
PiDRAM
An	FPGA-based	Framework
for	End-to-end	Evaluation	

of	Processing-in-DRAM	Techniques

Ataberk	Olgun
Juan	Gomez	Luna Konstantinos	Kanellopoulos

Hasan	Hassan
Behzad	Salami

Oğuz Ergin Onur Mutlu

2

Executive	Summary
Motivation:	Commodity	DRAM	based	PiM techniques	improve	the	performance	
and	energy	efficiency	of	computing	systems	at	no	additional	DRAM	hardware	cost
Problem:	Challenges	of	integrating these	PiM techniques	into	real	systems	are	not	solved
General-purpose	computing	systems,	special-purpose	testing	platforms,	and	
system	simulators	cannot be	used	to	efficiently	study	system	integration	challenges
Goal:	Design	and	implement	a	flexible	framework	that	can	be	used	to:
• Solve	system	integration	challenges	
• Analyze	trade-offs	of	end-to-end	implementations
of	commodity	DRAM	based	PiM techniques
Key	idea:	PiDRAM, an FPGA-based framework	that	enables:
• System	integration	studies
• End-to-end	evaluations
of	commodity	DRAM	based	PiM techniques	using	real	unmodified	DRAM	chips
Evaluation: End-to-end	integration	of	two	PiM techniques on	PiDRAM’s FPGA	prototype
Case	Study	#1	– RowClone: In-DRAM	bulk	data	copy	operations
• 119x	speedup	for	copy	operations	compared	to	CPU-copy	with	system	support
• 198	lines	of	Verilog	and	565	lines	of	C++	code	over	PiDRAM’s flexible codebase
Case	Study	#2	– D-RaNGe: DRAM-based	random	number	generation	technique
• 8.30	Mb/s true	random	number	generator	(TRNG)	throughput,	220	ns TRNG	latency
• 190	lines	of	Verilog	and	78	lines	of	C++ code	over	PiDRAM’s flexible codebase

3

Outline
Background
DRAM	Organization	and	Operation
Commodity	DRAM	Based	PiM	Techniques

PiDRAM
Overview
Hardware	&	Software	Components
FPGA	Prototype

Case	Studies
Case	Study	#1	– RowClone

Conclusion

4

DRAM Organization

………

[Olgun+	ISCA’21]

5

Accessing	a	DRAM	Cell

Sense	
Ampenable

bitline

wordline

capacitor

access	
transistor

bitline
[Seshadri+	MICRO’17]

6

Accessing	a	DRAM	Cell

½	VDD	+	δ

enable

bitline

wordline

capacitor

access	
transistor

½	VDDVDD

enable	
wordline

enable	
sense	amp

connects	cell	
to	bitline

cell	loses	charge	
to	bitline

cell	charge	
restored

Sense	
Amp

deviation	in	
bitline voltage

½	VDD0
bitline

[Seshadri+	MICRO’17]

1

2

3

4

5

6

7

DRAM	Operation

…

…

…… …
Sense	AmplifiersSense	Amplifiers

Cache line

READ

…

READ READ

W
or
dl
in
e

D
ri
ve
rs

Sense	AmplifiersREAD READ READ

ACT	R0 RD PRE	R0RD RD ACT	R1 RD RD RD

time

DRAM	Command	Sequence

tRAS
(Activation	Latency)

tRP
(Precharge Latency)

[Kim+	HPCA’19]

tRCD
(Access	Latency)

8

Outline
Background
DRAM	Organization	and	Operation
Commodity	DRAM	Based	PiM	Techniques

PiDRAM
Overview
Hardware	&	Software	Components
FPGA	Prototype

Case	Studies
Case	Study	#1	– RowClone

Conclusion

9

Processing	In	Memory	Techniques

Use	operational	principles	of	commodity	DRAM	chips	
to	perform	bulk	data	movement	and computation	in	memory

Two	relevant	examples:
1) In-DRAM	Copy:	In-DRAM	bulk	data	copy	
(or	initialization)	at	DRAM	row	granularity

2) D-RaNGe: In-DRAM	true	random	number	generation	
(TRNG)	using	access	latency	(tRCD)	failures

10

In-DRAM	Copy:	Key	Idea	(RowClone)

r c r o ws

s t o wd r

1. Source row to row buffer

2. Row buffer to destination row

Row Buffer

r c r o ws

s r c r o w

?

