

Onur Mutlu

Understanding RowHammer Under Reduced Refresh Latency: Experimental Analysis of Real DRAM Chips and Implications on Future Solutions

Yahya Can Tuğrul

A. Giray Yağlıkçı İsmail Emir Yüksel

Ataberk Olgun Oğuzhan Canpolat Nisa Bostancı

Oğuz Ergin

Mohammad Sadrosadati

Executive Summary

Problem:

- Read disturbance in DRAM (e.g. RowHammer) worsens with technology node scaling
- Existing solutions perform preventive refresh, inducing significant overheads
- Motivation: Reducing preventive refresh latency to reduce its overheads.
- No prior work studies i) the effect of preventive refresh latency on RowHammer or ii) the implications of reducing preventive refresh latency on existing solutions

Goal:

- To understand the **impact of preventive refresh latency on RowHammer**
- To leverage this understanding to **reduce the overheads of existing solutions**
- **Experimental Characterization: 388 DDR4 DRAM chips from three major vendors**
- The latency of a vast majority of preventive refresh can be significantly reduced without jeopardizing the data integrity of a DRAM chip
- **PaCRAM: Partial Charge Restoration for Aggressive Mitigation**
- Reduces the latency of preventive refreshes issued by the existing solution
- Adjusts the aggressiveness of the existing solution

Evaluation: By reducing the existing solutions' performance and energy overheads, **improves system performance** and **energy efficiency** with **small additional area cost**

Outline

Background

Problem and Motivation

Experimental Characterization of Real DRAM Chips

PaCRAM: Partial Charge Restoration for Aggressive Mitigation

Evaluation

Conclusion

DRAM Organization

[Hassan+, MICRO'21]

DRAM Access

SAFARI @kasırga

[Hassan+, MICRO'21]

DRAM Cell Leakage

Each cell encodes information in **leaky** capacitors

Stored data is **corrupted** if too much charge leaks (i.e., the capacitor voltage degrades too much)

SAFARI *O*kasırga

[Patel+, ISCA'17]

DRAM Refresh

Periodic refreshes preserve stored data

SAFARI @kasırga

[Patel+, ISCA'17]

RowHammer Vulnerability

Repeatedly **opening** (activating) and **closing** (precharging) a DRAM row causes **RowHammer bitflips** in nearby cells

SAFARI *O*kasırga

[Kim+, ISCA'20]

RowHammer Bitflips

SAFARI @kasırga

[Kim+, ISCA'20]

RowHammer-Preventive Refresh

Preventively refreshing potential victim rows **mitigates** RowHammer bitflips

A Closer Look

Preventive Refresh has a **non-negligible latency**

Outline

Background

Problem and Motivation

Experimental Characterization of Real DRAM Chips

PaCRAM: Partial Charge Restoration for Aggressive Mitigation

Evaluation

Conclusion

Problem

- RowHammer worsens as DRAM chip density increases
- RowHammer bitflips occur at much lower activation counts

Mitigation mechanisms against RowHammer attacks induce higher overheads as RowHammer worsens

Reducing Mitigation Overhead

Reduced Charge Restoration Latency

Reduced Preventive Refresh Latency

Reduced Preventive Refresh Overhead

Reducing Charge Restoration Latency

The charge of the cell are partially restored

Partial charge restoration might **affect the voltage level** of the cell and thus **affect the RowHammer vulnerability**

To robustly perform partial charge restoration, we need to understand the DRAM chip's limit with **rigorous characterization**

To understand the **impact of charge restoration latency on RowHammer**

To leverage this understanding to reduce the overheads of existing solutions

Outline

Background

Problem and Motivation

Experimental Characterization of Real DRAM Chips

PaCRAM: Partial Charge Restoration for Aggressive Mitigation

Evaluation

Conclusion

DRAM Testing Infrastructure

• DRAM Bender* on a Xilinx Alveo U200

Fine-grained control over **DRAM commands**, **timing parameters (±1.5ns)**, and **temperature (±0.5°C)**

