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Executive Summary
• Motivation: Off-chip memory bandwidth is limited to short distances, being challenging to 

disaggregate the main memory.
• Problem: Current memory interconnects does not scale for disaggregation in datacenters.
• Contributions: 

- New optical point-to-point disaggregated main memory system for current DDR 
standards.
- Study how a processor interacts with the disaggregated memory subsystem.
- Evaluates a SiP link with state-of-the-art optical devices.

• Results:
- OCM is 5.5x faster than 40G NIC-based disaggregated memory.
- OCM has10.7% energy overhead compared to the DDR DRAM energy consumption for 
data movement.

• Conclusion: OCM is a promising step towards future data centers with disaggregated main 
memory. 
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• Growing gap between computing power and communication.
• #1 Top500 2019 (Summit) has ratio communication/computing (Bytes/FLOP) 8X lower 

than #1 Top500 2017.
• Data Centers maintain most data inside the node.

• Improve performance by increasing the available resources.  
• Underutilization of resources still occurs.

• Disaggregated systems:
• Approach: a network of resources,

      rather than a network of servers.
• Efficient allocation of resources
• Memory is a critical resource.
• High-bandwidth interconnection 

      at rack distance (<10m).
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How can we disaggregate main memory?

• Multichannel:
• Add physical channels to access data in 

parallel.
• Electrical constraints: wiring, pins and 

short distances (few cm).
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• Memory off-chip bandwidth is limited.
• Photonics characteristics: a) high-bandwidth, b) low-energy, c) distance 

independent.

We can scale the number of memory channels with photonics.
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Motivation: Photonics for Memory Disaggregation

• Prior works show that photonics is a promising solution for scalability 
[Bahadori+, JLT’16], [Anderson+ OFC’18 ], [Brunina+, 
JSTQE’13] 

• No comprehensive analysis that evaluates both: 
- How a processor interacts with a disaggregated memory subsystem 
executing real applications.
- SiP link design to estimate the number of optical devices and 
energy consumption for DDR standards.

10
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Goal

Propose an Optically Connected Memory (OCM) architecture and 
study how photonics can enable disaggregation for memory systems.

1. Study how a processor interacts with a disaggregated memory subsystem 
while executing real applications.

2. Design and evaluate a SiP link to estimate the number of optical 
devices and energy consumption for current DDR standards.

11
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Optically Connected Memory (OCM)

OCM uses DWDM to achieve high aggregated bandwidth using multiple 
wavelength (λs):

- Same λs for all DRAM DIMMs in a memory channel.
- A single fiber can carry multiple λs (requires less wires than an electrical bus).
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• OCM DDR latency and memory controller latency is the same as 
conventional DDR.

• OCM latency overhead: SERDES latency + Distance 
propagation

• OCM incurs in latency overhead because of:
• Signal conversion electrical to/from optical.
• Signal propagation latency at rack distance.

• Lockstep operation:
• Parallel access to DRAM DIMMs in the same memory channel.
• Larger cache line size, e.g.: 128B, split into the DRAM DIMMs on 

the same channel.
• Allow to reduce the latency overhead.

OCM Timing

16
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Experimental Setup
• System-level performance: modified version of ZSIM simulator.

• Benchmarks: SPEC06, SPEC17, Parsec, Splash, GAPS

18

Baseline
Processor 3 GHz, 8 cores, 128B cache lines

Cache 32KB L1(D+I), 256KB L2, 8MB L3

MemConf1 Mem 4 channels, 2 DIMMs/channel, DDR4-2400 

MemConf2
Mem 1 channel, 2 DIMMs/channel, DDR4-2400

DRAM 
cache

4GB stacked, 4-way, 4K pages, FBR, DDR4-2400

OCM
SERDES latency: 10 - 340 cycles

Fiber latency: 30/60/90 cycles (2/4/6 meters roundtrip)

