PiDRAM: A Holistic End-to-end FPGA-based Framework
for Processing-in-DRAM

Ataberk Olgun® Juan Gémez Luna®
Hasan Hassan®
SETH Ziirich

Commodity DRAM based processing-using-memory (PuM)
techniques that are supported by off-the-shelf DRAM chips
present an opportunity for alleviating the data movement bottle-
neck at low cost. However, system integration of these techniques
imposes non-trivial challenges that are yet to be solved. Potential
solutions to the integration challenges require appropriate tools to
develop any necessary hardware and software components. Un-
fortunately, current proprietary computing systems, specialized
DRAM-testing platforms, or system simulators do not provide
the flexibility and/or the holistic system view that is necessary
to properly evaluate and deal with the integration challenges of
commodity DRAM based PuM techniques.

We design and develop PiDRAM, the first flexible end-to-end
framework that enables system integration studies and evalua-
tion of real, commodity DRAM based PuM techniques. PIDRAM
provides software and hardware components to rapidly integrate
PuM techniques across the whole system software and hardware
stack. We implement PiDRAM on an FPGA-based RISC-V system.
To demonstrate the flexibility and ease of use of PIDRAM, we
implement and evaluate two state-of-the-art commodity DRAM
based PuM techniques: (i) in-DRAM copy and initialization (Row-
Clone) and (ii) in-DRAM true random number generation (D-
RaNGe). We describe how we solve key integration challenges
to make such techniques work and be effective on a real-system
prototype, including memory allocation, alignment, and coher-
ence. We observe that end-to-end RowClone speeds up bulk copy
and initialization operations by 14.6x and 12.6X, respectively
over conventional CPU copy, even when coherence is supported
with inefficient cache flush operations. Over PIDRAM’s extensible
codebase, integrating both RowClone and D-RaNGe end-to-end
on a real RISC-V system prototype takes only 388 lines of Verilog
code and 643 lines of C++ code.

1. Introduction

Main memory is a major performance and energy bottleneck in
computing systems [48,120]. One way of overcoming the main
memory bottleneck is to move computation into/near memory,
a paradigm known as processing-in-memory (PiM) [120]. PiM
reduces memory latency between the memory units and the
compute units, enables the compute units to exploit the large
internal bandwidth within memory devices, and reduces the
overall power consumption of the system by eliminating the
need for transferring data over power-hungry off-chip inter-
faces [48,120].

Recent works propose a variety of PiM techniques to al-
leviate the data movement problem. One set of techniques
propose to place compute logic near memory arrays (e.g., pro-

Konstantinos Kanellopoulos®
Oguz Ergin'

Behzad Salami®
Onur Mutlu®

TTOBB University of Economics and Technology

cessing capability in the memory controller, logic layer of
3D-stacked memory, or near the memory array within the
memory chip) [2-4,12,20-22,25,31,34,37,39,45-47,51,53,57,
58,66,67,79,80,84,111,118,121,131,133,153,162,173,176-178].
These techniques are called processing-near-memory (PnM)
techniques [120]. Another set of techniques propose to
leverage analog properties of memory (e.g., SRAM, DRAM,
and NVM) operation to perform computation in different
ways (e.g., leveraging non-deterministic behavior in mem-
ory array operation to generate random numbers, perform-
ing bitwise operations within the memory array by exploit-
ing analog charge sharing properties of DRAM operation)
[1,5-9,17,19,24,28,32,36,42-44,54-56,69,73,82,83,91-93,102-
104,114,134,137,145,148,152,156,160,163,168,171,172]. These
techniques are known as processing-using-memory (PuM) tech-
niques [120].

A subset of PuM proposals devise mechanisms that enable
computation using DRAM arrays [5,9, 28,32, 44, 54, 82, 83, 103,
134, 145,148,160, 168]. These mechanisms provide significant
performance benefits and energy savings by exploiting the
high internal bit-level parallelism of DRAM for (1) bulk data
copy and initialization operations at row granularity [1,28,134,
148,160], (2) bitwise operations [6-8,103,104,114,143-145,147,
149,168], (3) arithmetic operations [1,9,17,32,36,42,43, 55, 56,
73,91-93, 102, 103, 152, 163, 171], and (4) security primitives
(e.g., true random number generation [83], physical unclonable
functions [82,126]). Recent works [44, 82, 83] show that some
of these PuM mechanisms can already be reliably supported in
contemporary, off-the-shelf DRAM chips.! Given that DRAM
is the dominant main memory technology, these commodity
DRAM based PuM techniques? provide a promising way to
improve the performance and energy efficiency of existing and
future systems at no additional DRAM hardware cost.

Integration of these PuM mechanisms in a real system im-
poses non-trivial challenges that require further research to
find appropriate solutions. For example, in-DRAM bulk data
copy and initialization techniques [28, 145] require modifica-
tions to memory management that affect different parts of
the system. First, these techniques have specific memory al-
location and alignment requirements (e.g., page-granularity
source and destination operand arrays should be allocated and
aligned in the same DRAM subarray) that are not satisfied

'We are especially interested in PiM techniques that do not require any
modification to the DRAM chips or the DRAM interface.

2Commodity DRAM based PuM techniques are PuM techniques that can
already be supported in existing off-the-shelf DRAM chips without any modi-
fication to DRAM chips or DRAM interfaces.

by existing memory allocation primitives (e.g., malloc [106],
posix_memalign [108]). Second, in-DRAM copy requires effi-
cient handling of memory coherence, such that the contents
of the source operand in DRAM are up-to-date.

None of these system integration challenges of PuM mech-
anisms can be efficiently studied in existing general-purpose
computing systems (e.g., personal computers, cloud comput-
ers, embedded systems), special-purpose testing platforms
(e.g., SoftMC [60]), or system simulators (e.g., gem5 [18,
132], Ramulator [90, 138], Ramulator-PIM [140], zsim [141],
DAMOVSim [125,139], and other simulators [35,169,170,175]).
First, many commodity DRAM based PuM mechanisms in
DRAM rely on non-standard DDRx operation, where timing
parameters for DDRx commands are violated [44, 82, 83] (or
otherwise new DRAM commands are added, which requires
new chip designs and interfaces). Existing general-purpose
computing systems do not permit dynamically changing DDRx
timing parameters, which is required to integrate these PuM
mechanisms into real systems. Second, prior works show that
the reliability of commodity DRAM based PuM mechanisms is
highly dependent on environmental conditions such as tem-
perature and voltage fluctuations [82, 83] and process varia-
tion. These effects are exacerbated by the non-standard be-
havior of PuM mechanisms in real DRAM devices. Although
special-purpose testing platforms (e.g., SoftMC [60]) can be
used to conduct reliability studies, these platforms do not model
an end-to-end computing system, where system integration
of PuM mechanisms can be studied. System simulators (e.g.,
those aforementioned) can model end-to-end computing sys-
tems. However, they (i) do not model DRAM operation that
violates manufacturer-recommended timing parameters, (ii)
do not have a way of interfacing with real DRAM chips that
embody undisclosed and unique characteristics that have im-
plications on how PuM techniques are integrated into real
systems (e.g., proprietary and chip-specific DRAM internal
address mapping [30, 89, 130]), and (iii) cannot support charac-
terization studies on the reliability of PuM mechanisms since
system simulators do not model environmental conditions and
process variation.

Our goal is to design and implement a flexible real-system
platform that can be used to solve system integration chal-
lenges and analyze trade-offs of end-to-end implementations
of commodity DRAM based PuM mechanisms. To this end,
we develop Processing-in-DRAM (PiDRAM) framework, the
first flexible, end-to-end, and open source framework that en-
ables system integration studies and evaluation of real PuM
techniques using real unmodified DRAM devices.

PiDRAM facilitates system integration studies of new com-
modity DRAM based PuM mechanisms by providing four cus-
tomizable hardware and software components that can be used
as a common basis to enable system support for such mecha-
nisms in real systems. PIDRAM contains two main hardware
components. First, a custom, easy-to-extend memory controller
allows for implementing new DRAM command sequences that
perform PuM operations. For example, the memory controller
can be extended with a single state machine in its hardware

description to implement a new DDRx command sequence
with user-defined timing parameters to implement a new PuM
technique (i.e., perform a new PuM operation). Second, an
ISA-transparent controller (PuM Operations Controller, POC) su-
pervises PuM execution. POC exposes the PuM operations to
the software components of PIDRAM over a memory-mapped
interface to the processor, allowing the programmer to per-
form PuM operations using the PIDRAM framework by exe-
cuting conventional LOAD/STORE instructions. The memory-
mapped interface allows PIDRAM to be easily ported to sys-
tems that implement different instruction set architectures.
PiDRAM contains two main software components. First, an ex-
tensible library allows system designers to implement software
support for PuM mechanisms. This library contains customiz-
able functions that communicate with POC to perform PuM
operations. Second, a custom supervisor software contains the
necessary OS primitives (e.g., memory management) to enable
end-to-end implementations of commodity DRAM based PuM
techniques.

We demonstrate a prototype of PIDRAM on an FPGA-based
RISC-V system [11]. To demonstrate the flexibility and ease
of use of PIDRAM, we implement two prominent PuM tech-
niques: (1) RowClone [148], an in-DRAM data copy and ini-
tialization technique, and (2) D-RaNGe [83], an in-DRAM true
random number generation technique based on activation-
latency failures. In order to support RowClone (Section 5),
(i) we customize the PIDRAM memory controller to issue
carefully-engineered sequences of DRAM commands that per-
form data copy (and initialization) operations in DRAM, and
(i) we extend the custom supervisor software to implement a
new memory management mechanism that satisfies the mem-
ory allocation and alignment requirements of RowClone. For
D-RaNGe (Section 6), we extend (i) the PIDRAM memory con-
troller with a new state machine that periodically performs
DRAM accesses with reduced activation latencies to generate
random numbers [83] and a new hardware random number
buffer that stores the generated random numbers, and (ii) the
custom supervisor software with a function that retrieves the
random numbers from the hardware buffer to the user program.
Our end-to-end evaluation of (i) RowClone demonstrates up
to 14.6x speedup for bulk copy and 12.6x initialization opera-
tions over CPU copy (i.e., conventional memcpy), even when
coherence is satisfied using inefficient cache flush operations,
and (ii) D-RaNGe demonstrates that an end-to-end integra-
tion of D-RaNGe can provide true random numbers at high
throughput (8.30 Mb/s) and low latency (4-bit random number
in 220 ns), even without any hardware or software optimiza-
tions. Implementing both PuM techniques over the Verilog and
C++ codebase provided by PIDRAM requires only 388 lines of
Verilog code and 643 lines of C++ code.

Our contributions are as follows:

+ We develop PiDRAM, the first flexible framework that en-
ables end-to-end integration and evaluation of PuM mecha-
nisms using real unmodified DRAM chips.

« We develop a prototype of PIDRAM on an FPGA-based plat-
form. To demonstrate the ease-of-use and evaluation benefits

of PIDRAM, we implement two state-of-the-art DRAM-based
PuM mechanisms, RowClone and D-RaNGe, and evaluate
them on PIDRAM’s prototype using unmodified DDR3 chips.

« We devise a new memory management mechanism that sat-
isfies the memory allocation and alignment requirements
of RowClone. We demonstrate that our mechanism enables
RowClone end-to-end in the full system, and provides sig-
nificant performance improvements over traditional CPU-
based copy and initialization operations (memcpy [107] and
calloc [105]) as demonstrated on our PIDRAM prototype.

« We implement and evaluate a state-of-the-art DRAM-based
true random number generation technique (D-RaNGe). Our
implementation provides a solid foundation for future work
on system integration of DRAM-based PuM security primi-
tives (e.g., PUFs [13,82], TRNGs [13, 123, 124]), implemented
using real unmodified DRAM chips.

2. Background

We provide the relevant background on DRAM organization,
DRAM operation and commodity DRAM based PuM tech-
niques. We refer the reader to prior works for more com-
prehensive background about DRAM organization and opera-
tion [26, 29,49, 50, 87,89, 95,99,100, 113,123, 128].

2.1. DRAM Background

DRAM-based main memory is organized hierarchically. Fig. 1
(top) depicts this organization. A processor is connected to one
or more memory channels (DDRx in the figure) @. Each chan-
nel has its own command, address, and data buses. Multiple
memory modules can be plugged into a single channel. Each
module contains several DRAM chips @. Each chip contains
multiple DRAM banks that can be accessed independently ©.
Data transfers between DRAM memory modules and proces-
sors occur at cache block granularity. The cache block size is
typically 64 bytes in current systems.

DRAM Subarray

> 5 » ~ DRAM Row 24 g Y
§3 § 000 O —sgs(Ik
E = sl | LI | S5 Capadior
25 —000 O 3 achess
O | 11 | Transistor 6
CPU Sense Amplifiers
tRAS
DRAM | 1
Command [ACT | [RD] ([PRE] [ACT |
Bus | I I .I
tRCD tRP
*All commands target the same DRAM bank time

Figure 1: DRAM organization (top). Timing diagram of DRAM
commands (bottom).

Inside a DRAM bank, DRAM cells are laid out as a two di-
mensional array of wordlines (i.e., DRAM rows) and bitlines
(i.e., DRAM columns) @. Wordlines are depicted in blue and
bitlines are depicted in red in Fig. 1. Wordline drivers drive the
wordlines and sense amplifers read the values on the bitlines.
A DRAM cell is connected to a bitline via an access transis-
tor @. When enabled, an access transistor allows charge to
flow between a DRAM cell and the cell’s bitline.

DRAM Operation. When all DRAM rows in a bank are closed,
DRAM bitlines are precharged to a reference voltage level of
VDTD. The memory controller sends an activate (ACT') com-
mand to the DRAM module to drive a DRAM wordline (i.e.,
enable a DRAM row). Enabling a DRAM row starts the charge
sharing process. Each DRAM cell connected to the DRAM row
starts sharing its charge with its bitline. This causes the bitline
voltage to deviate from VDTD (i.e., the charge in the cell perturbs
the bitline voltage). The sense amplifier senses the deviation in
the bitline and amplifies the voltage of the bitline either to Vpp
or to 0. As such, an ACT command copies one DRAM row to
the sense amplifiers (i.e., row buffer). The memory controller
can send READ/WRITE commands to transfer data from/to the
sense amplifier array. Once the memory controller needs to ac-
cess another DRAM row, the memory controller can close the
enabled DRAM row by sending a precharge (PRE) command on
the command bus. The PRE command first disconnects DRAM
cells from their bitlines by disabling the enabled wordline and
then precharges the bitlines to VDTD

DRAM Timing Parameters. DRAM datasheets specify a set
of timing parameters that define the minimum time window
between valid combinations of DRAM commands [26,27,81,98].
The memory controller must wait for tRCD, tRAS, and tRP
nanoseconds between successive ACT — RD, ACT — ACT, and
PRE — ACT commands, respectively (Figure 1, bottom). Prior
works show that these timing parameters can be violated (e.g.,
successive ACT — RD commands may be issued with a shorter
time window than tRCD) to improve DRAM access latency [26,
27,81, 96, 98], implement physical unclonable functions [13,
82,126], generate true random numbers [83, 123, 124], copy
data [44, 148], and perform bitwise AND/OR operations [44,
143-145,149] in commodity DRAM devices.

DRAM Internal Address Mapping. DRAM manufacturers
use DRAM-internal address mapping schemes [30, 89, 130]
to translate from logical (e.g., row, bank, column) DRAM ad-
dresses that are used by the memory controller to physical
DRAM addresses that are internal to the DRAM chip (e.g., the
physical position of a DRAM row within the chip). These
schemes allow (i) post-manufacturing row repair techniques to
map erroneous DRAM rows to redundant DRAM rows and (ii)
DRAM manufacturers to organize DRAM internals in a cost-
efficient and reliable way [76,159]. DRAM-internal address
mapping schemes can be substantially different across different
DRAM chips [15,30,63,70,75-77,88,96,110,127,129, 130, 142].
Thus, consecutive logical DRAM row addresses might not point
to physical DRAM rows in the same subarray.