SAFARI @kasırga

*Olgun et al., TCAD, 2023 https://github.com/CMU-SAFARI/DRAM-Bender

Tested DRAM Chips

388 DDR4 DRAM chips from SK Hynix, Micron, and Samsung

Chin Mfr	Module	#Chips	Form	Die	Die	Chip	Date
Cmp Mr.	IDs	(#Modules)	Factor	Density	Rev.	Org.	Code
	HO	8 (1)	SO-DIMM	4Gb	Μ	x8	N/A
	H1	8 (1)	SO-DIMM	4Gb	Х	x8	N/A
	H2	8 (1)	SO-DIMM	4Gb	Α	x8	N/A
Mfr. H	H3	32(1)	R-DIMM	8Gb	Μ	x4	N/A
(SK Hynix)	H4-5	32 (2)	R-DIMM	8Gb	D	x8	2048
	H6	32 (1)	R-DIMM	8Gb	Α	x4	N/A
	H7-8	32 (2)	U-DIMM	16Gb	С	x8	2136
	M0-1-2	48 (3)	R-DIMM	8Gb	В	x4	N/A
	M3	16(1)	SO-DIMM	16Gb	F	x8	2237
Mfr. M	M4	4(1)	SO-DIMM	16Gb	E	x16	2046
(Micron)	M5	32(1)	R-DIMM	16Gb	E	x4	2014
	M 6	4 (1)	SO-DIMM	16Gb	В	x16	2126
	S0-1	32 (2)	U-DIMM	4Gb	F	x8	N/A
	S2-3-4	24 (3)	SO-DIMM	4Gb	E	x8	1708
	S 5	4 (1)	SO-DIMM	4Gb	С	x16	N/A
Mfr. S	S6-7-8-9	32 (4)	U-DIMM	8Gb	D	x8	2110
(Samsung)	S10	16(1)	R-DIMM	8Gb	С	x8	1809
	S11	8 (1)	R-DIMM	8Gb	В	x8	2052
	S12	8 (1)	U-DIMM	8Gb	Α	x8	2212
	S13	8 (1)	U-DIMM	16Gb	В	x8	2315

Key Takeaway from Real Chip Experiments

Charge restoration latency can **be significantly reduced** for **a vast majority of preventive refreshes**

Experiment Algorithm

RowHammer Vulnerability Metric

Normalized RowHammer Threshold

 $Norm_{RH} = \frac{N_{RH} with Partial Charge Restoration}{N_{RH} with Full Charge Restoration}$

Effect of Partial Charge Restoration

Effect of Partial Charge Restoration

Charge restoration latency can **be significantly reduced**

Partial Charge Restoration causes cells to be partially restored

Repeated Partial Charge Restorations might **induce bitflips**

Partial charge restoration can **be consecutively performed many times**

After 15K/15K/1K partial charge restoration, a single **full charge restoration** is needed

Key Takeaway from Real Chip Experiments

Charge restoration latency can **be significantly reduced** for **a vast majority of preventive refreshes**

Outline

Background

Problem and Motivation

Experimental Characterization of Real DRAM Chips

PaCRAM: Partial Charge Restoration for Aggressive Mitigation

Evaluation

Conclusion

PacRAM: Partial Charge Restoration for Aggressive Mitigation

- **Key Experimental Takeaway:** Charge restoration latency can be significantly reduced for a vast majority of preventive refreshes
- **Key Idea:** Reduce preventive refresh overhead by reducing charge restoration latency of preventive refreshes
- **PaCRAM: Partial Charge Restoration for Aggressive Mitigation**
 - **Reduces the latency of preventive refreshes** issued by the existing solution
 - **Configures** the existing solution with **the reduced RowHammer threshold**
 - **Guarantees** that any victim is **not refreshed** by more than a safe number of **consecutive partial charge restorations**

PaCRAM significantly reduces the performance and energy overhead of existing solutions

PacRAM: Partial Charge Restoration for Aggressive Mitigation

• PaCRAM is implemented in the memory controller

Outline

Background

Problem and Motivation

Experimental Characterization of Real DRAM Chips

PaCRAM: Partial Charge Restoration for Aggressive Mitigation

Evaluation

Conclusion

Evaluation Methodology

- Cycle-level simulations using Ramulator 2.0 [Luo+, CAL 2023]
- <u>System Configuration</u>:

Processor	1 or 4 cores, 3.2GHz clock frequency, 4-wide issue, 128-entry instruction window
DRAM	DDR5, 1 channel, 2 rank, 8 bank groups, 2 banks/bank group, 64K rows/bank
Memory Ctrl.	64-entry read and write requests queues, Scheduling policy: FR-FCFS [228, 229] Address mapping: MOP [230]
Last-Level Cache	2MB per core

- <u>Workloads</u>: 62 single-core and 60 four-core multiprogrammed workloads from 5 benchmark suites
- <u>N_{RH}</u>: {1K, 512, 256, 128, 64, 32} hammers The minimum hammer count needed to induce the first bitflip

Configurations

- Paired with 5 state-of-the-art solutions
 - PARA [Kim+, ISCA'14]
 - **RFM** [JEDEC 2020]
 - **PRAC** [JEDEC 2024]
 - Hydra [Qureshi+, ISCA'22]
 - **Graphene** [Park+, MICRO'20]
- Configured using experimental characterization data

