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PIM-Opt: Summary
Problem: Modern machine learning (ML) training is a data-intensive workload and 
processor-centric architectures commonly used for ML training suffer from the data 
movement bottleneck 

Goal: Understand the capabilities of popular distributed Stochastic Gradient Descent (SGD) 
algorithms on real-world Processing-In-Memory (PIM) systems to accelerate distributed 
ML training workloads

Contributions:
• Implementation, analysis, and training of linear ML models on two large datasets using 

distributed SGD algorithms on a real-world PIM system (i.e., UPMEM)
• Demonstrate scalability challenges of the UPMEM PIM system
• Discuss implications for future PIM hardware design 
• Highlight the need for a shift towards an algorithm-hardware codesign

Evaluation:
• Comparison of the UPMEM PIM to state-of-the-art CPU and GPU

• YFCC100M-HNfc6 dataset: UPMEM PIM is up to 1.9x/3.2x faster than the CPU/GPU
• Criteo 1TB Click Logs dataset: UPMEM PIM is up to 9.3x/10.7x faster than the CPU/GPU

• Scalability challenges of the UPMEM PIM
• YFCC100M-HNfc6 (Criteo 1TB Click Logs) dataset: Speedup of 7.4x (3.9x) while the 

achieved test accuracy (AUC score) decreases from 95.5% (0.74) to 92.2% (0.72)

https://github.com/CMU-SAFARI/PIM-Opt

https://github.com/CMU-SAFARI/PIM-Opt
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Models & ML Training

• Two of the most commonly trained linear binary 
classification models:
• Logistic Regression (LR)
• Support Vector Machines (SVM)

• The goal of machine learning (ML) training is to find an 
optimal ML model by minimizing an objective function over 
a training dataset

• Regularization techniques are used
• Prevent overfitting on the training dataset
• Control the model complexity
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Algorithms

• Stochastic Gradient Descent (SGD) is perhaps the most 
important and commonly deployed optimization algorithm for 
modern ML training

• SGD is the main building block of most distributed optimization 
algorithms

• Variants of SGD such as mini-batch SGD allow for parallelization 
by batching the training samples in each iteration
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Distributed Optimization Algorithms

Popular centralized optimization algorithms:

- Mini-batch SGD with Model Averaging (MA-SGD)

- Mini-batch SGD with Gradient Averaging (GA-SGD)

- Distributed Alternating Direction Method of Multipliers (ADMM)

Centralized Topology Decentralized Topology

Worker Parameter
Server
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2,560-DPU UPMEM PIM System
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• 20 UPMEM DIMMs 
of 16 chips each 
(40 ranks)

• Dual x86 socket

• UPMEM DIMMs 
coexist with regular 
DDR4 DIMMs
- 2 memory 

controllers/socket 
(3 channels each)

- 2 conventional 
DDR4 DIMMs on 
one channel of 
one controller
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UPMEM PIM System Architecture
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• Processor-centric design
- Highly-imbalanced systems
- Overly complex processors

• Applications are increasingly data hungry
• Stochastic Gradient Descent is memory-bound

Key Problem

Data Movement Bottleneck

Data Movement

SoC

DRAML2L1
CPU

CPU
CPUCPU

The data movement bottleneck is a key limiter of

large-scale Machine Learning training
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Motivation

Processing-In-Memory is a promising solution
to perform large-scale ML Training 

→ Alleviate the data movement bottleneck by placing 
compute units inside or near memory

By identifying key characteristics covering the design space
of both hardware and optimization algorithms

How do we start?
                        