2.2. PuM Techniques

Prior work proposes a variety of in-DRAM computation mech-
anisms (i.e., PuM techniques) that (i) have great potential to
improve system performance and energy efficiency [9, 28,40,
54,144,145,147-151] or (ii) can provide low-cost security prim-
itives [13, 14, 82, 83, 124, 126]. A subset of these in-DRAM
computation mechanisms are demonstrated on real DRAM
chips [13,44,82,83,124,126]. We describe the major relevant
prior works briefly:

RowClone [148] is a low-cost DRAM architecture that can
perform bulk data movement operations (e.g., copy, initializa-
tion) inside DRAM chips at high performance and low energy.
Ambit [144,145,147,150,151] is a new DRAM substrate that
can perform (i) bitwise majority (and thus bitwise AND/OR)
operations across three DRAM rows by simultaneously acti-
vating three DRAM rows and (ii) bitwise NOT operations on a
DRAM row using 2-transistor 1-capacitor DRAM cells [72,112].
ComputeDRAM [44] demonstrates in-DRAM copy (previ-
ously proposed by RowClone [148]) and bitwise AND/OR op-
erations (previously proposed by Ambit [145]) on real DDR3
chips. ComputeDRAM performs in-DRAM operations by issu-
ing carefully-engineered, valid sequences of DRAM commands
with violated tRAS and tRP timing parameters (i.e., by not
obeying manufacturer-recommended timing parameters de-
fined in DRAM chip specifications [116]). By issuing command
sequences with violated timing parameters, ComputeDRAM
activates two or three DRAM rows in a DRAM bank in quick
succession (i.e., performs two or three row activations). Com-
puteDRAM leverages (i) two row activations to transfer data
between two DRAM rows and (ii) three row activations to per-
form the majority function in real unmodified DRAM chips.
D-RaNGe [83] is a state-of-the-art high-throughput DRAM-
based true random number generation technique. D-RaNGe
leverages the randomness in DRAM activation (tRCD) failures
as its entropy source. D-RaNGe extracts random bits from
DRAM cells that fail with 50% probability when accessed with
areduced (i.e., violated) tRCD. D-RaNGe demonstrates high-
quality true random number generation on a vast number of
real DRAM chips across multiple generations.

QUAC-TRNG [124] demonstrates that four DRAM rows can
be activated in a quick succession using an ACT-PRE-ACT
command sequence (called QUAC) with violated tRAS and
tRP timing parameters in real DDR4 DRAM chips. QUAC-
TRNG uses QUAC to generate true random numbers at high
throughput and low latency.

3. Motivation

Implementing DRAM-based PuM techniques and integrating
them into a real system requires modifications across the hard-
ware and software stack. End-to-end implementations of PuM
techniques require proper tools that (i) are flexible, to enable
rapid development of PuM techniques and (ii) support real
DRAM devices, to correctly observe the effects of reduced
DRAM timing operations that are fundamental to enabling
commodity DRAM based PuM in real unmodified DRAM de-
vices. Existing general-purpose computers, specialized DRAM
testing platforms (e.g., those aforementioned, Section 1) cannot
be used to study end-to-end implementations of commodity
DRAM based PuM techniques.

First, implementing new DDRx command sequences that
perform PuM operations requires modifications to the mem-
ory controller. Existing general purpose computers do not
support customizations to the memory controller to dynami-
cally modify manufacturer-recommended DRAM timing pa-
rameters [27, 60, 81, 83, 98]. This hinders the possibility of

studying end-to-end implementations of PuM techniques on
such platforms. Second, PuM techniques impose data mapping
and allocation requirements (Section 5) that are not satisfied
by current memory management and allocation mechanisms
(e.g., malloc [106]). Current OS memory management schemes
must be augmented to satisfy these requirements. Existing
specialized DRAM testing platforms (e.g., SoftMC [60]) do not
have system support to enable this. By design, these plat-
forms are not built for system integration. Hence, it is difficult
to evaluate system-level mechanisms that enable PuM tech-
niques on DRAM testing platforms. Third, system simulators
(i) do not model DRAM operation that violates manufacturer-
recommended timing parameters, (ii) do not have a way of
interfacing with real DRAM chips that embody undisclosed
and unique characteristics that have implications on how PuM
techniques are integrated into real systems (e.g., proprietary
and chip-specific DRAM internal address mapping [30,89,130])
that influence PuM operations, and (iii) cannot support studies
on the reliability of PuM techniques since system simulators
do not model environmental conditions and process variation.
We summarize the limitations of the relevant experimental
platforms later in Table 4.

Our goal is to develop a flexible end-to-end framework
that enables rapid system integration of commodity DRAM
based PuM techniques and facilitates studies on end-to-end
full-system implementations of PuM techniques using real
DRAM devices. To this end, we develop PIDRAM.

4. PiDRAM

Implementing commodity DRAM based PuM techniques end-
to-end requires developing new hardware (HW) and software
(SW) components or augmenting existing components with
new functionality (e.g., memory allocation for RowClone re-
quires a new memory allocation routine in the OS, Section 5.1).
To ease the process of modifying various components across
the hardware and software stack to implement new PuM tech-
niques, PIDRAM provides key HW and SW components. Fig-
ure 2 presents an overview of the HW and SW components of
the PIDRAM framework. Later in Section 4.3, we describe the
general workflow for executing a PuM operation on PIDRAM.

4.1. Hardware Components

PiDRAM comprises two key hardware components. Both of
these components are designed with the goal to provide a flexi-
ble and easy to use framework for evaluating PuM techniques.

@ PuM Operations Controller (POC). POC decodes and
executes PIDRAM instructions (e.g., RowClone-Copy [148]
that are used by the programmer to perform PuM operations.
POC communicates with the rest of the system over two well-
defined interfaces. First, it communicates with the CPU over
a memory-mapped interface, where the CPU can send data
to or receive data from POC using memory store and load
instructions. The CPU accesses the memory-mapped regis-
ters (instruction, data, and flag registers) in POC to execute
in-DRAM operations. This improves the portability of the

User Application Rocket PuM Ops@) PiDRAM @
~ Chip Controller Memory Controller o
i System Calls (POC) =]
mrp———. | g
Custom Supervisor Software CPU Cor nstruction Register T DDR3 S
N -
i 1 Function Calls Command £ | Interface E
H R ©
pumolib 9 I,'I :-I:?l-\?-lr:s.t:u. ?:1-{ Data Register l_ L % E
...................... |} 2
i pumolib function s =
A R adl Memory Bus

Figure 2: PIDRAM overview. Modified hardware (in green) and software (in blue) components. Unmodified components are in
gray. A pumolib function executes load and store instructions in the CPU to perform PuM operations (in red). We use yellow to
highlight the key hardware structures that are controlled by the user to perform PuM operations.

framework and facilitates porting the framework to systems
that employ different instruction set architectures. Second,
POC communicates with the memory controller to perform
PuM operations in the DRAM chip over a simple hardware
interface. To do so, POC (i) requests the memory controller
to perform a PuM operation, (ii) waits until the memory con-
troller performs the operation, and (iii) receives the result of
the PuM operation from the memory controller. The CPU can
read the result of the operation by executing load instructions
that target the data register in POC.

0 Custom Memory Controller. PIDRAM’s memory con-
troller provides an easy-to-extend basis for commodity DRAM
based PuM techniques that require issuing DRAM commands
with violated timing parameters [13,44, 82, 83,124]. The mem-
ory controller is designed modularly and requires easy-to-make
modifications to its scheduler to implement new PuM tech-
niques. For instance, our modular design enables supporting
RowClone operations (Section 5) in just 60 lines of Verilog code
on top of the baseline custom memory controller’s scheduler
that implements conventional DRAM operations (e.g., read,
write).

The custom memory controller employs three key sub-
modules to facilitate the implementation of new PuM tech-
niques. (i) The Periodic Operations Module periodically issues
DDR3 refresh [117] and interface maintenance commands [52].
(ii) A simple DDR3 Command Scheduler supports conventional
DRAM operations (e.g., activate, precharge, read, and write).
This scheduler applies an open-bank policy (i.e., DRAM banks
are left open following a DRAM row activation) to exploit
temporal locality in memory accesses to the DRAM module.
LOAD/STORE memory requests are simply handled by the
command scheduler in a latency-optimized way. Thus, new
modules that are implemented to provide new PuM function-
ality (e.g., a state machine that controls the execution of a
new PuM operation) in the custom memory controller do not

compromise the performance of LOAD/STORE memory re-
quests. (iii) The Configuration Register File (CRF) comprises
16 user-programmable registers that store the violated timing
parameters used for DDRx sequences that trigger PuM opera-
tions (e.g., activation latency used in generating true random
numbers using D-RaNGe [83], see Section 6) and miscellaneous
parameters for PuM implementations (e.g., true random num-
ber generation period for D-RaNGe, see Section 6). In our
implementation, CRF stores only the timing parameters used
for performing PuM operations (e.g., RowClone and D-RaNGe).
We do not store every standard DDRx timing parameter (i.e.,
non-violated, which are used exactly as defined as in DRAM
chip specifications) in the CRF. Instead these timings are em-
bedded in the command scheduler.

4.2. Software Components

PiDRAM comprises two key software components that comple-
ment and control PIDRAM’s hardware components to provide
a flexible and easy to use end-to-end PuM framework.

® PuM Operations Library (pumolib). The extensible
library (PuM operations library) allows system designers to
implement software support for PuM techniques. Pumolib
contains customizable functions that interface with POC to
perform PuM operations in real unmodified DRAM chips. The
customizable functions hide the hardware implementation de-
tails of PuM techniques implemented in PIDRAM from soft-
ware developers (that use pimolib). For example, although
we expose PuM techniques to software via memory LOAD-
/STORE operations (POC is exposed as a memory-mapped
module, Section 4.1), PuM techniques can also be exposed via
specialized instructions provided by ISA extensions. Pumolib
hides such implementation details from the user of the library
and contributes to the modular design of the framework.

We implement a general protocol that defines how program-
mers express the information required to execute PuM op-

Table 1: Pumolib functions

Function Arguments Description

set_timings RowClone_T1, RowClone_T2, tRCD

rng_configure period, address, bit_offsets
copy_row source_address, destination_address
activation_failure address

buf size -

rand_dram

Updates CREF registers with the timing parameters used in RowClone (T1 and T2) and D-RaNGe (tRCD) operations.
Updates CRF registers, configuring the random number generator to to access the DRAM cache block at address
every period cycles and collect the bits at bit_offsets from the cache block.

Performs a RowClone-Copy operation in DRAM from the source_address to the destination_address.

Induces an activation failure in a DRAM location pointed by the address.

Returns the number of random words in the random number buffer.

Returns 32 bits (i.e., random words) from the random number buffer.

User Application Rocket POC PiDRAM

~ Chip = @ oeeweeees Memory Controller 2
P @ System Calls P @ " copy_row (S, D) s ry m =
LY _ RISC-V — * g K
Custom Supervisor Software CPU Core @ Start (S) Ack (A) Fin. (F) £ DDR3 S

N Comoooooooono = (1] o] [o]]
/:\ : @ copy_row (S, D) (3}, STORE Instruction 3 O O @ comnnand £ Interface’] =
'y S: source D: destination Tl sizzzzziiiiiic Schedul = <
pumolib @} iAo nncin AT i

....................... I_ 23

' copy_row (S, D) ‘- o

...................... 4 Memory Bus

Figure 3: Workflow for a PIDRAM RowClone-Copy operation

erations to the PuM operations controller (POC). A typical
function in pumolib performs a PuM operation in four steps:
It (i) writes a PIDRAM instruction to the POC’s instruction
register, (ii) sets the Start flag in POC’s flag register, (iii) waits
for the POC to set the Ack flag in POC’s flag register, and (iv)
reads the result of the PuM operation from POC’s data register
(e.g., the true random number after performing an in-DRAM
true random number generation operation, Section 6). We list
the currently implemented pumolib functions in Table 1.

® Custom Supervisor Software. PIDRAM provides a cus-
tom supervisor software that implements the necessary OS
primitives (i.e., virtual memory management, memory alloca-
tion and alignment) for end-to-end implementation of PuM
techniques. This facilitates developing end-to-end integration
of PuM techniques in the system as these techniques require
modifications across the software stack. For example, integrat-
ing RowClone end-to-end in the full system requires a new
memory allocation mechanism (Section 5.1) that can satisfy
the memory allocation constraints of RowClone [148]. Thus,
we implement the necessary functions and data structures
in the custom supervisor software to implement an alloca-
tion mechanism that satisfies RowClone’s constraints. This
allows PIDRAM to be extended easily to implement support
for new PuM techniques that share similar memory allocation
constraints (e.g., Ambit [145], SIMDRAM [54], and QUAC-
TRNG [124], as shown in Table 2).

4.3. Execution of a PuM Operation

We describe the general workflow for a PIDRAM operation
(e.g., RowClone-Copy [148], random number generation using
D-RaNGe [83]) in Figure 3 over an example copy_row() func-
tion that is called by the user to perform a RowClone-Copy
operation in DRAM.

The user makes a system call to the custom supervi-
sor software @ that in turn calls the copy_row(source,
destination) function in the pumolib @. The function ex-
ecutes two store instructions in the RISC-V core ®. The
first store instruction updates the instruction register with
the copy_row instruction (i.e., the instruction that performs a
RowClone-Copy operation in DRAM) @ and the second store
instruction sets the Start flag in the flag register to logic-1 ®
in POC. When the Start flag is set, POC instructs the PIDRAM
memory controller to perform a RowClone-Copy operation
using violated timing parameters ®. The POC waits until the
memory controller starts executing the operation, after which
it sets the Start flag to logic-0 and the Ack flag to logic-1 @,

indicating that it started the execution of the PuM operation.
The PiDRAM memory controller performs the RowClone-Copy
operation by issuing a set of DRAM commands with violated
timing parameters ®. When the last DRAM command is is-
sued, the memory controller sets the Finish flag (denoted as
Fin. in Figure 3) in the flag register to logic-1 @, indicating
the end of execution for the last PuM operation that the mem-
ory controller acknowledged. The copy function periodically
checks either the Ack or the Finish flag in the flag register
(depending on a user-supplied argument) by executing load
instructions that target the flag register @. When the periodi-
cally checked flag is set, the copy function returns. This way,
the copy function optionally blocks until the start (i.e., the Ack
flag is set) or the end (i.e., the Finish flag is set) of the execution
of the PuM operation (in this example, RowClone-Copy).?

4.4. Use Cases

PiDRAM is primarily designed to study end-to-end implemen-
tations of commodity DRAM based PuM techniques [13, 44, 82,
83,123] on real systems. Beyond commodity DRAM based PuM
techniques, many prior works propose minor modifications to
DRAM arrays to enable various arithmetic [9,32, 40, 54] and
bitwise operations [9, 145, 147, 149, 151] and security primi-
tives [126]. These PuM techniques share common memory
allocation and coherence requirements (Section 5.1) that must
be satisfied to enable their end-to-end integration into a real
system. PIDRAM facilitates the implementation of PuM tech-
niques and enables rapid exploration of such integration chal-
lenges on a real DRAM-based system. Table 2 describes some
of the PuM case studies PIDRAM can enable.

Other than providing an easy-to-use basis for end-to-end
implementations of commodity DRAM based PuM techniques,
PiDRAM can be easily extended with a programmable micro-
processor placed near the memory controller to study sys-
tem integration challenges of Processing-near-Memory (PnM)
techniques (e.g., efficient pointer chasing [57,58, 65], general-
purpose compute [158], machine learning [74, 86, 94,101, 122],
databases [21,22,97], graph processing [16]).