NIC 40G PCIe latency: 1050 cycles

Setup Parameters

CPU DRAM
MemConf1 

without 
DRAM Cache 

Interconnect

CPU

D
RA

M
 C

AC
H

E

DRAM
MemConf2 

with 
DRAM Cache 

Interconnect

• SiP link evaluation: custom model in our PhoenixSim simulator [Rumley+, AISTECS’16]. 
• Modified to sustain current DDR4-2400 memory systems.
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Results MemConf1 w/out DRAM Cache

• As expected higher OCM latency degrades performance.
• Average slowdown is 1.07x with the optimistic scenario.
• Average slowdown is 1.78x with the worst-case scenario.

• OCM is up to 5.5x faster than 40G NIC.
19

Lower delay is close to baseline performance
SPEC06

Latency 
(Cycles)
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• For most of the benchmarks, OCM has less than 38% slowdown.
• PR with Urand input graph exhibits > x2 speedup on both OCM and non-

disaggregated scenario.

20% higher

10% Average 
slowdown

Results MemConf2 with DRAM Cache
GAPS
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SiP Link Results

•For both Gbps rates, 183.5 um2 rings have the lowest energy consumption.
•DDR4-2400 bandwidth: 2x615 Gbps link: 35 wavelengths (MRRs) @ 17.57 
Gbps.

21

Lowest energy  
consumption
1.07 pj/bit @ 

615 Gbps
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• More OCM architecture details in the paper:
• Timing diagram and operation.

• More results in the paper:
• Measured memory footprint.
• Multithreaded results.
• Multiprogrammed results.
• Additional SiP link configuration.

22

Additional details in the paper:
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Conclusion

• We proposed and evaluated Optically Connected Memory (OCM), a new optical 
architecture for disaggregated main memory systems, compatible with current DDR 
DRAM technology. 

• We made three key observations:
1. OCM has low energy overhead of only 10.7% compared to DDR 

DRAM data movement energy consumption.
2. OCM performs x5.5 faster than a 40G NIC- based disaggregated memory. 
3. OCM can fit the bandwidth requirements of commodity DDR4 

DRAM modules.
• We conclude that OCM is a promising step towards future data centers with 

disaggregated main memory.

24
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SiP Link Controllers and Transceivers

• Controllers have 
transceivers: 
- Master, on the 

processor side.
- Endpoint, on the 

DRAM DIMM
• A transceiver is a 

microring resonator 
(MRR) array for TX 
(modulators) and  RX 
(demodulators).

26

SiP link design based on state-of-the art devices [Bahadori+, JLT’16], 
[Bahadori+, JLT’18], [Bahadori+, OI’16] , [Polster+, TVLSI’16]
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• Average slowdown is 1.3x for Splash2x and 1.4x for Parsec.

x2.97 Highest slowdown Memory bound 
applications

Computing 
bound 

applications

Results MemConf1 w/out DRAM Cache
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PARSEC with OCM

28

SERDES (cycles)

Memory bound applications Computing bound applications

Lower delay is close to baseline performance

Latency 
(Cycles)10 - 340
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SERDES (cycles)

SPLASH with OCM
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Latency 
(Cycles)10 - 340

Memory bound applications Computing bound applications

Lower delay is close to  
baseline performance



-SAFARI -LSC -30

50% lower

Max slowdown

Results MemConf2 with DRAM Cache
SPEC17

GAPS

• For most of the benchmarks, OCM has less than 38% slowdown.
• PR with Urand input graph exhibits > x2 speedup on both OCM and non-

disaggregated scenario.
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SiP Link Results

•For both Gbps rates, 183.5 um2 rings consume the lowest energy. 
•615 Gbps link: 35 wavelengths (MRRs) @ 17.57 Gbps. Area overhead: 51.4E-3 mm2

•802 Gbps link: 39 wavelengths (MRRs) @ 20.56 Gbps. Area overhead: 57.3E-3 mm2
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