Understanding a Modern
Processing-in-Memory Architecture:

Benchmarking and Experimental Characterization

Juan Gomez Luna, Izzat El Hajj,
lvan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, Onur Mutlu

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

m Ziirich SA F A R ’

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

Executive Summary

+ Data movement between .memo(?//stora ge units and compute units is a major
contributor to execution time and energy consumption

. Processing-in—l\/\emory (PIM) is a paradigm that can tackle the data movement
bottlenec
- Though explored for +50 years, technology challenges prevented the successful materialization

* UPMEM has designed and fabricated the first publicly-available real-world PIM
architecture
- DDR4 chips embedding in-order multithreaded DRAM Processing Units (DPUs)

* Our work:
- Introduction to UPMEM programming model and PIM architecture
- Microbenchmark-based characterization of the DPU
- Benchmarking and workload suitability study

* Main contributions:
- Comprehensive characterization and analysis of the first commercially-available PIM architecture

- PrIM (Processing-In-Memory) benchmarks:
* 16 workloads that are memory-bound in conventional processor-centric systems
» Strong and weak scaling characteristics

- Comparison to state-of-the-art CPU and GPU

* Takeaways:
- Workload characteristics for PIM suitability

- Programming recommendations
- Suggestions and hints for hardware and architecture designers of future PIM systems
- PrIM: (a) programming samples, (b) evaluation and comparison of current and future PIM systems

SAFARI 2

Data Movement in Computing Systems

* Data movement dominates performance and is a major system
energy bottleneck

 Total system energy: data movement accounts for
- 62%in consumer applications™®,
- 40% in scientific applications*,

- 35% in mobile applications*
Data Movement

. | €——>

l 1

<€ >
e [| (e [T W,

*Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
* Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” ISWC 2013
* Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” IISWC 2014

___/____

SAFARI

Data Movement in Computing Systems

dominates IS @ major system
energy bottleneck

* Total system energy: data movement accounts for
- 62%in consumer applications™,

Compute systems should be more data-centric

Processing-In-Memory proposes
computing where it makes sense
(where data resides)

\ Video Video Audio Dlsp.lay
\ Encoder Decoder Engine V4

*Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
* Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” ISWC 2013
*Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” lISWC 2014

SAFARI

UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

% 8GB/128xDPU PIM R-DIMM Module

C P U UPMEM UPMEM UPMEM UPMEN UPMEM LIPMEN UPMEM UPMEM
PIM PiNA PiM P PIM PIM PIM PI
(x86, ARM, RV...) chip aip chip ehip ehip e chip thip

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem 5
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

Understanding a Modern PIM Architecture

Understanding a Modern Processing-in-Memory Architecture:
Benchmarking and Experimental Characterization

1

Juan Gémez-Luna! Izzat E1 Hajj> Ivan Fernandez!3 Christina Giannoula®-*

Geraldo F. Oliveira! Onur Mutlu!
IETH Ziirich 2American University of Beirut *University of Malaga *National Technical University of Athens

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

SAFARI 6

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

Observations, Recommendations, Takeaways

GENERAL PROGRAMMING RECOMMENDATIONS

Execute on the DRAM Processing Units (DPUs)
portions of parallel code that are as long as possible.
Split the workload into independent data blocks,
which the DPUs operate on independently.

Use as many working DPUs in the system as possible.
Launch at least 11 tasklets (i.e., software threads)
per DPU.

PROGRAMMING RECOMMENDATION 1

For data movement between the DPU’s MRAM bank and the
WRAM, use large DMA transfer sizes when all the accessed

data is going to be used.

KEY OBSERVATION 7

Larger CPU-DPU and DPU-CPU
transfers between the host main
memory and the DRAM Processing

Unit’s Main memory (MRAM) banks KEY TAKEAWAY 1

result in higher sustained bandwidth.
The UPMEM PIM architecture is fundamentally compute

bound. As a result, the most suitable work- loads are
memory-bound.

SAFARI

Outline

(+ Introduction N
- Accelerator Model

. - UPMEM-based PIM System Overview)

(¢ UPMEM PIM Programming)
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication

| - CPU-DPU/DPU-CPU Transfer Bandwidth)

(» DRAM Processing Unit h
- Arithmetic Throughput

. - WRAM and MRAM Bandwidth y

(¢ PrIM Benchmarks R
- Roofline Model

. - Benchmark Diversity)

(+ Evaluation b
- Strong and Weak Scaling

- Comparison to CPU and GPU Y

* Key Takeaways

SAFARI

Accelerator Model
s UPMEM DIMMs coexist with conventional DIMMs

* Integration of UPMEM DIMMs in a system follows an
accelerator model

* UPMEM DIMMs can be seen as a loosely coupled
accelerator

- Explicit data movement between the main processor (host
CPU) and the accelerator (UPMEM)

- Explicit kernel launch onto the UPMEM processors

* This resembles GPU computing

SAFARI

System Organization (1)

