Efficiency Analysis



## **NERO Performance Analysis**



## **NERO Performance Analysis**



## **NERO Performance Analysis**



### NERO is 4.2x and 8.3x faster than a complete POWER9 socket



## Outline

Background

CPU Roofline Analysis

FPGA-based Platform

NERO: Near-HBM Accelerator for Weather Prediction Modeling

Precision-optimized Tiling

Evaluation

Performance Analysis

Energy Efficiency Analysis



#### **Vertical Advection**



**Vertical Advection** 



# Enabling many HBM ports might not always be the determining factor





### NERO reduces energy consumption by 22x and 29x compared to a complete POWER9 socket



## Outline

Background

CPU Roofline Analysis

FPGA-based Platform

NERO: Near-HBM Accelerator for Weather Prediction Modeling

Precision-optimized Tiling

Evaluation

Performance Analysis

Energy Efficiency Analysis



## Summary

- Motivation: Stencil computation is an essential part of weather prediction applications
- **Problem:** Memory bound with limited performance and high energy consumption on multi-core architectures
- **Goal:** Mitigate the performance bottleneck of compound weather prediction kernels in an energy-efficient way

#### Our contribution: NERO

- First near High-Bandwidth Memory (HBM) FPGA-based accelerator for representative kernels from a real-world weather prediction application
- Detailed roofline analysis to show weather prediction kernels are constrained by DRAM bandwidth on a state-of-the-art CPU system
- Data-centric caching with precision-optimized tiling for a heterogeneous memory hierarchy
- Scalability analysis for both DDR4 and HBM-based FPGA boards

#### • Evaluation

- NERO outperforms a 16-core IBM POWER9 system by 4.2x and 8.3x when running two compound stencil kernels
- NERO reduces energy consumption by 22x and 29x with an energy efficiency of 1.5 GFLOPS/Watt and 17.3 GFLOPS/Watt

## **NERO:**

### A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling

<u>Gagandeep Singh</u>, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal

> 30<sup>th</sup> FPL, Sweden 31<sup>th</sup> August 2020