                     

Processing-In-Memory is a promising solution
to perform large-scale ML Training 

→ Processing-In-Memory is a promising solution
to perform large-scale ML Training 
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Motivation

64.6x higher64.6x higher 1536.1x higher

→ Minimize the communication
between the parameter server and PIM

→ Minimize the total data movement
between the parameter server and PIM

The communication-efficient ADMM optimization 
algorithm is attractive for distributed ML training

on the UPMEM PIM system

It is important to carefully choose 

the optimization algorithms 

that best fit PIM

The communication-efficient ADMM optimization 
algorithm is attractive for distributed ML training

on the UPMEM PIM system

64x higher
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UPMEM PIM System Implementation

Distribute Partitions of
Training Data to DPUs

UPMEM-side

DPU Program Invokation

Inter-DPU Synchronization

Distribute Global Model
to DPUs

Host-side

DPU Set
DPU DPU

Training Data Partitions

Local Models/Gradients

Updated Global Model
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UPMEM PIM System Implementation

• Task Parallelism:
- Every DPU is a worker
- Every DPU uses 16 tasklets collaboratively to implement 

the mini-batch SGD optimizer
- Features of the training samples & model parameters are 

evenly distributed among tasklets

• LUT-based Methods:
- Training of Logistic Regression involves computing the exponential 

function to evaluate the sigmoid
- UPMEM PIM system does not support transcendental functions 
→ We use the TransPimLib library for efficient LUT-based
computation
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System Configurations
• UPMEM PIM System:

- 2x Intel Xeon Silver 4215 
8-core processor @ 2.50GHz

- 2560 DPUs @ 350 MHz
- 20×8 GB UPMEM PIM modules

• CPU Baseline System:
- 2x AMD EPYC 7742 

64-core processor @ 2.25GHz

• GPU Baseline System:
- 2x Intel Xeon Gold 5118 

12-core processor @ 2.30GHz
- 1× NVIDIA A100 (PCIe, 80 GB)

Image source: https://gzhls.at/i/35/19/2113519-l3.jpg (AMD EPYC),  https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/nvidia-a100-80-gb-og-
social-1200x630.jpg (NVIDIA A100)

https://gzhls.at/i/35/19/2113519-l3.jpg
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/nvidia-a100-80-gb-og-social-1200x630.jpg
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/nvidia-a100-80-gb-og-social-1200x630.jpg


18

Baseline Implementations

• CPU Baseline Implementation:
- Implementations use PyTorch
- We implement MA-SGD, GA-SGD, and ADMM, to train LR and

SVM models, using the optimizers and communication libraries 
provided by PyTorch

- Each CPU thread is a worker

• GPU Baseline Implementation:
- Implementations use PyTorch
- We only implement mini-batch SGD on the GPU 
→ PyTorch does not provide a way to limit the amount of GPU 
resources the kernels use
→ Causing model averaging to be serialized on a single GPU

- For fair comparison, we do not use a cluster of GPUs for our baseline 
because the UPMEM PIM system is a single-server node
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Experiment Implementation Details

https://arxiv.org/pdf/2404.07164v2

https://arxiv.org/pdf/2404.07164v2
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PIM Performance Comparison

• GA-SGD on the UPMEM PIM outperforms GA-SGD on the CPU for 
both LR and SVM

• GA-SGD on the UPMEM PIM outperforms mini-batch SGD on the 
GPU for both LR and SVM

1.6x higher
1.9x higher

2.7x higher
3.2x higher

• MA-SGD on the UPMEM PIM significantly outperforms 
MA-SGD on the CPU for both LR and SVM

• ADMM on the UPMEM PIM and on the CPU exhibits 
comparable performance for both LR and SVM
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PIM Performance Comparison

• GA-SGD on the UPMEM PIM outperforms GA-SGD on the CPU for 
both LR and SVM

• GA-SGD on the UPMEM PIM outperforms mini-batch SGD on the 
GPU for both LR and SVM

1.6x higher
1.9x higher

2.7x higher
3.2x higher

The UPMEM PIM is a viable alternative to the CPU and the GPU 
for training small dense models on large-scale datasets
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• Communication and synchronization between the parameter server 
and PIM is a bottleneck for MA-SGD/GA-SGD

• For all combinations of optimization algorithms and models, PIM 
computation takes more time than PIM data movement on the 
UPMEM PIM