* Ina UPMEM-based PIM system UPMEM DIMMs coexist
with regular DDR4 DIMMs

Main Memory

-
y
i
y-
DRAM|\DRAM||DRAM||DRAM||DRAM||DRAM|[DRAM|[DRAM
() == | | Cip)| Chip)| Chip || chip |\ chip)| chip)| chip || chip
DRAM|[DRAM|[DRAM||DRAM|[DRAM||DRAM||DRAM||DRAM
chip || chip || chip)| chip)| chip)\ chip)| chip)| chip
xM

Host

CPU o
[PIM][PIM][PIM][PIM][PIM][PIM][PIM][PIM]
ﬁ Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip
J
[PIMJ[PIMJ[PIMJ[PIMJ[PIMJ[PIMJ[PIM][PIMJ
Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip /
xN

PIM-enabled Memory

SAFARI 10

System Organization (II)

* AUPMEM DIMM contains 8 or 16 chips
- Thus, 1 or 2 ranks of 8 chips each

* Inside each PIM chip there are:

- 8 64MB banks per chip: Main RAM (MRAM) banks

- 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per
rank

Main Memory PIM Ch ip
= ye ~\
/ Control/Status Interface <—>[DDR4 Interface]
DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM| /
() @ | | tip)\ Chip)\ chip)\ chip)| chip)\ chip)\ chip)| chip / A ‘
/
Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip \
/
/;M’ (— r#\\\
Host)/ DISPATCH
FETCH1 _
CPU £)/ Fercy)lap 23KB o
f T FETCH3 IRAM v
5[> D cipns | OAMB
ﬁ Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip) 4% - (READOP3 IE DRAM
chip)| chip || chip || chip || chip || chip || chip)| chip
4 P ek | |2 LEY
PIM-enabled Memory "~ _ T [aws WRAM 1
S 2 MERGEL _—37
(& ([MERGE2)’; %8
_ J

SAFARI

11

2,560-DPU System

* UPMEM-based PIM

Main Memory

system with 20 .U PMEM 1,
DIMMs of 16 chips each
Host
(40 ranks) cPU 0 P 2560 DPUs*
P21 DIMMs PN 67 BN BN B o BB G
Dual x86 socket VA0

° UP M E M DI MMS PIM-enabled Memory
coexist with regular Main Memory
DDR4 DIMMs =

e > memory 4—»[
controllers/socket (3 2
channels each) crU 1 ,,

« 2 conventional DDR4 4. [ﬂﬂﬂﬂﬂﬂﬂﬂ
DIMMSs on one BEEEEEEE
channel of one ..gwg,ze.../m
controller

160 GB
SA FAR’ * There are 4 faulty DPUs in the system that we use in our experiments. Thus, the maximum number of DPUs we can use is 2,556. 1 2

640-DPU System

* UPMEM-based PIM
system with 10 UPMEM
DIMMs of 8 chips each

(1 o ran kS) Main Memory
- E19 DIMMs £
- x86 socket f—ﬁ{“)(l)ﬁﬂ()(lﬂ()
* 2 memo ry contro l I ers Chip)(chip; \cnip)(cmp)(éiﬁ,;; \Chi;ﬂﬁ&?ﬂ@;%ﬂ
(3 channels each) aoor P
* 2 conventional DDR4 o
DIMMs on one ~—<->&f:;::}Ez::}{:z::}{:::}{:z:)(::
Cha n nel Of On e Chip || Chip || Chip || Chip || Chip || Chip
controller PIM-enable

SAFARI 13

Outline

(« Introduction b
- Accelerator Model

. - UPMEM-based PIM System Overview)

(¢ UPMEM PIM Programming)
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication

| - CPU-DPU/DPU-CPU Transfer Bandwidth)

(» DRAM Processing Unit h
- Arithmetic Throughput

. - WRAM and MRAM Bandwidth y

(¢ PrIM Benchmarks R
- Roofline Model

. - Benchmark Diversity)

(+ Evaluation b
- Strong and Weak Scaling

- Comparison to CPU and GPU Y

* Key Takeaways

SAFARI

Vector Addition (VA)

* Our first programming example

* We partition the input arrays across:
- DPUs
- Tasklets, i.e., software threads running on a DPU

SAFARI

15

CPU-DPU/DPU-CPU Data Transfers

* CPU-DPU and DPU-CPU transfers
- Between host CPU’s main memory and DPUs’ MRAM banks

Main Memory

P

y =
.=
.=

DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM|[DRAM
\)‘ == | | 1P J\ Chip)| Chip |\ Chip J{ Chip)| chip |\ chip)| chip