3The data register is not used in a RowClone-Copy [148] operation because
the result of the RowClone-Copy operation is stored in memory (i.e., the
source memory row is copied to the destination memory row). The data
register is used in a D-RaNGe [83] operation, as described in Section 6. When
used, the command scheduler stores the random numbers generated by the D-
RaNGe operation in the data register. To read the generated random number,
we implement a pumolib function called rand_dram() that executes load
instructions in the RISC-V core to retrieve the random number from the data
register in POC.

4.5. PIDRAM’s HW & SW Components: Summary

We identify and build two hardware components (PuM Oper-
ations Controller and Custom Memory Controller) and two
software components (PuM Operations Library, Custom Super-
visor Software) as key components that are commonly required
by end-to-end PuM implementaions. We reuse these key com-
ponents to implement two different PuM mechanisms (Row-
Clone in Section 5 and D-RaNGe in Section 6) in PIDRAM. The
key components can be reused in the same way to implement
other PuM mechanisms (e.g., the ones in Table 2). However,
reusing a component does not mean that the component can
simply be instantiated in a system and the system will be able
to perform PuM operations immediately.

We acknowledge that these components require modifica-
tions to implement new PuM techniques in PIDRAM and pos-
sibly to integrate PIDRAM into other systems. In fact, we
quantify the degree of these modifications in our RowClone
and D-RaNGe case studies. We show that the key components
form a useful and easy-to-extend basis for PuM techniques
with our Verilog and C code complexity analyses for both use
cases (Sections 5.5.1 and 6.2).

4.6. PiDRAM Prototype

We develop a prototype of the PIDRAM framework on an FPGA-
based platform. We use the Xilinx ZC706 FPGA board [167]
to interface with real DDR3 modules. Xilinx provides a DDR3
PHY IP [164] that exposes a low-level “DFI” interface [33]
to the DDR3 module on the board. We use this interface to
issue DRAM commmands to the DDR3 module. We use the
existing RISC-V based SoC generator, Rocket Chip [11], to
generate the RISC-V hardware system. Our custom supervisor
software extends the RISC-V Proxy Kernel [136] to support
the necessary OS primitives on PIDRAM’s prototype. Figure 4
shows our prototype.

Simulation Infrastructure. To aid the users in testing the
correctness of any modifications they make on top of PIDRAM,
we provide the developers with a Verilog simulation environ-
ment that injects regular READ/WRITE commands and custom
commands (e.g., update the Configurable Register File (CRF),
perform RowClone-Copy, generate random numbers) to the
memory controller. When used in conjunction with the Micron

— Host Machine

Figure 4: PIDRAM’s FPGA prototype

DDR3 Verilog model provided by Xilinx [164], the simulation
environment can help the developers to easily understand if
something unexpected is happening in their implementation
(e.g., if timing parameters are violated).

Open Source Repository. We make PIDRAM freely available
to the research community as open source software at https:
//github.com/CMU-SAFARI/PiDRAM. Our repository includes
the full PIDRAM prototype that has RowClone (Section 5) and
D-RaNGe (Section 6) implemented end-to-end on the RISC-V
system.

5. Case Study #1: End-to-end RowClone

We implement support for ComputeDRAM-based (i.e., using
carefully-engineered sequences of valid DRAM commands
with violated timing parameters) RowClone (in-DRAM copy-
/initialization) operations on PIDRAM to conduct a detailed
study of the challenges associated with implementing Row-
Clone end-to-end on a real system. None of the relevant prior
works [44, 54, 143, 145, 148, 149, 151, 160] provide a clear de-
scription or a real system demonstration of a working memory
allocation mechanism that can be implemented in a real operat-
ing system to expose RowClone capability to the programmer.

5.1. Implementation Challenges

Data Mapping. RowClone has data mapping and alignment
requirements that cannot be satisfied by current memory allo-
cation mechanisms (e.g., malloc [106]). We identify four major
issues that complicate the process of implementing support

Table 2: Various known PuM techniques that can be studied using PIDRAM. PuM techniques we implement in this work are

highlighted in bold.

PuM Technique Description

Integration Challenges

ComputeDRAM-based [44]
RowClone [148]

Bulk data-copy and ini-
tialization within DRAM

(i) memory allocation and alignment mechanisms that map source & destination operands of a copy operation
into same DRAM subarray; (ii) memory coherence, i.e., source operand must be up-to-date in DRAM.

True random number

D-RaNGe [83] generation using DRAM

(i) periodic generation of true random numbers; (ii) memory scheduling policies that minimize the interference
caused by random number requests.

ComputeDRAM-based [44] Bitwise operations in

(i) memory allocation and alignment mechanisms that map operands of a bitwise operation into same DRAM

Ambit [145] DRAM subarray; (ii) memory coherence, i.e., operands of the bitwise operations must be up-to-date in DRAM.
Arithmetic operations in (i) memory allocation and alignment mechanisms that map operands of an arithmetic operation into same DRAM
SIMDRAM [54] DRAM P subarray; (ii) memory coherence, i.e., operands of the arithmetic operations must be up-to-date in DRAM; (iii) bit
transposition, i.e., operand bits must be laid out vertically in a single DRAM bitline.
Physical unclonable . - L . .
DL-PUF [82] memory scheduling policies that minimize the interference caused by generating PUF responses.

functions in DRAM

True random number
generation using DRAM

QUAC-TRNG [123] and
Talukder+ [13]

(i) periodic generation of true random numbers; (i) memory scheduling policies that minimize the interference
caused by random number requests; (iii) efficient integration of the SHA-256 cryptographic hash function.

https://github.com/CMU-SAFARI/PiDRAM
https://github.com/CMU-SAFARI/PiDRAM

for RowClone in real systems. First, the source and destination
operands (i.e., page (4 KiB)-sized arrays) of the copy opera-
tion must reside in the same DRAM subarray. We refer to this
as the mapping problem. Second, the source and destination
operands must be aligned to DRAM rows. We refer to this
as the alignment problem. Third, the size of the copied data
must be a multiple of the DRAM row size. The size constraint
defines the granularity at which we can perform bulk-copy
operations using RowClone. We refer to this as the granular-
ity problem. Fourth, RowClone must operate on up-to-date
data that resides in main memory. Modern systems employ
caches to exploit locality in memory accesses and reduce mem-
ory latency. Thus, cache blocks (typically 64 B) of either the
source or the destination operands of the RowClone operation
may have cache block copies present in the cache hierarchy.
Before performing RowClone, the cached copies of pieces of
both source and destination operands must be invalidated and
written back to main memory. We refer to this as the memory
coherence problem.

We explain the data mapping and alignment requirements
of RowClone using Figure 5. The figure depicts a simplified
version of a DRAM chip with two banks and two subarrays.
The operand Source 1 cannot be copied to the operand Target
1 as the operands do not satisfy the granularity constraint
(0). Performing such a copy operation would overwrite the
remaining (i.e., non-Target 1) data in Target 1’s DRAM row
with the remaining (i.e., non-Source 1) data in Source 1’s DRAM
row. Source 2 cannot be copied to Target 2 as Target 2 is not
aligned to its DRAM row (). Source 3 cannot be copied to
Target 3, as these operands are not mapped to the same DRAM
subarray (). In contrast, Source 4 can be copied to Target 4
using in-DRAM copy because these operands are (i) mapped
to the same DRAM subarray, (ii) aligned to their DRAM rows
and (iii) occupy their rows completely (i.e., the operands have
sizes equal to DRAM row size) (@).

[I

Bank X ! Bank Y

i

[DRAM ROW | i Source 1 0_

SIBEUEVA | source 2 I | H] Torcet ! e

[o T | ETTE—

L Sli=" 1

= 1
i

T | T
i

Subarray Z || I A?@

E
i
i

Figure 5: ADRAM chip with two banks and two subarrays. Only
one operation (i.e., operation @) can succeed as its operands
satisfy all of mapping, alignment and granularity constraints.

5.2. Memory Allocation Mechanism

Computing systems employ various layers of address map-
pings that obfuscate the DRAM row-bank-column address
mapping from the programmer [30, 61], which makes allocat-
ing source and target operands as depicted in Figure 5-(®)
difficult. DRAM manufacturers employ DRAM-internal ad-
dress mapping schemes (Section 2.1) that translate from logical
(e.g., memory-controller-visible DRAM row, bank, column)

addresses to physical DRAM addresses. General-purpose pro-
cessors use complex functions to map physical addresses to
DDRx addresses (e.g., DRAM banks, rows and columns) [62].
The operating system (OS) maps virtual addresses to physi-
cal addresses to provide isolation between multiple processes.
Only these virtual addresses are exposed to the programmer.
Without control over the virtual address - DRAM address
mapping, the programmer cannot easily place data in a way
that satisfies the mapping and alignment requirements of an
in-DRAM copy operation.

We implement a new memory allocation mechanism that
can perform memory allocation for RowClone (in-DRAM
copy/initialization) operations. This mechanism enables page-
granularity RowClone operations (i.e., a virtual page can be
copied to another virtual page using RowClone) without intro-
ducing any changes to the programming model. The mecha-
nism places the operands of RowClone operations in the same
DRAM subarray while maximizing the bank-level parallelism
in regular DRAM accesses (reads & writes) to these operands
(such that the commonly-performed streaming accesses to
these operands benefit from bank-level parallelism in DRAM).
Figure 6 depicts an overview of our memory allocation mecha-
nism.

Memory .
Operands Blocks DRAM Device
BANK X BANK'Y
Array 1

MBBOl

I';

TMBo |

+
I

Figure 6: Overview of our memory allocation mechanism

At a high level, our memory allocation mechanism (i) splits
the source and destination operands into page-sized virtually-
addressed memory blocks, (ii) allocates two physical pages in
different DRAM rows in the same DRAM subarray, (iii) assigns
these physical pages to virtual pages that correspond to the
source and destination memory blocks at the same index such
that the source block can be copied to the destination block
using RowClone. We repeat this process until we exhaust
the page-sized memory blocks. As the mechanism processes
subsequent page-sized memory blocks of the two operands,
it allocates physical pages from a different DRAM bank to
maximize bank-level parallelism in streaming accesses to these
operands.

To overcome the mapping, alignment, and granularity prob-
lems, we implement our memory management mechanism in
the custom supervisor software of PIDRAM. We expose the

allocation mechanism using the alloc_align(N, ID) system
call. The system call returns a pointer to a contiguous array of
N bytes in the virtual address space (i.e., one operand). Multi-
ple calls with the same ID to alloc_align(N, ID) place the
allocated arrays in the same subarray in DRAM, such that they
can be copied from one to another using RowClone. If N is
too large such that it exceeds the size of available physical
memory, alloc_align fails and causes an exception. Our
implementation of RowClone requires application developers
to directly use alloc_align to allocate data instead of malloc
and similar function calls.

The custom supervisor software maintains three key struc-

tures to make alloc_align() work: (i) Subarray Mapping
Table (SAMT), (ii) Allocation ID Table (AIT), and (iii) Initializer
Rows Table (IRT).
1) Subarray Mapping Table (SAMT). We use the Subarray
Mapping Table (SAMT) to maintain a list of physical page ad-
dresses that point to DRAM rows that are in the same DRAM
subarray. alloc_align() queries SAMT to find physical ad-
dresses that map to rows in one subarray.

SAMT contains the physical pages that point to DRAM rows
in each subarray. SAMT is indexed using subarray identifiers
(SA IDs) in the range [0, number of subarrays). SAMT con-
tains an entry for every subarray. An entry consists of two
elements: (i) the number of free physical address tuples and
(ii) a list of physical address tuples. Each tuple in the list con-
tains two physical addresses that respectively point to the first
and second halves of the same DRAM row. The list of tuples
contains all the physical addresses that point to DRAM rows
in the DRAM subarray indexed by the SAMT entry. We allo-
cate free physical pages listed in an entry and assign them to
the virtual pages (i.e., memory blocks) that make up the row-
copy operands (i.e., arrays) allocated by alloc_align(). We
slightly modify our high-level memory allocation mechanism
to allow for two memory blocks (4 KiB virtually-addressed
pages) of an array to be placed in the same DRAM row, as the
page size in our system is 4 KiB, and the size of a DRAM row
is 8 KiB. We call two memory blocks in the same operand that
are placed in the same DRAM row sibling memory blocks (also
called sibling pages). The parameter N of the alloc_align()
call defines this relationship: We designate memory blocks
that are precisely N/2 bytes apart as sibling memory blocks.
Finding the DRAM Rows in a Subarray. Finding the DRAM
row addresses that belong to the same subarray is not straight-
forward due to DRAM-internal mapping schemes employed by
DRAM manufacturers (Section 5.1). It is extremely difficult to
learn which DRAM address (i.e., bank-row-column) is actually
mapped to a physical location (e.g., a subarray) in the DRAM
device, as these mappings are not exposed through publicly
accessible datasheets or standard definitions [71,116,130]. We
make the key observation that the entire mapping scheme need
not be available to successfully perform RowClone operations.

We observe that for a set of {source, destination] DRAM row
address pairs, RowClone operations repeatedly succeed with a
100% probability. We hypothesize that these pairs of DRAM
row addresses are mapped to the same DRAM subarray. We

identify these row address pairs by conducting a RowClone suc-
cess rate experiment where we repeatedly perform RowClone
operations between every source, destination row address pair
in a DRAM bank. Our experiment works in three steps: we (i)
initialize both the source and the destination row with random
data, (ii) perform a RowClone operation from the source to the
destination row, and (iii) compare the data in the destination
row with the source row. RowClone success rate is calculated
as the number of bits that differ between the source and des-
tination rows’ data divided by the number of bits stored in a
row (8 KiB in our prototype). If there is no difference between
the source and the destination rows’ data (i.e., the RowClone
success rate for the source and the destination row is 100%), we
infer that the RowClone operation was successful. We repeat
the experiment for 1000 iterations for each row address pair
and if every iteration is successful, we store the address pair in
the SAMT, indicating that the row address pair is mapped to dif-
ferent rows in the same DRAM subarray. The same RowClone
success rate experiment could be conducted in other systems
that are based on PIDRAM or in a PIDRAM prototype that
uses a different DRAM module. Since the RowClone success
rate experiment is a one-time process, its overheads (e.g., time
taken to iterate over all DRAM rows using our experiment) are
amortized over the lifetime of such a system.

2) Allocation ID Table (AIT). To keep track of different
operands that are allocated by alloc_align using the same
ID (used to place different arrays in the same subarray), we
use the Allocation ID Table (AIT). AIT entries are indexed
by allocation IDs (the parameter ID of the alloc_align call).
Each AIT entry stores a pointer to an SAMT entry. The SAMT
entry pointed by the AIT entry contains the set of physical
addresses that were allocated using the same allocation ID. AIT
entries are used by the alloc_align function to find which
DRAM subarray can be used to allocate DRAM rows from,
such that the newly allocated array can be copied to other
arrays allocated using the same ID.

3) Initializer Rows Table (IRT). To find which row in a
DRAM subarray can be used as the source operand in zero-
initialization (RowClone-Initialize) operations, we maintain
the Initializer Rows Table (IRT). The IRT is indexed using
physical page numbers. RowCopy-Initialize operations query
the IRT to obtain the physical address of the DRAM row that is
initialized with zeros and that belong to the same subarray as
the destination operand (i.e., the DRAM row to be initialized
with zeros).