PIM Performance Breakdown

223.3x higher 14.1x higher

The UPMEM PIM is less suitable for ML models and optimization 
algorithms that require frequent communication and synchronization 

between PIM and the parameter server



Criteo
Dataset
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PIM Strong Scaling

• For high-dimensional sparse models, for MA-SGD/ADMM on the UPMEM PIM 
we observe good strong scalability in terms of total training time, but poor in 
AUC Score

Reduction by
2.9x

Auc Score decreases 
from 0.74 to 0.72

The scalability potential of the UPMEM PIM for training 
high-dimensional sparse models is limited by its lack of 

direct inter-DPU communication
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More in the Paper

• Rigorous analysis of many combinations of algorithms, models, 
architectures, and datasets

• For each YFCC100M-HNfc6 and Criteo 1TB Click Logs datasets, we 
examine
- PIM performance breakdown
- PIM performance comparison & algorithm selection
- Batch size sensitivity analysis
- Impact of scaling 

- Weak Scaling
- Strong Scaling

• Extended observations, takeaways, and implications for future 
PIM hardware design

https://arxiv.org/pdf/2404.07164v2

https://arxiv.org/pdf/2404.07164v2
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Implications for PIM Hardware Design

• Our evaluation demonstrates that a real-world PIM system 
   (i.e., UPMEM) can be a viable alternative to state-of-the-art
   processor-centric architectures for many distributed ML training
   workloads 

• We argue that future PIM architectures should add interconnects
   and/or shared memory among PIM processing units
• Enables implementation of decentralized optimization algorithms
• Decentralized parallel SGD algorithms are a promising solution to 

overcome scalability challenges of the real-world PIM system

• We posit that a shift towards an algorithm-hardware codesign
   perspective is necessary in the context of ML training using PIM
   due to the high complexity of the design space
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Conclusion
• We evaluate and train ML models on large-scale datasets with centralized 

optimization algorithms on a real-world PIM system (i.e., UPMEM)

• We show that it is important to carefully choose the distributed optimization 
algorithm that best fits the real-world PIM system and analyze tradeoffs

• We demonstrate that commercial general-purpose PIM systems can be a viable 
alternative to state-of-the-art processor-centric architectures (e.g., CPU, GPU) 
for many distributed ML training workloads on  large-scale datasets

• Our results demonstrate the necessity of adjust PIM architectures to enable 
decentralized parallel SGD algorithms to overcome scalability challenges for 
many distributed ML training workloads

• Future work:
- Larger models: Deep neural networks, large language models, ...
- New compute paradigms and accelerators

- Rethinking  the full stack 
- Algorithm-hardware codesign

https://github.com/CMU-SAFARI/PIM-Opt

https://github.com/CMU-SAFARI/PIM-Opt
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Mini-batch SGD with Model Averaging (MA-SGD)

Mini-batch SGD

Local Models

Model Averaging

Global Model
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Mini-batch SGD with Gradient Averaging (GA-SGD)

Mini-batch SGD

Local Gradients

Gradient Averaging

Global Model
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Alternating Direction Method of Multipliers (ADMM)

Mini-batch SGD

Local Models

Computation of 
Global Model & 

Auxiliary Variables

Auxiliary Variables
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• 20 UPMEM DIMMs of 16 
chips each (40 ranks)

• Dual x86 socket
• UPMEM DIMMs coexist with 

regular DDR4 DIMMs
- 2 memory controllers/socket 

(3 channels each)
- 2 conventional DDR4 DIMMs 

on one channel of one 
controller
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PIM Programming and Execution Model
UPMEM PIM Chip

Bank

DRAM Array
(MRAM) 64MB

High Bandwidth
Internal Data Bus

DRAM Processing
Unit (DPU)

Working Memory
(WRAM) 64KB

Instruction
Memory

Fine-grained 
Multi-threaded Pipeline

x8

• DPU programs are written in C
- UPMEM SDK

- Runtime libraries

• Execution model of a DPU is 
based on the Single-Program-
Multiple-Data (SPMD) paradigm