P

[Seshadri+	MICRO’13]

11

Outline
Background
DRAM	Organization	and	Operation
Commodity	DRAM	Based	PiM	Techniques

PiDRAM
Overview
Hardware	&	Software	Components
FPGA	Prototype

Case	Studies
Case	Study	#1	– RowClone

Conclusion

12

PiDRAM:	Overview	(I)
A	flexible	framework	that	can	be	used	to:
• Solve	system	integration	challenges	
• Analyze	trade-offs	of	end-to-end	implementations
of	commodity	DRAM	based	PiM techniques

Identify	key	components	shared across	PiM	techniques

Implement	customizable key	components:
• Provide	modularity,	enhance	extensibility	of	the	framework

Common	basis	to	enable	system	support	for	PiM	techniques

13

PiDRAM:	Overview	(II)
Identify	and	develop	four	key	hardware	and	software	components

Hardware Software

Easy-to-extend
Memory Controller

Flexible
PiM Ops. Controller

2

1 3

4

Extensible
Software Library

Custom
Supervisor Software

14

PiDRAM:	System	Design
Key	components	are	attached	to	a	real	computing	system
• PiM	Ops.	Controller	and	PiDRAM	Memory	Controller
is	implemented	within	the	hardware	system

• Custom	supervisor	software runs	on	the	hardware	system
• Extensible	software	library	
is	used	by	the	supervisor	software

15

PiM	Operations	Controller	(POC)

Decode	&	execute	PiDRAM	instructions	(e.g.,	in-DRAM	copy)

Receive	instructions	over	memory-mapped	interface
(portable	to	other	systems	with	different	CPU	ISAs)

Simple	interface	to	the	PiDRAM	memory	controller
(i)	send	request,	(ii)	wait	until	completion,	(iii)	read	results

16

PiDRAM	Memory	Controller
Perform	PiM operations	by	violating	DRAM	timing	parameters

Support	conventional	memory	operations	(e.g.,	LOAD/STORE)
One	state	machine	per	operation	(e.g.,	LOAD/STORE,	in-DRAM	copy)

Easily	replicate	a	state	machine	to	implement	a	new	operation

Controls	the	physical	DDR3	interface
Receives	commands	from	command	scheduler	&	operates	DDR3	pins

17

PiM	Operations	Library	(pimolib)
Contains	customizable	functions	that	interface	with	the	POC

Software	interface	for	performing	PiM operations

Executes	LOAD	&	STORE	requests	to	communicate	with	the	POC

18

Custom	Supervisor	Software

Exposes	PiM operations	to	the	user	application	via	system	calls

Contains	the	necessary	OS	primitives	to	develop	end-to-end	PiM techniques
(e.g.,	memory	management	and	allocation	for	RowClone)

19

PiM Operation	Execution	Flow
copy() function	called	by	the	user	to	perform	a	RowClone-Copy operation	in	DRAM

1 Application	makes	a	system	call: copy(A, B, N bytes)

2 Custom	Supervisor	Software	calls	the	copy() pimolib function

Copy (S, D) S: source	DRAM	row
D: destination	DRAM	row

20

PiM Operation	Execution	Flow
3 Copy(S, D) executes	two	store	instructions	in	the	CPU

4 The	first	store	updates	the	instruction register	with	Copy(S, D)

5 The	second	store	sets	the	“Start”	flag	in	the	flag register

1
Start	(S)

Start	the	execution	of	PiM operation

21

PiM Operation	Execution	Flow
6 POC	instructs	the	memory	controller	to	perform	RowClone

7 POC	resets	the	“Start”	flag,	and	sets	the	“Ack”	flag

8 PiDRAMmemory	controller	issues	commands	
with	violated	timing	parameters	to	the	DDR3	module

22

PiM Operation	Execution	Flow
9 The	memory	controller	sets	the	“Fin.”	flag

10 Copy(S, D) periodically	checks	either	“Ack”	or	“Fin.”	flags
using	LOAD	instructions

Copy(S, D)returns	when	the	periodically	checked	flag	is	set

23

PiM Operation	Execution	Flow

Data	Register	is	not	used	in	RowClone operations
because	the	result	is	stored	in	memory

It	is	used	to	read	true	random	numbers	generated	by	D-RaNGe

24

PiDRAM Components	Summary

Four	key	components	provide	an	extensible	basis	
for	end-to-end	integration	of	PiM techniques

Four	key	components	orchestrate	PiM operation	execution

25

PiDRAM’s FPGA	Prototype
Full	system	prototype	on	Xilinx	ZC706	FPGA	board
• RISC-V	System:	In-order,	pipelined	RISC-V	Rocket	CPU	core,	L1D/I$,	TLB
• PiM-Enabled	DIMM:Micron	MT8JTF12864,	1	GiB,	8	banks

26

Outline
Background
DRAM	Organization	and	Operation
Commodity	DRAM	Based	PiM	Techniques

PiDRAM
Overview
Hardware	&	Software	Components
FPGA	Prototype

Case	Studies
Case	Study	#1	– RowClone

Conclusion

27

PiDRAM Case	Studies

We	conduct	two	case	studies:
1. In-DRAM	bulk	data	copy	(RowClone)
2. In-DRAM	true	random	number	generation	(D-RaNGe)