Figure 7 describes how alloc_align() works over an end-
to-end example. Using the RowClone success rate experi-
ment (described above), the custom supervisor software (CSS
for short) finds the DRAM rows that are in the same subar-
ray (@) and initializes the Subarray Mapping Table (SAMT).
The programmer allocates two 128 KiB arrays, A and B, via
alloc_align() using the same allocation id (0), with the in-
tent to copy from A to B (8). CSS allocates contiguous ranges
of virtual addresses to A and B, and then splits the virtual ad-
dress ranges into page-sized memory blocks (). CSS assigns
consecutive memory blocks to consecutive DRAM banks and

accesses the Allocation ID Table (AIT) with the allocation id
(®) for each memory block. By accessing the AIT, CSS re-
trieves the subarray id that points to a SAMT entry. The SAMT
entry corresponds to the subarray that contains the arrays
that are allocated using the allocation id (®). CSS accesses the
SAMT entry to retrieve two physical addresses that point to
the same DRAM row. CSS maps a memory block and its sibling
memory block (i.e., the memory block that is N/2 bytes away
from this memory block, where N is the size argument of the
alloc_align() call) to these two physical addresses, such that
they are mapped to the first and the second halves of the same
DRAM row (@). Once allocated, these physical addresses are
pinned to main memory and cannot be swapped out to storage.
Finally, CSS updates the page table with the physical addresses
to map the memory blocks to the same DRAM row (@).

5.3. Maintaining Memory Coherence

Since memory instructions update the cached copies of data
(Section 5.1), a naive implementation of RowClone can poten-
tially operate on stale data because cached copies of RowClone
operands can be modified by CPU store instructions. Thus, we
need to ensure memory coherence to prevent RowClone from
operating on stale data.

We implement a new custom RISC-V instruction, called
CLFLUSH, to flush dirty cache blocks to DRAM (RISC-V does
not implement any cache management operations [161]) so as
to ensure RowClone operates on up-to-date data. A CLFLUSH
instruction flushes (invalidates) a physically addressed dirty
(clean) cache block. CLFLUSH or other cache management
operations with similar semantics are supported in X86 [68]
and ARM architectures [10]. Thus, the CLFLUSH instruction
(that we implement) provides a minimally invasive solution
(i.e., it requires no changes to the specification of commercial
ISAs) to the memory coherence problem.

We modify the non-blocking data cache and the Rocket core
modules (defined in NBDCache.scala and rocket.scala in Rocket
Chip [11], respectively) to implement CLFLUSH. We modify
the RISC-V GNU compiler toolchain [135] to expose CLFLUSH
as an instruction to C/C++ applications. Before executing a
RowClone Copy or Initialization operation (see Section 5.4),
the custom supervisor software flushes (invalidates) the cache
blocks of the source (destination) row of the RowClone opera-
tion using CLFLUSH.

5.4. RowClone-Copy and RowClone-Initialize

We support the RowClone-Copy and RowClone-Initialize oper-
ations in our custom supervisor software via two functions: (i)
RowClone-Copy, rcc(void *dest, void *src, int size)
and (ii) RowClone-Initialize, rci(void* dest, int size).
rcc copies size number of contiguous bytes in the virtual ad-
dress space starting from the src memory address to the dest
memory address. rci initializes size number of contiguous
bytes in the virtual address space starting from the dest mem-
ory address. We expose rcc and rci to user-level programs
using system calls defined in the custom supervisor software.

10

rcc (i) splits the source and destination operands into page-
aligned, page-sized blocks, (ii) traverses the page table (Fig-
ure 7-0) to find the physical address of each block (i.e., the
address of a DRAM row), (iii) flushes all cache blocks corre-
sponding to the source operand and invalidates all cache blocks
corresponding to the destination operand, and (iv) performs a
RowClone operation from the source row to the destination
row using pumolib’s copy_row() function.

rci (i) splits the destination operand into page-aligned, page-
sized blocks, (ii) traverses the page table to find the physical
address of the destination operand, (iii) queries the Initializer
Rows Table (IRT, see Section 5.2) to obtain the physical address
of the initializer row (i.e., source operand), (iv) invalidates the
cache blocks corresponding to the destination operand, and (v)
performs a RowClone operation from the initializer row to the
destination row using using pumolib’s copy_row() function.

5.5. Evaluation

We evaluate our solutions for the challenges in implementing
RowClone end-to-end on a real system using PIDRAM. We
modify the custom memory controller to implement DRAM
command sequences (AC'T — PRE — ACT) to trigger Row-
Clone operations. We set the t RAS and ¢t R P parameters to 10
ns (below the manufacturer-recommended 37.5 ns for tRAS
and 13.5 ns for tRP [117]). We modify our custom supervisor
software to implement our memory allocation mechanism and
add support for RowClone-Copy (rcc) and RowClone-Initialize
(rci) operations.

5.5.1. Experimental Methodology. Table 3 describes the
configuration of the components in our system. We use the
pipelined and in-order Rocket core with 16 KiB L1 data cache
and 4-entry TLB as the main processor of our system. We use
the 1 GiB DDR3 module available on the ZC706 board as the
main memory where we conduct PuM operations.

Table 3: PIiDRAM system configuration

CPU: 50 MHz; in-order Rocket core [11]; TLB 4 entries DTLB; LRU policy

L1 Data Cache: 16 KiB, 4-way; 64 B line; random replacement policy

DRAM Memory: 1 GiB DDR3; 800MT/s; single rank; 8 KiB row size

Implementing RowClone requires an additional 198 lines
of Verilog code over PIDRAM’s existing Verilog design. We
add 43 and 522 lines of C code to pumolib and to our custom
supervisor software, respectively, to implement RowClone in
the software components.

Table 8 describes the mapping scheme we use in our custom
memory controller to translate from physical to DRAM row-
bank-column addresses. We map physical addresses to DRAM
columns, banks, and rows from lower-order bits to higher-
order bits to exploit the bank-level parallelism in memory
accesses to consecutive physical pages. We note that our mem-
ory management mechanism is compatible with other physical
address — DRAM address mappings [62]. For example, for a
mapping scheme where page offset bits (physical address (PA)
[11:0]) include all or a subset of the bank address bits, a single
RowClone operand (i.e., a 4 KiB page) would be split across

Allocate 128 KiB A and B to same subarray

A = alloc_align(128+*1024, ©);
B = alloc_align(128*1024, 0);

gl

(4]

Initialize Subarray

@ Copy 128 KiBs from A to B
[rcc(A, B, 128%1024); |

Access page table to find
source and destination

Mapping Table DRAM rows

Page Table
Physical Address

Virt. Addr.

B0 SA0 ROWO

\
Bl pA.PAL PALPA, .. B1 SA0 ROWO

B2 SA0 ROWO

B1 SA0 ROWO

DRAM ROW

B0 SA0 ROW4

I Vva} Bank 0
Array [/ VA, J-Bankl,
AN —x
| IV
Allocation Subarray o
Bank 0) ID Table Mapping Table | :."
Array c 0> SAO Aol &
B ; 0e| 1 '
VA Bank 7, m

B1 SA0 ROW4

Figure 7: Alloc_align() and RowClone-Copy (rcc, see Section 5.4)

multiple DRAM banks. This only coarsens the granularity of
RowClone operations as the sibling pages that must be copied
in unison, to satisfy the granularity constraint, increases. We
expect that for other complex or unknown physical address —
DRAM address mapping schemes, the characterization of the
DRAM device for RowClone success rate would take longer. In
the worst case, DRAM row addresses that belong to the same
DRAM subarray can be found by testing all combinations of
physical addresses for their RowClone success rate.

I;Izl};;::sl | Physical Page Number | Page Offset |
2 12 11 0
113 cﬁi?el:v[ss | Row | Bank | Column | Byte Offset |

29 16 15 1312 32 0

Figure 8: Physical address to DRAM address mapping in
PiDRAM. Byte offset is used to address the byte in the DRAM
burst.

We evaluate rcc and rci operations under two configura-
tions to understand the copy/initialization throughput improve-
ments provided by rcc and rci over traditional CPU-copy op-
erations performed by the Rocket core, and to understand the
overheads introduced by end-to-end support for commodity
DRAM based PuM operations. We test two configurations: (i)
Bare-Metal, to find the maximum RowClone throughput our im-
plementation provides solely using pumolib, and (ii) No Flush,
to understand the benefits our end-to-end implementation (i.e.,
with system support) of RowClone can provide in copy/ini-
tialization throughput when data in DRAM is up-to-date (i.e.,
when no coherence operations are needed).

Bare-Metal. We assume that RowClone operations always
target data that is allocated correctly in DRAM (i.e., there is no
overhead introduced by address translation, IRT accesses, and
CLFLUSH operations). We directly issue RowClone operations
via pumolib using physical addresses. Traditional CPU-copy
operations (executed on the Rocket core) also use physical
addresses.

No Flush. We assume that the programmer uses the
alloc_align function to allocate the operands of RowClone
operations. We use a version of rcc and rci system calls that
do not use CLFLUSH to flush cache blocks of source and des-
tination operands of RowClone operations. We run the No
Flush configuration on our custom supervisor software. Both

11

workflow.

rcc and rci, and traditional CPU-copy operations use virtual
addresses.

5.5.2. Workloads. For the two configurations, we run a mi-
crobenchmark that consists of two programs, copy and init, on
our prototype. Both programs take the argument N, where
copy copies an N-byte array to another N-byte array and init
initializes an N-byte array to all zeros. Both programs have
two versions: (i) CPU-copy, which copies/initializes data using
memory loads and stores, (ii) RowClone, which uses Row-
Clone operations to perform copy/initialization. All programs
use alloc_align to allocate data. The performance results
we present in this section are the average of a 1000 runs. To
maintain the same initial system state for both CPU-copy and
RowClone, we flush all cache blocks before each one of the
1000 runs. We run each program for array sizes (N) that are
powers of two and 8 KiB < N < 8 MiB, and find the av-
erage copy/initialization throughput across all 1000 runs (by
measuring the # of elapsed CPU cycles to execute copy/initial-
ization operations) for CPU-copy, RowClone-Copy (rcc), and
RowClone-Initialize (rci).

We analyze the overheads of CLFLUSH operations on copy-
/initialization throughput that rcc and rci can provide. We
measure the execution time of CLFLUSH operations in our
prototype to find how many CPU cycles it takes to flush a (i)
dirty and (ii) clean cache block on average across 1000 measure-
ments. We simulate various scenarios (described in Figure 11)
where we assume a certain fraction of the operands of Row-
Clone operations are cached and dirty.

5.5.3. Bare-Metal RowClone. Figure 9 shows the throughput
improvement provided by rcc and rci for copy and initialize
over CPU-copy and CPU-initialization for increasing array
sizes.

We make two major observations. First, we observe that
rcc and rci provide significant throughput improvement over
traditional CPU-copy and CPU-initialization. The through-
put improvement provided by rcc ranges from 317.5x (for
8 KiB arrays) to 364.8x (for 8 MiB arrays). The throughput
improvement provided by rci ranges from 172.4x to 182.4x.
Second, the throughput improvement provided by rcc and rci

4We tested RowClone operations using alloc_align() with up to 8 MiB
of allocation size since we observed diminishing returns on performance
improvement provided by RowClone operations on larger array sizes.

o 500 ERowClone-Copy ERowClone-Initialize

55 375

£ E 250

oo P

33 125

2 = 0

£ c

= E 9 @ © © @© @ @ @ @ o @

= g v v ¥ o v v 5 5 5 3

0 Q o 3 - 2 N — ~ < ©

— (o} wn
Array Size

Figure 9: RowClone-Copy and RowClone-Initialize over tradi-
tional CPU-copy and -initialization for the Bare-Metal config-
uration

increases as the array size increases. This increase saturates
when the array size reaches 1 MiB. The load/store instructions
used by CPU-copy and CPU-initialization access the operands
in a streaming manner. The eviction of dirty cache blocks (i.e.,
the destination operands of copy and initialization operations)
interfere with other memory requests on the memory bus.?
We attribute the observed saturation at 1 MiB array size to the
interference on the memory bus.

5.5.4. No Flush RowClone. We analyze the overhead in
copy/initialization throughput introduced by system support
(Section 5.2). Figure 10 shows the throughput improvement of
copy and initialization provided in the No Flush configuration
by rcc and rci operations.

o 200

85 15 @ RowClone-Copy B RowClone-Initialize

Qo

-535 100

§2 50

£ 2 0

= E T 3 8 @ @ 3z = @ @ @ @

@ 8 8 03 % 8 Y SN T ow

— o~ wn
Array Size

Figure 10: Throughput improvement provided by RowClone-
Copy and RowClone-Initialize over traditional CPU-copy and
-initialization for the NoFlush configuration.

We make two major observations: First, rcc improves the
copy throughput by 58.3 x for 8 KiB and by 118.5x for 8 MiB ar-
rays, whereas rci improves initialization throughput by 31.4x
for 8 KiB and by 88.7x for 8 MiB arrays. Second, we observe
that the throughput improvement provided by rcc and rci im-
proves non-linearly as the array size increases. The execution
time (in Rocket core clock cycles) of rcc and rci operations
(not shown in Figure 10) does not increase linearly with the ar-
ray size. For example, the execution time of rcc is 397 and 584
cycles at 8 KiB and 16 KiB array sizes, respectively, resulting
ina 1.47 x increase in execution time between 8 KiB and 16
KiB array sizes. However, the execution time of rcc is 92,656
and 187,335 cycles at 4 MiB and 8 MiB array sizes, respectively,
resulting in a 2.02 x increase in execution time between 4
MiB and 8 MiB array sizes. We make similar observations on
the execution time of rci. For every RowClone operation,

Because the data cache in our prototype employs random replacement
policy, as the array size increases, the fraction of cache evictions among all
memory requests also increases, causing larger interference on the memory
bus (i.e., more memory requests to satisfy all cache evictions). The interference
saturates at 1 MiB array size.

12

rcc and rci walk the page table to find the physical addresses
corresponding to the source (rcc) and the destination (rcc and
rci) operands. We attribute the non-linear increase in rcc and
rci’s execution time to (i) the locality exploited by the Rocket
core in accesses to the page table and (ii) the diminishing con-
stant cost in the execution time of both rcc and rci due to
common instructions executed to perform a system call.

5.5.5. CLFLUSH Overhead. We find that our implementation
of CLFLUSH takes 45 Rocket core clock cycles to flush a dirty
cache block and 6 Rocket core cycles to invalidate a clean
cache block. We estimate the throughput improvement of rcc
and rci including the CLFLUSH overhead. We assume that
all cache blocks of the source and destination operands are
cached, and that a fraction of the all cached cache blocks is
dirty (quantified on the x-axis). We do not include the overhead
of accessing the data (e.g., by using load instructions) after the
data gets copied in DRAM. Figure 11 shows the estimated
improvement in copy and initialization throughput that rcc
and rci provide for 8 MiB arrays.

20
= € 14.6 B RowClone-Copy M RowClone-Initialize
3 915 | 126
5 5
[
33 10 51 62 39
E g- 5 “ 3.2 > 24 29 1.9 23
£, HE =m
0% Dirty ~ 25% Dirty ~ 50% Dirty 75% Dirty 100% Dirty

Fraction of Dirty Cache Blocks

Figure 11: Throughput improvement provided by rcc and rci
with CLFLUSH over Rocket’s CPU-copy.

We make three major observations. First, even with in-
efficient cache flush operations, rcc and rci provide 3.2x
and 3.9x higher throughput over the CPU-copy and CPU-
initialization operations, assuming 50% of the cache blocks
of the 8 MiB source operand are dirty, respectively. Second,
as the fraction of dirty cache blocks increases, the through-
put improvement provided by both rcc and rci decreases
(down to 1.9 for rcc and 2.3x for rci for 100% dirty cache
block fraction). Third, we observe that rci can provide better
throughput improvement compared to rcc when we include
the CLFLUSH overhead. This is because rci flushes cache
blocks of one operand (destination), whereas rcc flushes cache
blocks of both operands (source and destination).