• Each DPU can run up to 
24 tasklets

- Assigned statically at 
compile-time

• Tasklets assigned to the same 
DPU share MRAM and WRAM

Fine-grained 
Multi-threaded Pipeline

Working Memory
(WRAM) 64KB

DRAM Array
(MRAM) 64MB
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UPMEM PIM System Implementation

• Data Partitioning:
- For both MA-SGD and ADMM, each DPU’s partition consists of multiple 

mini-batches of the training data
- For GA-SGD, each partition consists of a fraction of all the mini-batches of 

the training data

• Synchronization:
- For MA-SGD, each DPU only processes one mini-batch from its assigned 

training data partition and updates its local model before synchronization 
on the host

- For GA-SGD, each DPU computes intermediate gradients from its 
assigned fraction of one mini-batch before synchronization on the host

- For ADMM, each DPU processes all assigned mini-batches and updates its 
local model for every mini-batch
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Experiment Implementation Details

• Data Format:

- UPMEM PIM system uses quantized training data and models 
both represented 32-bit fixed-point format

   → Floating-point operations are not natively supported 
   → Quantization is necessary to enable fixed-point operations

- Baseline implementations use the FP32 floating-point format
   → Natively supported
   → Higher accuracy
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Experiment Implementation Details

• Regularization:
- Apply standard regularization techniques
    → Achieve lower generalization errors

• Batch Size:
- For each experiment, we tune the batch size to ensure
    → High accuracy
    → High performance in terms of total training time
    → Fair comparison of algorithms & architectures
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Experiment Implementation Details

• Hyperparameter Tuning:
- For all evaluated workloads, we tune the learning rates and 

regularization terms
- All tested hyperparameters along with our complete codebase 

are open source at
https://github.com/CMU-SAFARI/PIM-Opt

• Datasets:
- YFCC100M-HNfc6: Small and dense model
- Criteo 1 TB Click Logs: Large and sparse model

https://github.com/CMU-SAFARI/PIM-Opt
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System Configurations
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Experiment Implementation Details

• Hyperparameter Tuning:
- For all evaluated workloads, we tune the learning rates and 

regularization terms
- All tested hyperparameters along with our complete codebase 

are open source at
https://github.com/CMU-SAFARI/PIM-Opt

• Initialization:
- For all implementations, the training data & model parameters 

initially reside in main memory
- For UPMEM PIM system and GPU baseline experiments, the 

initialization phase includes transferring the data from the main 
memory to the PIM DRAM bank and the GPU global memory

https://github.com/CMU-SAFARI/PIM-Opt
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Datasets

• YFCC100M-HNfc6:
- Popular multimedia dataset that consists of 97M samples
- Each sample has 4096 floating-point dense features and a 

collection of tags
- We randomly sample and shuffle data points and turn this 

subset into a binary classification task
- The total size of model parameters is 4 KB
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Datasets

• Criteo 1TB Click Logs (Criteo):
- Criteo is a popular click-through rate prediction dataset that 

consists of 4.37 b high-dimensional sparse samples with 1M 
features

- Each data point consists of label and 39 categorical
- While data points only consist of 40 parameters, the 

models/gradients consist of 1M variables
- The dataset is highly imbalanced
- We randomly sample and shuffle the dataset
- We use the area under the receiver operating characteristics 

curve (AUC score) to assess the generalization capabilities of 
models trained on Criteo

- The total size of the model parameters is 4MB
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Datasets Configurations
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PIM Performance Comparison

• Difference in total training time between MA-SGD and ADMM is 
significantly lower on the UPMEM PIM compared to the CPU

• GA-SGD is slower than ADMM for all configurations of LR, SVM, the 
UPMEM PIM, and the CPU

1.5x higher

39.8x higher
3.2x higher

4.5x higher
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YFCC100M: Performance Comparison 



50

YFCC100M: Batch Size 
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YFCC100M: Weak Scaling
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YFCC100M: Strong Scaling 
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Criteo: PIM Performance Breakdown
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Criteo: PIM Performance Comparison
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Criteo: Batch Size
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Criteo: Weak Scaling
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