 - - $Mfr. M \rightarrow PaCRAM-M \qquad Charge Restoration Latency$

Configurations

- Paired with 5 state-of-the-art solutions
 - PARA [Kim+, ISCA'14]
 - **RFM** [JEDEC 2020]
 - **PRAC** [JEDEC 2024]
 - Hydra [Qureshi+, ISCA'22]
 - Graphene [Park+, MICRO'20]

• Configured using experimental characterization data

Implication on Future Solutions

Implication on Future Solutions

PaCRAM significantly **reduces (11% on average) the performance overhead** of existing solutions

Implication on Future Solutions

PaCRAM significantly reduces (9% on average) the energy overhead of existing solutions

More in the Extended Version

- Effect of partial charge restoration on
 - Lowest observed N_{RH} of DRAM modules
 - RowHammer Bit-Error-Rate
 - Half-Double access pattern
 - Data retention time
- Combined effect of partial charge restoration and temperature
- Algorithms and details of our experiments
- Detailed implementation of PaCRAM
 - Hardware complexity analysis (0.09% area overhead on a high-end Intel Xeon Processer)
 - Profiling cost analysis
- Reducing charge restoration latency for periodic refreshes

More in the Extended Version

42

Understanding RowHammer Under Reduced Refresh Latency: Experimental Analysis of Real DRAM Chips and Implications on Future Solutions

Yahya Can Tuğrul^{§†} A. Giray Yağlıkçı[§] İsmail Emir Yüksel[§] Ataberk Olgun[§] Oğuzhan Canpolat^{§†} Nisa Bostancı[§] Mohammad Sadrosadati[§] Oğuz Ergin^{‡†} Onur Mutlu[§] [§]ETH Zürich [†]TOBB University of Economics and Technology [‡]University of Sharjah

Read disturbance in modern DRAM chips is a widespread weakness that is used for breaking memory isolation, one of the fundamental building blocks of system security and privacy. RowHammer is a prime example of read disturbance in DRAM where repeatedly accessing (hammering) a row of DRAM cells

SAFARI @kasırga

cell causes physically nearby DRAM cells to lose their charge (i.e., charge leakage) and exhibit bitflips. *RowHammer* is a prime example of such DRAM read disturbance phenomena where a row of DRAM cells (i.e., a DRAM row) can experience bitflips when another physically nearby DRAM row (i.e.,

https://arxiv.org/pdf/2502.11745

PaCRAM is Open Source and Artifact Evaluated

		21			
	MU-SAFARI / PaCRAM				
<> Code 💿	Issues 🕄 Pull requests 💿 Actions 🖽 Proje	ects 🛈 Security 🗠 Insights	s 😥 Settings		
	PacRAM Public			🕉 Edit Pins 👻 💿 Watch 🌘	3 ▼ 😵 Fork 0 ▼ 🛱 Star 2 ▼
	🐉 main 👻 🤔 1 Branch 🛇 0 Tags	Q Go to f	file t	Add file 🔹 <> Code 👻	About
	😴 yct000 Update README.md		26f60	16b · 4 days ago 🕚 10 Commits	PaCRAM is a technique that reduces the performance and energy overheads of
	DB_scripts	add PaCRAM-M		2 weeks ago	the existing RowHammer mitigation mechanisms by carefully reducing the
	Ram_scripts	add PaCRAM-M		2 weeks ago	latency of preventive refreshes issued by
	🗋 .gitignore	initial commit		3 months ago	compromising system security. Describe
	README.md	Update README.md		4 days ago	in the HPCA 2025 paper: https://arxiv.org/abs/2502.11745
	Check_run_status.py	add additional slurm parameters		3 months ago	🛱 Readme
	Check_warmup_status.py	add additional slurm parameters		3 months ago	-\- Activity
	parse_ram_results.sh	initial commit		3 months ago	 Custom properties 2 stars
	plot_db_figures.sh	initial commit		3 months ago	♂ 3 watching
	plot_db_figures_slurm.sh add slurm script for db results		esults	3 months ago	% 0 forks Report repository

SAFARI @kasırga

43

Outline

Background

Problem and Motivation

Experimental Characterization of Real DRAM Chips

PaCRAM: Partial Charge Restoration for Aggressive Mitigation

Evaluation

Conclusion

Conclusion

The first rigorous experimental characterization
on the effect of preventive refresh latency on RowHammer
388 DDR4 DRAM chips from three major vendors

The latency of **a vast majority of preventive refresh** can **be significantly reduced** without jeopardizing the data integrity of a DRAM chip

PaCRAM: Partial Charge Restoration for Aggressive Mitigation

- **Reduces the latency of preventive refreshes** issued by the existing solution
- Adjusts the aggressiveness of the existing solution

PaCRAM significantly **reduces the performance and energy overheads** of existing solutions

Understanding RowHammer Under Reduced Refresh Latency: Experimental Analysis of Real DRAM Chips and Implications on Future Solutions