We do not study the distribution of dirty cache block frac-
tions in real applications as that is not the goal of our CLFLUSH
overhead analysis. However, if a large dirty cache block frac-
tion causes severe overhead in a real application, the system
designer or the user of the system would likely decide not to
offload the operation to PuM (i.e., performing rcc operations
instead of CPU-Copy). PIDRAM’s prototype can be useful for
studies on different PuM system integration aspects, including
such offloading decisions.

We observe that the CLFLUSH operations are inefficient
in supporting coherence for RowClone operations. Even so,
we see that RowClone-Copy and RowClone-Initialization pro-
vides throughput improvements ranging from 1.9 to 14.6 x.
We expect the throughput improvement benefits to increase

as coherence between the CPU caches and PIM accelerators
become more efficient with new techniques [21,22, 146].

5.5.6. Real Workload Study. The benefit of rcc and rci ona
full application depends on what fraction of execution time is
spent on bulk data copy and initialization. We demonstrate the
benefit of rcc and rci on forkbench [148] and compile [148]
workloads with varying fractions of time spent on bulk data
copy and initialization, to show that our infrastructure can
enable end-to-end execution and estimation of benefits on
real workloads.® We especially study forkbench in detail to
demonstrate how the benefits vary with the time spent on data
copying in the baseline for this workload.

Forkbench first allocates N memory pages and copies data
to these pages from a buffer in the process’s memory and then
accesses 32K random cache blocks within the newly allocated
pages to emulate a workload that frequently spawns new pro-
cesses. We evaluate forkbench under varying bulk data copy
sizes where we sweep N from 8 to 2048 in increasing powers
of two.

Compile first zero-allocates (calloc or rci) two pages (8
KiBs) and then executes a number of arithmetic and memory
instructions to operate on the zero-allocated data. We carefully
develop the compile microbenchmark to maintain a realistic
ratio between the number of arithmetic and memory instruc-
tions executed and zero-allocation function calls made, which
we obtain by profiling gcc [109]. We use the No-Flush config-
uration of our RowClone implementation for both forkbench
and compile.

Figure 12 plots the speedup provided by rcc over the CPU-
copy (bars, left y-axis) baseline, and the proportion of time
spent on memcpy functions by the CPU-copy baseline (blue
curve, right y-axis), for various configurations of forkbench on
the x-axis.

[]
15 — 100% £
g_ 14 wClone-Copy 80% :
g 1.3 = Fraction of Time Spent on memcpy() 60% g
g 1.2 40% 3
& 1.1 20% Q
1 0% W
/ KU oo AL M po R

ot O T (¥ « 0‘\(:’\7' Koe&’rz’ ,\0(‘6’6 \o‘w\dL &0«\,‘79

Fork Configurations

Figure 12: Forkbench speedup (bars, left y-axis) and time spent
on memcpy by the CPU baseline (curve, right y-axis)

Forkbench. We observe that RowClone-Copy can signifi-
cantly improve the performance of forkbench by up to 42.9%.
RowClone-Copy’s performance improvement increases as the
number of pages copied increase. This is because the copy
operations accelerated by rcc contribute a larger amount to
the total execution time of the workload. The memcpy func-
tion calls take 86% of the CPU-copy baseline’s time during
forkbench execution for N = 2048.

¢ A full workload study (i.e., with system calls to a full operating system
such as Linux) of forkbench and compile is out of the scope of this paper.
Our infrastructure currently cannot execute all possible workloads due to the
limited library and system call functionality provided by the RISC-V Proxy
Kernel [136].

13

Compile. RowClone-Initialize improves the performance of
compile by 9%. Only an estimated 17% of the execution time of
compile is used for zero-allocation by the CPU-initialization
baseline, rci reduces the overhead of zero-allocation by (i)
performing in-DRAM bulk-initialization and (ii) executing a
smaller number of instructions.
Libquantum. To demonstrate that PIDRAM can run real
workloads, we run a SPEC2006 [154] workload (libquantum).
We modify the calloc (allocates and zero initializes memory)
function call to allocate data using alloc_align, and initialize
data using rci for allocations that are larger than 8 KiBs.
Using rci to bulk initialize data in libquantum improves
end-to-end application performance by 1.3% (compared to the
baseline that uses CPU-Initialization). This improvement is
brought by rci, which initializes a total amount of 512 KiBs
of memory’ using RowClone operations. We note that the
proportion of store instructions executed by libquantum to
initialize arrays in the CPU-initialization baseline is only 0.2%
of all dynamic instructions in the libquantum workload which
amounts to an estimated 2.3% of the total runtime of libquan-
tum. Thus, the 1.3% end-to-end performance improvement
provided by rci, which can ideally speed up only 2.3% of the
total runtime, is reasonable, and we expect it to increase with
the initialization intensity of workloads.
Summary. We conclude from our evaluation that end-to-
end implementations of RowClone (i) can be efficiently sup-
ported in real systems by employing memory allocation mech-
anisms that satisfy the memory alignment, mapping, granu-
larity requirements (Section 5.1) of RowClone operations, (ii)
can greatly improve copy/initialization throughput in real sys-
tems, and (iii) require cache coherence mechanisms (e.g., PIM-
optimized coherence management [21,22, 146]) that can flush
dirty cache blocks of RowClone operands efficiently to achieve
optimal copy/initialization throughput improvement. PIDRAM
can be used to estimate end-to-end workload execution bene-
fits provided by RowClone operations. Our experiments using
libquantum, forkbench, and compile show that (i) PIDRAM
can run real workloads, (ii) our end-to-end implementation of
RowClone operates correctly, and (iii) RowClone can improve
the performance of real workloads in a real system, even when
inefficient CLFLUSH operations are used to maintain memory
coherence.

6. Case Study #2: End-to-end D-RaNGe

Prior work on DRAM-based random number generation tech-
niques [13, 83, 123] do not integrate and evaluate their tech-
niques end-to-end in a real system. We evaluate one
DRAM-based true random number generation technique, D-
RaNGe [83], end-to-end using PIDRAM. We implement support
for D-RaNGe in PIDRAM by enabling access to DRAM with
reduced activation latency (i.e., t RC'D set to values lower than
manufacturer recommendations).

7In libquantum, there are 16 calls to calloc that exceed the 8 KiB allocation
size. We only bulk initialize data using rci for these 16 calls.

6.1. D-RaNGe Implementation

We implement a simple version of D-RaNGe in PiDRAM.
PiDRAM’s D-RaNGe controller collects true random numbers
from four DRAM cells in the same DRAM cache block in-
side one DRAM bank. We implement the D-RaNGe controller
within the Periodic Operations Module (Section 4.1). The D-
RaNGe controller (i) periodically accesses a DRAM cache block
with reduced tRCD, (ii) reads four of the TRNG DRAM cells in
the cache block, (iii) stores the four bits read from the TRNG
cells in a 1 KiB random number buffer. We reserve multiple
configuration registers in the configuration register file (CRF)
to configure (i) the TRNG period (in nanoseconds) used by the
D-RaNGe controller to periodically generate random numbers
by accessing DRAM with reduced activation latency while the
buffer is not full (the D-RaNGe controller accesses DRAM ev-
ery TRNG period), (ii) the timing parameter (¢t RC D) used to
induce activation latency failures and (iii) the physical location
(DRAM bank, row, column addresses, and bit offset within the
DRAM column) of the TRNG cells to read. We implement two
pumolib functions: (i) buf_size(), which returns the num-
ber of random words (4-bytes) available in the buffer, and (ii)
rand_dram(), which returns one random word that is read
from the buffer. The two functions first execute PIDRAM in-
structions in the POC that update the data register either with
(i) the number of random words available (when buf_size() is
called) or (ii) a random word read from the random number
buffer (when rand_dram() is called). The two functions then
access the data register using LOAD instructions to retrieve
either the size of the random number buffer or a random num-
ber. The application developer reads true random numbers
using these two functions in pumolib.

Random Cell Characterization. D-RaNGe requires the sys-
tem designer to characterize the DRAM module for activation
latency failures to find DRAM cells that fail with a 50% proba-
bility (i.e., randomly) when accessed with reduced tRC D. Fol-
lowing the methodology presented in [83], the system designer
can characterize a DRAM device or use an automated proce-
dure to find cells that fail with a 50% probability. In PIDRAM,
we implement reduced latency access to DRAM by (i) extend-
ing the scheduler of the custom memory controller and (ii)
adding a pumolib function activation_failure(address)
which induces an activation failure on the DRAM cache block
pointed by the address parameter.

6.2. Evaluation and Results

Experimental Methodology. We run a microbenchmark
to understand the effect of the TRNG period on true random
number generation throughput observed by a program run-
ning on the Rocket core. The microbenchmark consists of a
loop that (i) checks the availability of random numbers using
buf_size() and (ii) reads a random number from the buffer
using rand_dram(). We execute the microbenchmark until we
read one million bytes of random numbers.

Results. The D-RaNGe controller can perform reduced-
latency accesses frequently, every 220 ns. Figure 13 depicts
the TRNG throughput observed by the microbenchmark for

14

10

TRNG Throughput (Mb/s)
o N S (<)) o

220 350 480 610

TRNG Period (ns)

740 870 1000
Figure 13: TRNG throughput observed by our microbenchmark

for TRNG periods ranging from 220 ns to 1000 ns

TRNG periods in the range [220 ns, 1000 ns] with increments
of 10 ns. We observe that the TRNG throughput decreases
from 8.30 Mb/s at 220 ns TRNG period to 1.90 Mb/s at 1000 ns
TRNG period. D-RaNGe [83] reports 25.2 Mb/s TRNG through-
put using a single DRAM bank when there are four random
cells in a cache block. PIDRAM’s D-RaNGe controller can be
optimized to generate random numbers more frequently to
match D-RaNGe’s observed maximum throughput.® We leave
such optimizations to PIDRAM’s D-RaNGe controller for future
work.

Including the modifications to the custom memory controller
and pumolib, implementing D-RaNGe and reduced-latency
DRAM access requires an additional 190 lines of Verilog and
74 lines of C code over PIDRAM’s existing codebase. We con-
clude that our D-RaNGe implementation (i) provides a basis
for PIDRAM developers to study end-to-end implementations
of DRAM-based true random number generators, (ii) shows
that PIDRAM’s hardware and software components facilitate
the implementation of new commodity DRAM based PuM
techniques, specifically those that are related to security. Our
reduced-latency DRAM access implementation provides a ba-
sis for other PuM techniques for security purposes, such as the
DRAM-latency physical unclonable functions (DL-PUF [82])
and QUAC-TRNG [124] (Section 4.4). We leave further explo-
ration on end-to-end implementations of D-RaNGe, DL-PUF,
and QUAC-TRNG, as well as end-to-end analyses of the secu-
rity benefits they provide using PIDRAM for future work.

7. Extending PiDRAM

We briefly describe the modifications required to extend
PiDRAM (i) with new DRAM commands and DRAM timing
parameters, (ii) with new case studies, and (iii) to support new
FPGA boards.

New DRAM Commands and Timing Parameters. Imple-
menting new DRAM commands or modifying DRAM timing
parameters require modifications to PIDRAM’s memory con-
troller. This is straightforward as PIDRAM’s memory con-
troller’s Verilog design is modular and uses well-defined inter-
faces: It is composed of multiple modules that perform separate
tasks. For example, the memory request scheduler comprises

8D-RaNGe has a smaller true random number generation (TRNG) latency
(i.e., takes a smaller amount of time to generate a 4-bit random number) than
PiDRAM. PiDRAM has a larger TRNG latency due to (i) discrepancies in the
data path (i.e., on-chip interconnect) in D-RaNGe’s simulated system and
PiDRAM’s prototype and (ii) the TRNG period of the D-RaNGe controller
(D-RaNGe controller performs a reduced tRC' D access only as frequently
as one every 220 ns). The D-RaNGe controller can be optimized further to
reduce the TRNG period by down to the DRAM row cycle time (t RC standard
timing parameter, typically 45ns [117]).

two main components: (1) command timer, and (2) command
scheduler. To serve LOAD and STORE memory requests, the
command scheduler maintains state (e.g., which row is ac-
tive) for every bank. The command scheduler selects the next
DRAM command to satisfy the LOAD or STORE memory re-
quest and queries the command timer with the selected DRAM
command. The command timer checks for all possible standard
DRAM timing constraints and outputs a valid bit if the selected
command can be issued in that FPGA clock cycle. To extend
the memory controller with a new standard DRAM command
(e.g., to implement a newer standard like DDR4 or DDR5), a
PiDRAM developer simply needs to (i) add a new timing con-
straint by replicating the logic in the command timer and (ii)
extend the command scheduler to correctly maintain the bank
state.
New Case Studies. Implementing new techniques (e.g., those
that are listed in Table 2) to perform new case studies requires
modifications to PIDRAM’s hardware and software compo-
nents. We describe the required modifications over an example
ComputeDRAM-based in-DRAM bitwise operations case study.
To implement ComputeDRAM-based in-DRAM bitwise op-
erations, the developers need to (i) extend the custom command
scheduler in PIDRAM’s memory controller with a new state
machine that schedules new DRAM command sequences (ACT-
PRE-ACT) with an appropriate set of violated timing parame-
ters (our ComputeDRAM-based in-DRAM copy implementa-
tion provides a solid basis for this), (ii) expose the functionality
to the processor by implementing new PIDRAM instructions in
the PuM controller (e.g., by replicating and customizing the ex-
isting logic for decoding and executing RowClone operations),
(iii) and make modifications to the software library to expose
the new instruction to the programmer (e.g., by replicating the
copy_row function’s behavior, described in Table 1).
Porting to New FPGA Boards. Developing new PIDRAM
prototypes on different FPGA boards could require modifi-
cations to design constraints (e.g., top level input/outputs to
physical FPGA pins) and the DDRx PHY IP depending on the
FPGA board. Modifying design constraints is a straightforward
task involving looking up the FPGA manufacturer datasheets
and modifying design constraint files [165]. Manufacturers
may provide different DDRx PHY IPs for different FPGAs. For-
tunately, these IPs typically expose similar (based on the DFI
standard [33]) interfaces to user hardware (in our case, to
PiDRAM’s memory controller). Thus, other PIDRAM proto-
types on different FPGA boards can be developed with small
yet careful modifications to the ZC706 prototype design we
provide.

8. Related Work

To our knowledge, this is the first work to develop a flexible,
open-source framework that enables integration and evalu-
ation of commodity DRAM based processing-using-memory
(PuM) techniques on real DRAM chips by providing the neces-
sary hardware and software components. We demonstrate the
first end-to-end implementation of RowClone and D-RaNGe
using real DRAM chips. We compare the features of PIDRAM

15

with other state-of-the-art prototyping and evaluation plat-

forms in Table 4 and discuss them below. The four features we

use for comparison are:

1. Interface with real DRAM chips: The platform allows
running experiments using real DRAM chips.

2. Flexible memory controller (MC) for PuM: The plat-
form provides a flexible memory controller that can easily
be extended to perform (e.g., as in PIDRAM) or emulate (e.g.,
as in PiMulator [119]) new PuM operations.

3. System software support: The platform provides support
for running system software such as operating systems or
supervisor software (e.g., RISC-V PK [136]).

4. Open-source: The platform is available as open source
software.

Silent-PIM [78]. Silent-PIM proposes a new DRAM design
that incorporates processing units capable of vector arithmetic
computation. Silent-PIM’s goal is to evaluate PIM techniques
on a new, PIM-capable DRAM device using standard DRAM
commands (e.g., as defined in DDR4 [71]); it does not provide
an evaluation platform or prototype. In contrast, PIDRAM is
designed for researchers to rapidly integrate and evaluate PuM
techniques that use real DRAM devices. PIDRAM provides key
hardware and software components that facilitate end-to-end
implementations of PuM techniques.