Demonstrate	the	flexibility and	ease	of	use	of	PiDRAM

28

RowClone Implementation	(I)
Key	Idea:	Perform	in-DRAM	copy	operations	
by	using	carefully	created	DRAM	command	sequences
• ComputeDRAM [Gao+,	MICRO’19]	demonstrates	
in-DRAM	copy	operations	in	real	DDR3	chips

• ACT	à PRE	à ACT	command	sequence
with	greatly	reduced	tRAS and	tRP timing	parameters

DRAM	Subarray
Source	Row

Destination	Row

Activate	Source

Precharge

Activate	Destination

[Olgun+	ISCA’21]

Wait	for	10	ns Wait	for	10	ns

29

RowClone Implementation	(II)

Extend	the	PiDRAMmemory	controller
to	support	the	DRAM	command	sequence
Expose	the	operation	to	pimolib
by	implementing	the	copy() PiDRAM instruction

DRAM	Subarray
Source	Row

Destination	Row

Activate	Source

Precharge

Activate	Destination

Wait	for	10	ns Wait	for	10	ns

1

2

Only	198	lines	of	Verilog	code
[Olgun+	ISCA’21]

30

RowClone System	Integration

Two	challenges	in	integrating	RowClone end-to-end	in	a	real	system

1 Memory	allocation	constraints	(Intra-subarray	operation)

2 Memory	coherency	(Computation	in	DRAM)

Implement	CLFLUSH	instruction	in	the	RISC-V	CPU
Evict a	cache	block	from	the	CPU	caches	to	the	DRAM	module

31

RowClone Memory	Allocation	(I)
Memory	allocation	requirements

Granularity:	Operands	must	occupy	DRAM	rows	fully1

32

RowClone Memory	Allocation	(I)
Memory	allocation	requirements

Alignment:	Operands	must	be	placed	at	the	same	offset2

33

RowClone Memory	Allocation	(I)
Memory	allocation	requirements

Mapping:	Operands	must	be	placed	in	the	same	subarray3

34

RowClone Memory	Allocation	(I)
Memory	allocation	requirements

Satisfies	all	three	requirements4

35

RowClone Memory	Allocation	(II)
To	overcome the	memory	allocation	challenges
implement	a	new	memory	allocation	function

Goal: Allow	programmers	to	allocate	virtual	memory	pages
that	are	mapped	to	the	same	DRAM	subarray
and aligned	with	each	other

Key	Mechanism:	Distribute	virtual	pages	to	different	banks
while	mapping	them	to	DRAM	rows	in	the	same	DRAM	subarray

alloc_align(int size, int id)
size: #	of	bytes	allocated

id: allocations	with	the	same	id	go	to	the	same	subarray

36

RowClone Memory	Allocation	(II)
To	overcome the	memory	allocation	challenges
implement	a	new	memory	allocation	function

Goal: Allow	programmers	to	allocate	virtual	memory	pages
that	are	mapped	to	the	same	DRAM	subarray
and aligned	with	each	other

Key	Mechanism:	Distribute	virtual	pages	to	different	banks
while	mapping	them	to	DRAM	rows	in	the	same	DRAM	subarray

alloc_align(int size, int id)
size: #	of	bytes	allocated

id: allocations	with	the	same	id	go	to	the	same	subarray

https://arxiv.org/abs/2111.00082

https://arxiv.org/abs/2111.00082

37

Evaluation	Methodology

Microbenchmarks
CPU-Copy (using	LOAD/STORE	instructions)
RowClone-Copy (using	in-DRAM	copy	operations)

Copy/Initialization	Heavy	Workloads
compile	(initialization)
forkbench (copy)

SPEC2006 libquantum: replace	“calloc()”	with	in-DRAM	initialization

38

Microbenchmark	Copy/Initialization	
Throughput	Improvement

In-DRAM Copy and Initialization
improve throughput by 119x and 89x, respectively

39

CLFLUSH	Overhead

CLFLUSH dramatically reduces
the potential throughput improvement

40

Other	Workloads
forkbench (copy-heavy	workload)

compile	(initialization-heavy	workload)
• 9%	execution	time	reduction	by	in-DRAM	initialization

- 17%	of	compile’s	execution	time	is	spent	on	initialization

SPEC2006 libquantum
• 1.3%	end-to-end	execution	time	reduction

- 2.3%	of	libquantum’s time	is	spent	on	initialization

41

Outline
Background
DRAM	Organization	and	Operation
Commodity	DRAM	Based	PiM	Techniques