Yahya Can Tuğrul

A. Giray Yağlıkçı İsmail Emir Yüksel

Onur Mutlu

Ataberk Olgun Oğuzhan Canpolat Nisa Bostancı

Oğuz Ergin

Mohammad Sadrosadati

SAFARI ETH zürich

Backup Slides

Yahya Can Tuğrul

İsmail Emir Yüksel A. Giray Yağlıkçı Ataberk Olgun Oğuzhan Canpolat Nisa Bostancı Mohammad Sadrosadati Oğuz Ergin **Onur Mutlu** 🥏 kasırga SAFARI ETHzürich

Preventive Refresh Overhead

Mitigation mechanisms against RowHammer attacks induce higher overheads as RowHammer worsens

Effect of Partial Charge Restoration on Lowest Observed N_{RH} of DRAM Modules

Charge Restoration Latency

Charge restoration latency

can be reduced without significantly affecting the Lowest Observed N_{RH} of DRAM Modules

N_{RH} Reduction Distribution

Rows that are highly vulnerable with full charge restoration **do not exhibit the largest N_{RH} reductions** with partial charge restoration

Effect of Partial Charge Restoration on RowHammer Bit-Error-Rate (BER)

Charge restoration latency can **be reduced without significantly affecting RowHammer Bit-Error-Rate**

Combined Effect of Partial Charge Restoration and Temperature

No significant impact of temperature on the effect of charge restoration latency on RowHammer vulnerability

Effect of Partial Charge Restoration on Data Retention Time

Charge restoration latency can **be significantly reduced** to a safe minimum value **without causing data retention failures**

Effect of Partial Charge Restoration on Half-Double Access Pattern

Charge restoration latency can **be significantly reduced**

Detailed Implementation of PaCRAM

Detailed Implementation of PaCRAM

- F State: the row has to be refreshed using full charge restoration
- P State: the row can be refreshed using partial charge restoration

Determining Preventive Refresh Latency

F → Full Charge Restoration Latency P → Partial Charge Restoration Latency

PaCRAM's Row State Transition

• F State → P State

- When the row is refreshed using full charge restoration
- After fully restoring a row, PaCRAM uses partial charge restoration

• P State → F State

- PaCRAM periodically resets each rows state to F state
- Full Charge Restoration Interval

Full Charge Restoration Interval

- To Guarantee that any victim is not refreshed by more than a safe number (N_{PCR}) of consecutive partial charge restorations
- PaCRAM assumes the worst case where a DRAM row is accessed as frequently as possible
- The smallest time window that can contain N_{PCR} preventive refreshes

Time to Receive One Preventive Refresh

Attack Time Preventive Refresh Latency

Hardware Complexity Analysis of PaCRAM

- Chip area and access latency analysis using CACTI
- PaCRAM requires 1 bit for each DRAM row (Fully Restored Bit Vector)
- For a DRAM module with 32 banks and 64K row/bank,
 - 256 KB of SRAM
 - 0.09% of a high-end Intel Xeon processor
 - **1.35%** of the memory controller area
 - Access latency of **0.27ns** (<< row activation latency)

PaCRAM introduces a small additional area overhead

PaCRAM with on-DRAM-die RowHammer Mitigation Mechanisms

- On-DRAM-die mitigation mechanism
 - PRAC
 - Chronus
 - ...
- PaCRAM can be implemented **inside DRAM chip**
 - On-DRAM-die mitigation mechanism inserts a Back-Off signal to request a preventive refresh
 - PaCRAM stores the preventive refresh latency in the mode register (MR)
 - Memory controller checks the latency value in MR and issues a preventive refresh with the latency provided by PaCRAM

Profiling Cost Analysis

- For PaCRAM to work **robustly**,
 - How much charge restoration latency can be reduced
 - How RowHammer threshold changes with partial charge restoration
 - How many partial charge restorations we can perform consecutively

Profiling

- The system perform profiling the very first time DRAM is initialized
- DRAM manufacturers perform profiling and store metadata in SPD
- The system can perform online profiling

Effect of Charge Restoration Latency on System Performance

System performance **first increases**, **then decreases** as charge restoration latency decreases

Effect of Charge Restoration Latency on System Performance

Charge Restoration Latency

Reducing Periodic Refresh Latency

PaCRAM improves the system performance and energy efficiency **by reducing periodic refresh overhead**

Understanding RowHammer Under Reduced Refresh Latency: Experimental Analysis of Real DRAM Chips and Implications on Future Solutions

Yahya Can Tuğrul

A. Giray Yağlıkçı İsmail Emir Yüksel

Onur Mutlu

Ataberk Olgun Oğuzhan Canpolat Nisa Bostancı

Oğuz Ergin

Mohammad Sadrosadati

SAFARI ETH zürich