SoftMC [52,60] SoftMC is an FPGA-based DRAM testing
infrastructure. SoftMC can issue arbitrary sequences of DDR3
commands to real DRAM modules. SoftMC is widely used in
prior work that studies the performance, reliability and security
of real DRAM chips [13,14,28,38,41,50,59,77,83,85,96,127,155].
SoftMC is built to test DRAM modules, not to study end-to-end
implementations of PuM techniques. Thus, SoftMC (i) does
not support application execution on a real system, and (ii)
cannot use DRAM modules as main memory. While SoftMC
is useful in studies that perform exhaustive search on all pos-
sible sequences of DRAM commands to potentially uncover
undocumented DRAM behavior (e.g., ComputeDRAM [44],
QUAC-TRNG [123]), PIDRAM is developed to study end-to-
end implementations of PuM techniques. PIDRAM provides
an FPGA-based prototype that comprises a RISC-V system and
supports using DRAM modules both for storing data (i.e., as
main memory) and performing PuM computation.

ComputeDRAM [44]. ComputeDRAM partially demon-
strates that two DRAM-based state-of-the-art PuM techniques,
RowClone [148] and Ambit [145], are already possible on real
off-the-shelf DDR3 chips. ComputeDRAM uses SoftMC to
demonstrate in-DRAM copy and bitwise AND/OR operations
on real DDR3 chips. ComputeDRAM’s goal is not to develop a
framework to facilitate end-to-end implementations of PuM
techniques. Therefore, it does not provide (i) a flexible mem-
ory controller for PuM or, (ii) support for system software.
PiDRAM provides the necessary software and hardware com-
ponents to facilitate end-to-end implementations of PuM tech-
niques.

MEG [174]. MEG is an open-source system emulation
platform for enabling FPGA-based operation interfacing with
High-Bandwidth Memory (HBM). MEG aims to efficiently re-

Table 4: Comparison of PIDRAM with related state-of-the-art prototyping and evaluation platforms

[Platforms | Interface with real DRAM chips [Flexible MC for PuM | System software support | Open-source |
Silent-PIM [78] X X v X
SoftMC [60] 7 (DDR3) X X v
ComputeDRAM [44] v (DDR3) X X X
MEG [174] 7 (HBM) X v v
PiMulator [119] X v X v
Commercial platforms (e.g., ZYNQ [166]) v (DDR3/4) X v X
Simulators [18, 35,90, 132, 140,169, 170, 175] X v v (potentially) v

[PIDRAM (this work) | v (DDR3) \ v \ v \ v \

trieve data from HBM and perform the computation in the
host processor implemented as a soft core on the FPGA. Un-
like PIDRAM, MEG does not implement a flexible memory
controller that is capable of performing PuM operations. We
demonstrate the flexibility of PIDRAM by implementing two
state-of-the-art PuM techniques [83, 148]. We believe MEG
and PIDRAM can be combined to get the functionality and
prototyping power of both works.

PiMulator [119]. PiMulator is an open-source PiM emu-
lation platform. PiMulator implements a main memory and a
PiM model using SystemVerilog, allowing FPGA emulation of
PiM architectures. PiMulator enables easy emulation of new
PiM techniques. However, it does not allow end-to-end exe-
cution of workloads that use PiM techniques and it does not
provide the user with full control over the DRAM interface.

Commercial Platforms (e.g., ZYNQ [166]). Some com-
mercial platforms implement CPU-FPGA heterogeneous com-
puting systems. A memory controller and necessary hardware-
software modules are provided to access DRAM as the main
memory in such systems. However, in such systems, (i) there is
no support for PuM mechanisms, and (ii) the entire hardware-
software stack is closed-source. PIDRAM can be integrated
into these systems, using the closed-source computing sys-
tem as the main processor. Our prototype utilizes an open-
source system-on-chip (Rocket Chip [11]) as the main pro-
cessor, which enables developers to study architectural and
microarchitectural aspects of PuM techniques (e.g., data allo-
cation and coherence mechanisms). Such studies cannot be
conducted using closed-source computing systems.

Simulators. Many prior works propose full-system
(e.g., [18,132]), trace-based (e.g., [64, 90,140,169,170,175]), and
instrumentation-based (e.g., [35, 64, 169]) simulators that can
be used to evaluate PuM techniques. Although useful, these
simulators do not model DRAM behavior and cannot integrate
proprietary device characteristics (e.g., DRAM internal address
mapping) into their simulations, without conducting a rigorous
characterization study. Moreover, the effects of environmental
conditions (e.g., temperature, voltage) on DRAM chips are un-
likely to be modeled on accurate, full-system simulators as it
would require excessive computation, which would negatively
impact the already poor performance (200K instructions per
second) of full system simulators [141]. In contrast, PIDRAM
interfaces with real DRAM devices and its prototype achieves
a 50 MHz clock speed (and can be improved further) which lets
PiDRAM execute > 10M instructions per second (assuming < 5
cycles per instruction). PIDRAM can be used to study end-to-

16

end implementations of PuM techniques and explore solutions
that take into account the effects related to the environmental
conditions of real DRAM devices. Future versions of PIDRAM
could be easily extended (e.g., with real hardware that allows
controlling DRAM temperature and voltage [115,157]) to ex-
periment with different DRAM temperature and voltage levels
to better understand the effects of these environmental con-
ditions on the reliability of PuM operations. Using PIDRAM,
experiments that require executing real workloads can take an
order of magnitude shorter wall clock time compared to using
full-system simulators.

Other Related Work. Prior works (see Section 2.2) (i)
propose or (ii) demonstrate using real DRAM chips, several
DRAM-based PuM techniques that can perform computa-
tion [9, 28,40, 54, 144, 145,147, 150, 151], move data [148, 160],
or implement security primitives [13, 14, 82, 83, 124, 126] in
memory. SIMDRAM [54] develops a framework that provides
a programming interface to perform in-DRAM computation
using the majority operation. DR-STRANGE [23] proposes an
end-to-end system design for DRAM-based true random num-
ber generators. None of these works provide an end-to-end
in-DRAM computation framework that is integrated into a real
system using real DRAM chips.

We conclude that existing platforms cannot substitute
PiDRAM in studying commodity DRAM based PuM techniques
end-to-end.

9. Conclusion

We develop PIDRAM, a flexible and open-source prototyping
framework for integrating and evaluating end-to-end com-
modity DRAM based processing-using-memory (PuM) tech-
niques. PIDRAM comprises the necessary hardware and soft-
ware structures to facilitate end-to-end implementation of PuM
techniques. We build an FPGA-based prototype of PIDRAM
along with an open-source RISC-V system and enable computa-
tion on real DRAM chips. Using PIDRAM, we implement and
evaluate RowClone (in-DRAM data copy and initialization)
and D-RaNGe (in-DRAM true random number generation)
end-to-end in the entire real system. Our results show that
RowClone significantly improves data copy and initialization
throughput in a real system on real workloads, and efficient
cache coherence mechanisms are needed to maximize Row-
Clone’s potential benefits. Our implementation of D-RaNGe
requires small additions to PIDRAM’s codebase and provides
true random numbers at high throughput and with low latency.
We conclude that unlike existing prototyping and evaluation

platforms, PIDRAM enables (i) easy integration of existing and
new PuM techniques end-to-end in a real system and (ii) novel
studies on end-to-end implementations of PuM techniques
using real DRAM chips. PIDRAM is freely available as an open-
source tool for researchers and designers in both academia and
industry to experiment with and build on.

References

[1] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das, “Com-
pute Caches,” in HPCA, 2017.

[2] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-in-Memory
Accelerator for Parallel Graph Processing,” in ISCA, 2015.

[3] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture,” in ISCA, 2015.

[4] B. Akin, F. Franchetti, and J. C. Hoe, “Data Reorganization in Memory Using 3D-
Stacked DRAM,” in ISCA, 2015.

[5] M. F. Ali, A. Jaiswal, and K. Roy, “In-Memory Low-Cost Bit-Serial Addition Using
Commodity DRAM Technology,” in TCAS-I, 2019.

[6] S. Angizi, Z. He, and D. Fan, “PIMA-Logic: A Novel Processing-in-Memory Ar-
chitecture for Highly Flexible and Energy-efficient Logic Computation,” in DAC,

2018.

[7] S. Angizi, A. S. Rakin, and D. Fan, “CMP-PIM: An Energy-efficient Comparator-based
Processing-in-Memory Neural Network Accelerator,” in DAC, 2018.

[8] S. Angizi, J. Sun, W. Zhang, and D. Fan, “AlignS: A Processing-in-Memory Accelera-
tor for DNA Short Read Alignment Leveraging SOT-MRAM,” in DAC, 2019.

[9] S. Angizi and D. Fan, “Graphide: A Graph Processing Accelerator Leveraging In-
DRAM-Computing,” in GLSVLSI, 2019.

[10] ARM, “Cache Maintenance Operations,’ 2021. [Online]. Avail-
able: https://developer.arm.com/documentation/ddi0246/h/programmers-model/
register-descriptions/cache-maintenance-operations

[11] K. Asanovié, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook,
P. Dabbelt, J. R. Hauser, A. M. Izraelevitz, S. Karandikar, B. Keller, D. Kim, J. Koenig,
Y. Lee, E. Love, M. Maas, A. Magyar, H. Mao, M. Moret6, A. Ou, D. A. Patterson,
B. H. Richards, C. Schmidt, S. M. Twigg, H. Vo, and A. Waterman, “The rocket chip
generator,” ser. Technical Report No. UCB/EECS-2016-17, 2016.

[12] H. Asghari-Moghaddam, Y. H. Son, J. H. Ahn, and N. S. Kim, “Chameleon: Versatile
and Practical Near-DRAM Acceleration Architecture for Large Memory Systems,”
in MICRO, 2016.

[13] B. M. S. Bahar Talukder, J. Kerns, B. Ray, T. Morris, and M. T. Rahman, “Exploiting
DRAM Latency Variations for Generating True Random Numbers,” in ICCE, 2019.

[14] B. M. S. Bahar Talukder, B. Ray, D. Forte, and M. T. Rahman, “PreLatPUF: Exploiting
D(}?AM Latency Variations for Generating Robust Device Signatures,” in IEEE Access,

[15] A. Barenghi, L. Breveglieri, N. Izzo, and G. Pelosi, “Software- only Reverse Engineer-
ing of Physical DRAM Mappings for Rowhammer Attacks,” in IVSW, 2018.

[16] M. Besta, R. Kanakagiri, G. Kwasniewski, R. Ausavarungnirun, J. Beranek, K. Kanel-
lopoulos, K. Janda, Z. Vonarburg-Shmaria, L. Gianinazzi, I. Stefan, J. G. Luna, J. Goli-
nowski, M. Copik, L. Kapp-Schwoerer, S. Di Girolamo, N. Blach, M. Konieczny,
O. Mutlu, and T. Hoefler, “SISA: Set-Centric Instruction Set Architecture for Graph
Mining on Processing-in-Memory Systems,” in MICRO, 2021.

[17] D. Bhattacharjee, R. Devadoss, and A. Chattopadhyay, “ReVAMP: ReRAM based
VLIW Architecture for In-Memory Computing,” in DATE, 2017.

[18] N. Binkert, B. Beckman, A. Saidi, G. Black, and A. Basu, “The gem5 Simulator,” CAN,

2011.

[19] J. Borghetti, G. Snider, P. Kuekes, J. J. Yang, D. Stewart, and S. Williams, “Memristive
Switches Enable Stateful Logic Operations via Material Implication,” in Nature, 2010.

[20] A.Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu, R. Thakur, D. Kim,
A. Kuusela, A. Knies, P. Ranganathan, and O. Mutlu, “Google Workloads for Con-
sumer Devices: Mitigating Data Movement Bottlenecks,” in ASPLOS, 2018.

[21] A.Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, R. Ausavarungnirun, K. Hsieh,
N. Hajinazar, K. T. Malladi, H. Zheng, and O. Mutlu, “CoNDA: Efficient Cache
Coherence Support for near-Data Accelerators,” in ISCA, 2019.

[22] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, K. Hsieh, K. T. Malladi,
H. Zheng, and O. Mutlu, “LazyPIM: An Efficient Cache Coherence Mechanism for
Processing-in-Memory,” in CAL, 2016.

[23] F. Bostanci, A. Olgun, L. Orosa, A. Yaglikci, J. S. Kim, H. Hassan, O. Ergin, and
O. Mutlu, “DR-STRaNGe: End-to- End System Design for DRAM-based True Random

Number Generators,” in HPCA, 2
[24] G. W. Burr, R. M. Shelby, A. Sebastlan S. Kim, S. Kim, S. Sidler, K. Virwani, M. Ishii,

P. Narayanan, A. Fumarola, L. L. Sanches, I. Boybat, M. L. Gallo, K. Moon, J. Woo,
H. Hwang, and Y. Leblebici, “Neuromorphic Computing Using Non-volatile Memory,
in Advances in Physics: X, 2017.

[25] D.S. Cali, G. S. Kalsi, Z. Bingdl, C. Firtina, L. Subramanian, J. S. Kim, R. Ausavarung-
nirun, M. Alser, J. Gomez-Luna, A. Boroumand, A. Nori, A. Scibisz, S. Subramoney,
C. Alkan, S. Ghose, and O. Mutlu, “GenASM: A High-Performance, Low-Power Ap-
proximate String Matching Acceleration Framework for Genome Sequence Analysis,”
in MICRO, 2020.

[26] K. Chang, “Understanding and Improving the Latency of DRAM-Based Memory
Systems,” Ph.D. dissertation, Carnegie Mellon University, 2017.

[27] K. K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee, T. Li, G. Pekhimenko,
S. Khan, and O. Mutlu, “Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization,” in SIGMETRICS, 2016.

[28] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu, “Low-Cost
Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in
DRAM;” in HPCA, 2016.

17

[29] K. K. Chang, A. G. Yaglikci, S. Ghose, A. Agrawal, N. Chatterjee, A. Kashyap,
D. Lee, M. O’Connor, H. Hassan, and O. Mutlu, “Understanding Reduced-Voltage
Operation in Modern DRAM Devices: Experimental Characterization, Analysis, and
Mechanisms,” in SIGMETRICS, 2017.

[30] L. Cojocar, J. Kim, M. Patel, L. Tsai, S. Saroiu, A. Wolman, and O. Mutlu, “Are We
Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers,” in
S&P, 2020.

[31] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie, and H. Yang,
“GraphH: A Processing-in-Memory Architecture for Large-scale Graph Processing,”
in TCAD, 2018.

[32] Q. Deng, L. Jiang, Y. Zhang, M. Zhang, and J. Yang, “DrAcc: a DRAM Based Acceler-
ator for Accurate CNN Inference,” in DAC, 2018.

[33] DFI Group, DFI 5.0 Specification, July 2018.

[34] M. P. Drumond Lages De Oliveira, A. Daglis, N. Mirzadeh, D. Ustiugov, J. Pi-
corel Obando, B. Falsafi, B. Grot, and D. Pnevmatikatos, “The Mondrian Data Engine,”
in ISCA, 2017.

[35] B. E. Forlin, P. C. Santos, A. E. Becker, M. A. Alves, and L. Carro, “Sim2PIM: A
Complete Simulation Framework for Processing-in-Memory,” in JSA, 2022.

[36] C.Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D. Blaaauw, and
R. Das, “Neural Cache: Bit-Serial In-Cache Acceleration of Deep Neural Networks,”
in ISCA, 2018.

[37] A.Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “NDA: Near-DRAM
Acceleration Architecture Leveraging Commodity DRAM Devices and Standard
Memory Modules,” in HPCA, 2015.

[38] M. Farmani, M. Tehranipoor, and F. Rahman, “RHAT: Efficient RowHammer-Aware
Test for Modern DRAM Modules,” in ETS, 2021.