PiDRAM
Overview
Hardware	&	Software	Components
FPGA	Prototype

Case	Studies
Case	Study	#1	– RowClone

Conclusion

42

Executive	Summary
Motivation:	Commodity	DRAM-based	PiM techniques	improve	the	performance	
and	energy	efficiency	of	computing	systems	at	no	additional	DRAM	hardware	cost
Problem:	Challenges	of	integrating these	PiM techniques	into	real	systems	are	not	solved
General-purpose	computing	systems,	special-purpose	testing	platforms,	and	
system	simulators	cannot be	used	to	efficiently	study	system	integration	challenges
Goal:	Design	and	implement	a	flexible	framework	that	can	be	used	to:
• Solve	system	integration	challenges	
• Analyze	trade-offs	of	end-to-end	implementations
of	commodity	DRAM	based	PiM techniques
Key	idea:	FPGA-based framework	that	enables:
• System	integration	studies
• End-to-end	evaluations
of	commodity	DRAM	based	PiM techniques	using	real	unmodified	DRAM	chips
Evaluation: End-to-end	integration	of	two	PiM techniques on	PiDRAM’s FPGA	prototype
Case	Study	#1	– RowClone: In-DRAM	bulk	data	copy	operations
• 118.5x	speedup	for	copy	operations	compared	to	CPU-copy	with	system	support
• 198	lines	of	Verilog	and	565	lines	of	C++	code	over	PiDRAM’s flexible codebase
Case	Study	#2	– D-RaNGe: DRAM-based	random	number	generation	technique
• 8.30	Mb/s true	random	number	generator	(TRNG)	throughput,	220	ns TRNG	latency
• 190	lines	of	Verilog	and	78	lines	of	C++ code	over	PiDRAM’s flexible codebase

43

PiDRAM is	Open	Source
https://github.com/CMU-SAFARI/PiDRAM

https://github.com/CMU-SAFARI/PiDRAM

44

Extended	Version	on	ArXiv
https://arxiv.org/abs/2111.00082

https://arxiv.org/abs/2111.00082

45

Long	Talk	+	Tutorial	on	Youtube
https://youtu.be/s_z_S6FYpC8

https://youtu.be/s_z_S6FYpC8

PiDRAM
An	FPGA-based	Framework
for	End-to-end	Evaluation	

of	Processing-in-DRAM	Techniques

Ataberk	Olgun
Juan	Gomez	Luna Konstantinos	Kanellopoulos

Hasan	Hassan
Behzad	Salami

Oğuz Ergin Onur Mutlu

BACKUP SLIDES

48

alloc_align() function
To	enable	alloc_align(),	we	maintain	the	SubArray Mapping	Table	(SAMT)	

SAMT
Subarray 0

Subarray 1

Subarray N

…

SAMT
Entry

Physical	addresses	
of	DRAM	rows

alloc_align(
4 KiB,
“Subarray 0”)

SAMT Page
Table

1 2

Retrieve	a	physical	address	pointing	to	a	DRAM	row	in	subarray	0

Update	the	page	table	to	map	programmer-allocated	address	to	subarray	0

1

2

49

Initializing	SAMT

SAMT
Subarray 0

Subarray 1

Subarray N

…

SAMT
Entry

Physical	addresses	
of	DRAM	rows

?
Perform	in-DRAM	copy	using	every	DRAM	row	address	

as	source	and	destination	rows

If	the	in-DRAM	copy	operation	succeeds
source	and	destination	rows	are	in	the	same	subarray

https://arxiv.org/abs/2111.00082

https://arxiv.org/abs/2111.00082

50

PiDRAM	vs	Others

51

Alloc_align	and	RCC

52

List	of	PuM	Techniques	That	Can	Be	
Studied	Using	PiDRAM

53

Outline
Background
DRAM	Organization	and	Operation
Commodity	DRAM	Based	PiM	Techniques

PiDRAM
Overview
Hardware	&	Software	Components
FPGA	Prototype

Case	Studies
Case	Study	#1	– RowClone
Case	Study	#2	– D-RaNGe

Conclusion

54

Ro
w

 D
ec

od
er

In-DRAM	TRNG:	Key	Idea	(D-RaNGe)

High	%	chance	to	fail	
with	reduced	tRCD

Low	%	chance	to	fail	
with	reduced	tRCD

SASASASASASASA

[Kim+	HPCA’19]

55

D-RaNGe Implementation

Identify	four	DRAM	cells	that	fail	randomly	when	
accessed	with	a	reduced	tRCD (RNG	Cell)	in	a	cache	block

1 0010110100110011101000110101

1

RNG	Cell

SA

[Kim+	HPCA’19]

56

D-RaNGe Implementation

Periodically	generate	true	random	numbers
by	accessing	the	identified	cache	block	with	reduced	tRCD
• 1	KiB	random	number	buffer	in	POC
• Programmers	read	random	numbers	from	the
data	register	using the	rand_dram() function	call

190	lines	of	Verilog	code
74	lines	of	C++	code

57

Evaluation
Methodology:	Microbenchmark	that	
reads	true	random	numbers

PiDRAM D-RaNGe generates true random
numbers at 8.30 Mb/s throughput