[39] L. Fernandez, R. Quislant, C. Giannoula, M. Alser, J. Gomez-Luna, E. Gutierrez,
O. Plata, and O. Mutlu, “NATSA: A Near-Data Processing Accelerator for Time
Series Analysis,” in ICCD, 2020.

[40] J. D. Ferreira, G. Falcao, J. Gémez-Luna, M. Alser, L. Orosa, M. Sadrosadati, J. S. Kim,
G. F. Oliveira, T. Shahroodi, A. Nori et al., “pLUTo: In-DRAM Lookup Tables to
Enable Massively Parallel General-Purpose Computation,” arXiv:2104.07699, 2021.

[41] P. Frigo, E. Vannacci, H. Hassan, V. van der Veen, O. Mutlu, C. Giuffrida, H. Bos, and
K. 2%32“1 “TRRespass: Exploiting the Many Sides of Target Row Refresh,” in S&P,

[42] D Fu_]lkl S Mahlke, and R. Das, “Duality Cache for Data Parallel Acceleration,” in
ISCA, 2

[43] P.-E. Galllardon L. Amaru, A. Siemon, E. Linn, R. Waser, A. Chattopadhyay, and
G De Micheli, “The Programmable Logic-in-Memory (PLiM) Computer,” in DATE,

[44] F Gao G. Tziantzioulis, and D. Wentzlaff, “ComputeDRAM: In-Memory Compute
Using Off-the-Shelf DRAMs,” in MICRO, 2019.

[45] M. Gao, G. Ayers, and C. Kozyrakis, “Practical Near-Data Processing for In-Memory
Analytics Frameworks,” in PACT, 2015.

[46] M. Gao and C. Kozyrakis, “HRL: Efficient and Flexible Reconfigurable Logic for
Near-Data Processing,” in HPCA, 2016.

[47] M. Gao,]. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris: Scalable and Efficient
Neural Network Acceleration with 3D Memory,” in ASPLOS, 2017.

[48] S. Ghose, A. Boroumand, J. S. Kim, J. Gémez-Luna, and O. Mutlu, “Processing-in-
Memory: A Workload-driven Perspective,” in IBM JRD, 2019.

[49] S. Ghose, T. Li, N. Hajinazar, D. S. Cali, and O. Mutlu, “Demystifying Complex
Workload-DRAM Interactions: An Experimental Study,” in SIGMETRICS, 2019.

[50] S. Ghose, A. G. Yaglikei, R. Gupta, D. Lee, K. Kudrolli, W. X. Liu, H. Hassan, K. K.
Chang, N. Chatterjee, A. Agrawal, M. O’Connor, and O. Mutlu, “What Your DRAM
Power Models Are Not Telling You: Lessons from a Detailed Experimental Study,”

in SIGMETRICS, 2018.
[51] C. Giannoula, N. Vijaykumar, N. Papadopoulou, V. Karakostas, I. Fernandez,

J. Gémez-Luna, L. Orosa, N. Koziris, G. Goumas, and O. Mutlu, “SynCron: Effi-
cient Synchronization Support for Near-Data-Processing Architectures,” in HPCA,
2021

[52] S. R. Group, “SoftMC v1.0 - GitHub Repository,” 2021. [Online]. Available:
https://github.com/CMU-SAFARI/SoftMC

[53] B. Gu, A. S. Yoon, D.-H. Bae, L Jo, J. Lee, J. Yoon, J.-U. Kang, M. Kwon, C. Yoon,
S. Cho, J. Jeong, and D. Chang, “Biscuit: A Framework for Near-Data Processing of
Big Data Workloads,” in ISCA, 2016.

[54] N.Hajinazar, G.F. Oliveira, S. Gregorio, J. D. Ferreira, N. M. Ghiasi, M. Patel, M. Alser,
S. Ghose, J. Gbmez-Luna, and O. Mutlu, “SIMDRAM: A Framework for Bit-Serial
SIMD Processing Using DRAM,” in ASPLOS, 2021.

[55] S. Hamdioui, S. Kvatinsky, and e. a. G. Cauwenberghs, “Memristor for Computing:
Myth or Reality?” in DATE, 2017.

[56] S. Hamdioui, L. Xie, H. A. Du Nguyen, M. Taouil, K. Bertels, H. Corporaal, H. Jiao,
F. Catthoor, D. Wouters, L. Eike, and J. van Lunteren, “Memristor Based Computation-
in-Memory Architecture for Data-intensive Applications,” in DATE, 2015.

[57] M. Hashemi, O. Mutlu, and Y. N. Patt, “Continuous Runahead: Transparent Hardware
Acceleration for Memory Intensive Workloads,” in MICRO, 2016.

[58] M. Hashemi, Khubaib, E. Ebrahimi, O. Mutlu, and Y. N. Patt, “Accelerating Dependent
Cache Misses with an Enhanced Memory Controller,” in ISCA, 2016.

[59] H. Hassan, Y. C. Tugrul, J. S. Kim, V. van der Veen, K. Razavi, and O. Mutlu, “Un-
covering In-DRAM RowHammer Protection Mechanisms: A New Methodology,
Custom RowHammer Patterns, and Implications,” arXiv:2110.10603, 2021.

[60] H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. Chang, G. Pekhimenko, D. Lee,
O. Ergin, and O. Mutlu, “SoftMC: A Flexible and Practical Open-Source Infrastructure
for Enabling Experimental DRAM Studies,” in HPCA, 2017.

[61] C.Helm, S. Akiyama, and K. Taura, “Reliable Reverse Engineering of Intel DRAM
Addressing Using Performance Counters,” in MASCOTS, 2020.

[62] M. Hillenbrand, “Physical Address Decoding in Intel Xeon v3/v4 CPUs: A Supple-
mental Datasheet,” 2017.

[63] M. Horiguchi, “Redundancy Techniques for High-Density DRAMs,” in ISIS, 1997.

[64] HPS Research Group, “Scarab — Github Repository,” 2022. [Online]. Available:
https://github.com/hpsresearchgroup/scarab

https://developer.arm.com/documentation/ddi0246/h/programmers-model/register-descriptions/cache-maintenance-operations
https://developer.arm.com/documentation/ddi0246/h/programmers-model/register-descriptions/cache-maintenance-operations
https://github.com/CMU-SAFARI/SoftMC
https://github.com/hpsresearchgroup/scarab

[65] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand, S. Ghose, and
O. Mutlu, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mech-

anisms, Evaluation,” in ICCD, 2016.
[66] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Conner, N. Vijaykumar, O. Mutlu,

and S. Keckler, “Transparent Offloading and Mapping (TOM): Enabling Programmer-
Transparent Near-Data Processing in GPU Systems,” in ISCA, 2016.

[67] Y. Huang, L. Zheng, P. Yao, J. Zhao, X. Liao, H. Jin, and J. Xue, “A Heterogeneous PIM
Hardware-Software Co-Design for Energy-Efficient Graph Processing,” in IPDPS,

2020.

[68] Intel, “Intel 64 and IA-32 Architectures Software Developer Manuals,’
2011. [Online]. Available: http://www.intel.com/content/www/us/en/processors/
architectures- software-developer-manuals.html

69] Intel, “Taking Neuromorphic Computing to the Next Level with Loihi 2,” Technology

Brief, 2022.
70] K. Itoh, VLSI Memory Chip Design. Springer, 2001.

[

[

[71] JEDEC, “DDR4;” JEDEC Standard JESD79-4, 2012.

[72] H. B. Kang and S. K. Hong, “One-Transistor Type DRAM,” US Patent 7701751, 2009.

[73] M. Kang, M.-S. Keel, N. R. Shanbhag, S. Eilert, and K. Curewitz, “An Energy-Efficient
VLSI Architecture for Pattern Recognition via Deep Embedding of Computation in

SRAM,” in ICASSP, 2014.
[74] L. Ke, X. Zhang, J. So, J.-G. Lee, S.-H. Kang, S. Lee, S. Han, Y. Cho, J. H. Kim,

Y. Kwon et al., “Near-Memory Processing in Action: Accelerating Personalized

Recommendation with AxXDIMM,” in [EEE Micro, 2021.
[75] B. Keeth and R. Baker, DRAM Circuit Design: A Tutorial. Wiley, 2001.

[76] S.Khan, D. Lee, and O. Mutlu, “PARBOR: An Efficient System-Level Technique to
Detect Data Dependent Failures in DRAM,” in DSN, 2016.

[77] S. Khan, C. Wilkerson, Z. Wang, A. Alameldeen, D. Lee, and O. Mutlu, “Detecting
and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory
Content,” in MICRO, 2017.

[78] C. H. Kim, W. J. Lee, Y. Paik, K. Kwon, S. Y. Kim, L. Park, and S. W. Kim, “Silent-PIM:
Realizing the Processing-in-Memory Computing with Standard Memory Requests,”
TPDS, 2021.

[79] D. Kim,]J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay, “Neurocube: A
Programmable Digital Neuromorphic Architecture with High-Density 3D Memory,”
in ISCA, 2016.

[80] G. Kim, N. Chatterjee, M. O’Connor, and K. Hsieh, “Toward Standardized Near-Data
Processing with Unrestricted Data Placement for GPUs,” in SC, 2017.

[81] J. Kim, M. Patel, H. Hassan, and O. Mutlu, “Solar-DRAM: Reducing DRAM Access
Latency by Exploiting the Variation in Local Bitlines,” in ICCD, 2018.

[82] J. Kim, M. Patel, H. Hassan, and O. Mutlu, “The DRAM Latency PUF: Quickly
Evaluating Physical Unclonable Functions by Exploiting the Latency—-Reliability
Tradeoff in Modern DRAM Devices,” in HPCA, 2018.

[83] J. Kim, M. Patel, H. Hassan, L. Orosa, and O. Mutlu, “D-RaNGe: Using Commodity
DRAM Devices to Generate True Random Numbers with Low Latency and High
Throughput,” in HPCA, 2019.

[84] J. S. Kim, D. Senol, H. Xin, D. Lee, S. Ghose, M. Alser, H. Hassan, O. Ergin, C. Alkan,
and O. Mutlu, “GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping
Using Processing-in-Memory Technologies,” in BMC Genomics, 2018.

[85] J. S. Kim, M. Patel, A. G. Yaglik¢i, H. Hassan, R. Azizi, L. Orosa, and O. Mutlu,
“Revisiting RowHammer: An Experimental Analysis of Modern DRAM Devices and
Mitigation Techniques,” in ISCA, 2020.

[86] J. H. Kim, S.-h. Kang, S. Lee, H. Kim, W. Song, Y. Ro, S. Lee, D. Wang, H. Shin,
B. Phuah et al,, “Aquabolt-XL: Samsung HBM2-PIM with in-memory processing for
ML accelerators and beyond,” in Hot Chips, 2021.

[87] Y. Kim, “Architectural Techniques to Enhance DRAM Scaling,” Ph.D. dissertation,
Carnegie Mellon University, 2015.

[88] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu,
“Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors,” in ISCA, 2014.

[89] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A Case for Exploiting Subarray-
Level Parallelism (SALP) in DRAM,” in ISCA, 2012.

[90] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible DRAM Simulator,”

in CAL, 2015.
[91] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny,

and U. C. Weiser, “MAGIC—Memristor-Aided Logic,” in IEEE TCAS II: Express Briefs,

2014.

[92] S.Kvatinsky, A. Kolodny, U. C. Weiser, and E. G. Friedman, “Memristor-Based IMPLY
Logic Design Procedure,” in ICCD, 2011.

[93] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C. Weiser,
“Memristor-Based Material Implication (IMPLY) Logic: Design Principles and
Methodologies,” in TVLSI, 2014.

[94] Y.-C. Kwon, S. H. Lee, J. Lee, S.-H. Kwon, J. M. Ryu, J.-P. Son, O. Seongil, H.-S. Yu,
H. Lee, S. Y. Kim, Y. Cho, J. G. Kim, J. Choi, H.-S. Shin, J. Kim, B. Phuah, H. Kim,
M. J. Song, A. Choi, D. Kim, S. Kim, E.-B. Kim, D. Wang, S. Kang, Y. Ro, S. Seo,
J. Song, J. Youn, K. Sohn, and N. S. Kim, “25.4 A 20nm 6GB Function-In-Memory
DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using
Bank-Level Parallelism, for Machine Learning Applications,” in ISSCC, 2021.

[95] D. Lee, “Reducing DRAM Latency at Low Cost by Exploiting Heterogeneity,” Ph.D.
dissertation, Carnegie Mellon University, 2016.

[96] D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun, G. Pekhimenko,
V. Seshadri, and O. Mutlu, “Design-Induced Latency Variation in Modern DRAM
Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” in SIGMET-

RICS, 2017.
[97] D. Lee, J. So, M. AHN, J.-G. Lee, J. Kim, J. Cho, R. Oliver, V. C. Thummala, R. s. JV,

S.S. Upadhya et al,, “Improving In-Memory Database Operations with Acceleration
DIMM (AxDIMM),” in DaMoN, 2022.

[98] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and O. Mutlu,
“Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” in
HPCA, 2015.

[99] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu, “Tiered-Latency
DRAM: A Low Latency and Low Cost DRAM Architecture,” in HPCA, 2013.

18

[100] D. Lee, L. Subramanian, R. Ausavarungnirun, J. Choi, and O. Mutlu, “Decoupled
Direct Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port
DRAM,” in PACT, 2015.

[101] S. Lee, K. Kim, S. Oh, J. Park, G. Hong, D. Ka, K. Hwang, J. Park, K. Kang, J. Kim,
J. Jeon, N. Kim, Y. Kwon, K. Vladimir, W. Shin, J. Won, M. Lee, H. Joo, H. Choi,
J. Lee, D. Ko, Y. Jun, K. Cho, I. Kim, C. Song, C. Jeong, D. Kwon, J. Jang, I. Park,
J. Chun, and J. Cho, “A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-
Memory supporting 1TFLOPS MAC Operation and Various Activation Functions
for Deep-Learning Applications,” in ISSCC, 2022.

[102] Y.Levy, J. Bruck, Y. Cassuto, E. G. Friedman, A. Kolodny, E. Yaakobi, and S. Kvatinsky,
“Logic Operations in Memory Using a Memristive Akers Array,” in Microelectronics
Journal, 2014.

[103] S.Li, D.Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “DRISA: A DRAM-Based
Reconfigurable In-Situ Accelerator,” in MICRO, 2017.

[104] S.Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A Processing-in-Memory
Architecture for Bulk Bitwise Operations in Emerging Non-Volatile Memories,” in
DAC, 2016.

[105] Linux man-pages Project, “calloc(3p) — Linux manual page,” https://man7.org/linux/
man-pages/man3/calloc.3p.html, 2022.

[106] Linux man-pages Project, “malloc(3) — Linux manual page,” https://man7.org/linux/
man-pages/man3/malloc.3.html, 2022.

[107] Linux man-pages Project, “memcpy(3) — Linux manual page,” https://man7.org/
linux/man-pages/man3/memcpy.3.html, 2022.

[108] Linux man-pages Project, “posix_memalign(3) — Linux manual page,” https://man7.
org/linux/man-pages/man3/posix_memalign.3.html, 2022.

[109] Linux Wiki, “perf: Linux profiling with performance counters,” https://perf.wiki.
kernel.org/index.php/Main_Page, 2021.

[110] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An Experimental Study of
Data Retention Behavior in Modern DRAM Devices: Implications for Retention
Time Profiling Mechanisms,” in ISCA, 2013.

[111] Z. Liu, L Calciu, M. Herlihy, and O. Mutlu, “Concurrent Data Structures for Near-
Memory Computing,” in SPAA, 2017.

[112] S.-L. Lu, Y.-C. Lin, and C.-L. Yang, “Improving DRAM Latency with Dynamic Asym-
metric Subarray,” in MICRO, 2015.

[113] H. Luo, T. Shahroodi, H. Hassan, M. Patel, A. G. Yaglikci, L. Orosa, J. Park,
and O. Mutlu, “CLR-DRAM: A Low-Cost DRAM Architecture Enabling Dynamic
Capacity-Latency Trade-Off,” in ISCA, 2020.

[114] J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. DeBrosse, R. Divakaruni, Y. Li,
and C. J. Radens, “Challenges and Future Directions for the Scaling of Dynamic
Random-Access Memory (DRAM),” in IBM JRD, 2002.

[115] %%)éwell’ “FT20X,” https://www.maxwell-fa.com/upload/files/base/8/m/311.pdf,

[116] Micron, “DDR4 SDRAM Datasheet, 2016.
[117] Micron, “DDR3 SDRAM: MT41J128M8,” Data Sheet, 2018.
[118] A. Morad, L. Yavits, and R. Ginosar, “GP-SIMD Processing-in-Memory,” in ACM

TACO, 2015.
[119] S. Mosanu, M. N. Sakib, T. I, E. Cukurtas, A. Ahmed, P. Ivanov, S. Khan, K. Skadron,

and M. Stan, “PiMulator: a Fast and Flexible Processing-in-Memory Emulation
Platform,” in DATE, 2022.

[120] O. Mutlu, S. Ghose, J. Gémez-Luna, and R. Ausavarungnirun, “A Modern Primer on
Processing in Memory,” in Emerging Computing: From Devices to Systems - Looking
Beyond Moore and Von Neumann, 2021.

[121] L. Nai, R. Hadidji, J. Sim, H. Kim, P. Kumar, and H. Kim, “GraphPIM: Enabling
Instruction-Level PIM Offloading in Graph Computing Frameworks,” in HPCA, 2017.

[122] D. Niu, S. Li, Y. Wang, W. Han, Z. Zhang, Y. Guan, T. Guan, F. Sun, F. Xue, L. Duan
et al., “184QPS/W 64Mb/mm 2 3D Logic-to-DRAM Hybrid Bonding with Process-
Near-Memory Engine for Recommendation System,” in ISSCC, 2022.

[123] A. Olgun, M. Patel, A. G. Yaglikci, H. Luo, J. S. Kim, N. Bostanci, N. Vijayku-
mar, O. Ergin, and O. Mutlu, “QUAC-TRNG: High-Throughput True Random Num-
ber Generation Using Quadruple Row Activation in Commodity DRAM Chips,”

arXiv:2105.08955, 2021.
[124] A. Olgun, M. Patel, A. G. Yaglikci, H. Luo, J. S. Kim, F. Nisa Bostanci, N. Vijaykumar,

O. Ergin, and O. Mutlu, “QUAC-TRNG: High-Throughput True Random Number
Generation Using Quadruple Row Activation in Commodity DRAM Chips,” in ISCA,

2021.

[125] G. F. Oliveira, J. Gomez-Luna, L. Orosa, S. Ghose, N. Vijaykumar, I. Fernandez,
M. Sadrosadati, and O. Mutlu, “DAMOV: A New Methodology and Benchmark Suite
for Evaluating Data Movement Bottlenecks,” in IEEE Access, 2021.

[126] L. Orosa, Y. Wang, M. Sadrosadati, J. S. Kim, M. Patel, I. Puddu, H. Luo, K. Razavi,
J. Gémez-Luna, H. Hassan, N. Mansouri-Ghiasi, S. Ghose, and O. Mutlu, “CODIC: A
Low-Cost Substrate for Enabling Custom In-DRAM Functionalities and Optimiza-

tions,” in ISCA, 2021.
[127] L. Orosa, A. G. Yaglikci, H. Luo, A. Olgun, J. Park, H. Hassan, M. Patel, J. S. Kim, and

O. Mutlu, “A Deeper Look into RowHammer’s Sensitivities: Experimental Analysis
of Real DRAM Chipsand Implications on Future Attacks and Defenses,” in MICRO,

2021.

[128] M. Patel, J. S. Kim, and O. Mutlu, “The Reach Profiler (REAPER): Enabling the
Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions,” in
ISCA, 2017.

[129] M. Patel, J. S. Kim, T. Shahroodi, H. Hassan, and O. Mutlu, “Bit-Exact ECC Recovery
(BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM Data

Retention Characteristics,” in MICRO, 2020.
[130] M. Patel, T. Shahroodi, A. Manglik, A. G. Yaglikci, A. Olgun, H. Luo, and O. Mutlu,

“A Case for Transparent Reliability in DRAM Systems,” arXiv:2204.10378, 2022.
[131] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu,
and C. R. Das, “Scheduling Techniques for GPU Architectures with Processing-in-
Memory Capabilities,” in PACT, 2016.
[132] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood, “gem5-gpu: A Heteroge-
neous CPU-GPU Simulator,” in CAL, Jan 2015.

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://man7.org/linux/man-pages/man3/calloc.3p.html
https://man7.org/linux/man-pages/man3/calloc.3p.html
https://man7.org/linux/man-pages/man3/malloc.3.html
https://man7.org/linux/man-pages/man3/malloc.3.html
https://man7.org/linux/man-pages/man3/memcpy.3.html
https://man7.org/linux/man-pages/man3/memcpy.3.html
https://man7.org/linux/man-pages/man3/posix_memalign.3.html
https://man7.org/linux/man-pages/man3/posix_memalign.3.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.maxwell-fa.com/upload/files/base/8/m/311.pdf

[133] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan, A. Buyuk-
tosunoglu, A. Davis, and F. Li, “NDC: Analyzing the Impact of 3D-Stacked Mem-
ory+Logic Devices on MapReduce Workloads,” in ISPASS, 2014.

[134] S. H. S. Rezaei, M. Modarressi, R. Ausavarungnirun, M. Sadrosadati, O. Mutlu,
and M. Daneshtalab, “NoM: Network-on-Memory for Inter-Bank Data Transfer in
Highly-Banked Memories,” in CAL, 2020.

[135] RISC-V, “RISC-V GNU Compiler Toolchain,” 2021. [Online]. Available: https:
//github.com/riscv/riscv-gnu-toolchain

[136] RISC-V, “RISC-V proxy kernel,” 2022. [Online]. Available: https://github.com/riscv/
riscv-pk

[137] R. Ronen, A. Eliahu, O. Leitersdorf, N. Peled, K. Korgaonkar, A. Chattopadhyay,
B. Perach, and S. Kvatinsky, “The Bitlet Model: A Parameterized Analytical Model
to Compare PIM and CPU Systems,” in J. Emerg. Technol. Comput. Syst., 2022.

[138] SAFARI Research Group, “Ramulator: A DRAM Simulator — GitHub Repository,”
https://github.com/CMU-SAFARI/ramulator/, 2015.

[139] SAFARI Research Group, “DAMOV - GitHub Repository,” https://github.com/
CMU-SAFARI/DAMOV, 2021.

[140] SAFARI Research Group, “Ramulator-PIM: A Processing-in-Memory Simulation
Framework — GitHub Repository,” 2021. [Online]. Available: https://github.com/
CMU-SAFARI/ramulator-pim

[141] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchitectural Simula-
tion of Thousand-Core Systems,” in ISCA, 2013.

[142] S. Saroiu, A. Wolman, and L. Cojocar, “The Price of Secrecy: How Hiding Internal
DRAM Topologies Hurts Rowhammer Defenses,” in IRPS, 2022.

[143] V. Seshadri, “Simple DRAM and Virtual Memory Abstractions to Enable Highly
Efficient Memory Systems,” Ph.D. dissertation, Carnegie Mellon University, 2016.

[144] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,
O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Buddy-RAM: Improving the Performance
and Efficiency of Bulk Bitwise Operations Using DRAM,” arXiv:1611.09988, 2016.

[145] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,
O. Mutly, P. B. Gibbons, and T. C. Mowry, “Ambit: In-Memory Accelerator for Bulk
Bitwise Operations Using Commodity DRAM Technology,” in MICRO, 2017.

[146] V. Seshadri, A. Bhowmick, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry,
“The Dirty-Block Index,” in ISCA, 2014.

[147] V. Seshadri, K. Hsieh, A. Boroumand, D. Lee, M. A. Kozuch, O. Mutlu, P. B. Gibbons,
and T. C. Mowry, “Fast Bulk Bitwise AND and OR in DRAM,” in CAL, 2015.

[148] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo,
O. Mutlu, M. A. Kozuch, P. B. Gibbons, and T. C. Mowry, “RowClone: Fast and
Energy-Efficient In-DRAM Bulk Data Copy and Initialization,” in MICRO, 2013.

[149] V. Seshadri and O. Mutlu, “The Processing Using Memory Paradigm: In-DRAM Bulk
Copy, Initialization, Bitwise AND and OR,” arXiv:1610.09603, 2016.

[150] V. Seshadri and O. Mutlu, “Simple Operations in Memory to Reduce Data Movement,”
in Advances in Computers, Volume 106, 2017.

[151] V. Seshadri and O. Mutlu, “In-DRAM Bulk Bitwise Execution Engine

arXiv:1905.09822, 2020.
[152] A.Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S.

Williams, and V. Srikumar, “ISAAC: A Convolutional Neural Network Accelerator
with In-situ Analog Arithmetic in Crossbars,” in ISCA, 2016.

[153] G. Singh, J. Gomez-Luna, G. Mariani, G. F. Oliveira, S. Corda, S. Stujik, O. Mutlu,
and H. Corporaal, “NAPEL: Near-memory Computing Application Performance
Prediction via Ensemble Learning,” in DAC, 2019.

[154] Standard Performance Evaluation Corp., “SPEC CPU 2006,” 2006. [Online]. Available:
http://www.spec.org/cpu2006

19

[155] B.S.B. Talukder, V. Menon, B. Ray, T. Neal, and M. Rahman, “Towards the Avoidance
of Counterfeit Memory: Identifying the DRAM Origin,” in HOST, 2020.

[156] E. Testa, M. Soeken, O. Zografos, L. Amaru, P. Raghavan, R. Lauwereins, P.-E.
Gaillardon, and G. De Micheli, “Inversion Optimization in Majority-Inverter Graphs,”
in NANOARCH, 2016.

[157] TTi, “PL & PL-P Series DC Power Supplies Data Sheet - Issue 5,
https://resources.aimtti.com/datasheets/ AIM-PL+PL-P_series_DC_power_
supplies_data_sheet-Iss5.pdf, 2022.

[158] UPMEM, “Introduction to UPMEM PIM. Processing-in-memory (PIM) on DRAM
Accelerator,” 2018.

[159] A. van de Goor and I. Schanstra, “Address and data scrambling: Causes and impact
on memory tests,” in IEEE International Workshop on Electronic Design, Test and
Applications, 2002.

[160] Y. Wang, L. Orosa, X. Peng, Y. Guo, S. Ghose, M. Patel, J. S. Kim, J. G. Luna, M. Sadrosa-
dati, N. M. Ghiasi, and O. Mutlu, “FIGARO: Improving System Performance via
Fine-Grained In-DRAM Data Relocation and Caching,” in MICRO, 2020.

[161] A. Waterman and K. Asanovic, “The RISC-V Instruction Set Manual,” 2021. [Online].
Available: https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf

[162] S. L. Xi, O. Babarinsa, M. Athanassoulis, and S. Idreos, “Beyond the Wall: Near-Data
Processing for Databases,” in DaMoN, 2015.

[163] L. Xie, H. A. D. Nguyen, M. Taouil, S. Hamdioui, and K. Bertels, “Fast Boolean Logic
Mapped on Memristor Crossbar,” in ICCD, 2015.

[164] Xilinx, 7 Series FPGAs Memory Interface Solutions, March 2011.

[165] Xilinx, Vivado Design Suite: Using Constraints, November 2021.

[166] Xilinx, “Xilinx Ultrascale+ MPSoC,” 2021. [Online]. Available: https://www.xilinx.
com/products/silicon-devices/soc/zyng-ultrascale-mpsoc.html

[167] Xilinx, “Xilinx Zyng-7000 SoC ZC706 Evaluation Kit,” 2021. [Online]. Available:
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html

[168] X. Xin, Y. Zhang, and J. Yang, “ELP2IM: Efficient and Low Power Bitwise Operation
Processing in DRAM,” in HPCA, 2020.

[169] S.Xu, X. Chen, Y. Wang, Y. Han, X. Qian, and X. Li, “PIMSim: A Flexible and Detailed
Processing-in-Memory Simulator,” in IEEE CAL, 2019.

[170] C. Yu, S. Liu, and S. Khan, “MultiPIM: A Detailed and Configurable Multi-Stack
Processing-In-Memory Simulator,” in IEEE CAL, 2021.

[171] J. Yu, H. A D. Nguyen, L. Xie, M. Taouil, and S. Hamdioui, “Memristive Devices for
Computation-in-Memory,” in DATE, 2018.

[172] Y. Zha, E. Nowak, and J. Li, “Liquid Silicon: A Nonvolatile Fully Programmable
Processing-In-Memory Processor with Monolithically Integrated ReRAM for Big
Data/Machine Learning Applications,” in Symposium on VLSI Circuits, 2019.

[173] D.P. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and M. Ignatowski,
“TOP-PIM: Throughput-Oriented Programmable Processing in Memory,” in HPDC,

2014.

[174] J. Zhang, Y. Zha, N. Beckwith, B. Liu, and J. Li, “MEG: A RISCV-based System Emu-
lation Infrastructure for Near-data Processing Using FPGAs and High-bandwidth
Memory,” in TRETS, 2020.

[175] L. Zhang and L. Shen, “PIM-HBMSim: A Processing in Memory Simulator Based on
High Bandwidth Memory,” in CICA, 2022.

[176] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis, and X. Qian,
“GraphP: Reducing Communication for PIM-based Graph Processing with Efficient
Data Partition,” in HPCA, 2018.

[177] Q. Zhu, T. Graf, H. E. Sumbul, L. Pileggi, and F. Franchetti, “Accelerating Sparse
Matrix-Matrix Multiplication with 3D-Stacked Logic-in-Memory Hardware,” in
HPEC, 2013.

[178] Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and X. Qian, “GraphQ:
Scalable PIM-based Graph Processing,” in MICRO, 2019.

https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-pk
https://github.com/riscv/riscv-pk
https://github.com/CMU-SAFARI/ramulator/
https://github.com/CMU-SAFARI/DAMOV
https://github.com/CMU-SAFARI/DAMOV
https://github.com/CMU-SAFARI/ramulator-pim
https://github.com/CMU-SAFARI/ramulator-pim
http://www.spec.org/cpu2006
https://resources.aimtti.com/datasheets/AIM-PL+PL-P_series_DC_power_supplies_data_sheet-Iss5.pdf
https://resources.aimtti.com/datasheets/AIM-PL+PL-P_series_DC_power_supplies_data_sheet-Iss5.pdf
https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html

	Introduction
	Background
	DRAM Background
	PuM Techniques

	Motivation
	PiDRAM
	Hardware Components
	Software Components
	Execution of a PuM Operation
	Use Cases
	PiDRAM's HW & SW Components: Summary
	PiDRAM Prototype

	Case Study #1: End-to-end RowClone
	Implementation Challenges
	Memory Allocation Mechanism
	Maintaining blackMemory Coherence
	RowClone-Copy and RowClone-Initialize
	Evaluation
	Experimental Methodology
	Workloads
	Bare-Metal RowClone
	blackNo Flush RowClone
	CLFLUSH Overhead
	Real Workload Study

	Case Study #2: End-to-end D-RaNGe
	D-RaNGe Implementation
	Evaluation and Results

	Extending PiDRAM
	Related Work
	Conclusion