,OQ‘ -— DRAI‘ﬂ[DRAI‘ﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ
Q\)/ —— chip || cnip || chip || cnip || chip || chip || chip || chip
%l xM
Host I
P =

b
= pim || pim || PIM || PIM || PIM || PIM || PIM || PIM
@e=p-| (Chip || Chip || Chip)\ chip)| chip |\ chip || chip || chip
J
pim || pim || PIM || PIM || PIM || PIM || PIM || PIM
chip || chip || chip || chip || chip)| chip || chip || chip /

xN
PIM-enabled Memory

e Serial CPU-DPU/DPU-CPU transfers:
- Asingle DPU (i.e., 1t MRAM bank)

* Parallel CPU-DPU/DPU-CPU transfers:
- Multiple DPUs (i.e., many MRAM banks)

* Broadcast CPU-DPU transfers:
- Multiple DPUs with a single buffer

SAFARI

16

Inter-DPU Communication

* There is no direct communication channel between DPUs

Main Memory

P
y =
y =

y =

DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM|[DRAM
\)‘ == | | 1P J\ Chip)| Chip |\ Chip J{ Chip)| chip |\ chip)| chip

,OQ - = DRAI‘ﬂ[DRAI‘ﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ
Q\>/ fpm— Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip
S/ M
Host I
P _

~ I -
pim || pim || PIM || PIM || PIM || PIM || PIM || PIM
@e=p-| (Chip || Chip || Chip)\ chip)| chip |\ chip || chip || chip
J
pim || pim || PIM || PIM || PIM || PIM || PIM || PIM
chip || chip || chip || chip || chip)| chip || chip || chip

PIM-enabled Memory

* Inter-DPU communication takes places via the host CPU using CPU-DPU
and DPU-CPU transfers

* Example communication patterns:

- Merging of partial results to obtain the final result
* Only DPU-CPU transfers

- Redistribution of intermediate results for further computation
* DPU-CPU transfers and CPU-DPU transfers

SAFARI 17

N

How Fast are these Data Transfers?

* With a microbenchmark, we obtain the sustained
bandwidth of all types of CPU-DPU and DPU-CPU
transfers

* Two experiments:

- 1 DPU: variable CPU-DPU and DPU-CPU transfer size (8
bytes to 32 MB)

- 1rank: 32 MB CPU-DPU and DPU-CPU transfers to/from a
set of 1to 64 MRAM banks within the same rank

* We do not experiment with more than one rank

- Preliminary experiments show that the UPMEM SDK* only
parallelizes transfers within the same rank

SA FAR' * UPMEM SDK 2021.1.1

CPU-DPU/DPU-CPU Transfers: 1 DPU

* Data transfer size varies between 8 bytes and 32 MB

1.0000

--CPU-DPU
1| -@=-DPU-CPU

Sustained CPU-DPU
Bandwidth
(GB/s, log scale)
o o o
o o =
o = o
5 8 8

00001 T ! ! ! ! ! ! ! ! ! ! !

1

Data transfer size (bytes)

KEY OBSERVATION 7
Larger CPU-DPU and DPU-CPU transfers between the host main

memory and the DRAM Processing Unit's Main memory (MRAM)
banks result in higher sustained bandwidth.

SAFARI

19

CPU-DPU/DPU-CPU Transfers: 1 Rank

* CPU-DPU (serial/parallel/broadcast) and DPU-CPU (serial/parallel)
 The number of DPUs varies between 1 and 64

== CPU-DPU (serial) —@— DPU-CPU (serial)
16.00 4 =B CPU-DPU (parallel) =Q= DPU-CPU (parallel) 16.88
o] ' =—f— CPU-DPU (broadcast) !
% < 8.00 —66.68
[G - |
5 S5 8 400 - - 4.74
a2 7 2.00
© —_ i
5 'g - 1.00 =
.% 2 > 0.50 - =Q— 0.27
2 9 025 - —a —
v 013 4 Q=@ o O—==0 0, @012
0.06 | | | | . |
< (o) <
— (o)

KEY OBSERVATION 8

The sustained bandwidth of parallel CPU-DPU and DPU-CPU
transfers between the host main memory and the DRAM Processing
Unit’s Main memory (MRAM) banks increases with the number of
DRAM Processing Units inside a rank.

SAFARI 20

Outline

(« Introduction b
- Accelerator Model

. - UPMEM-based PIM System Overview)

(¢ UPMEM PIM Programming)
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication

| - CPU-DPU/DPU-CPU Transfer Bandwidth)

(» DRAM Processing Unit h
- Arithmetic Throughput

. - WRAM and MRAM Bandwidth y

(¢ PrIM Benchmarks R
- Roofline Model

. - Benchmark Diversity)

(+ Evaluation b
- Strong and Weak Scaling

- Comparison to CPU and GPU Y

* Key Takeaways

SAFARI

DRAM Processing Unit

PIM Chip

-

_

SAFARI

22

DPU Pipeline

* In-order pipeline

- Up to 350 MHz
* Fine-grain multithreaded

- 24 hardware threads
* 14 pipeline stages

: Thread selection
: Instruction fetch
- READOP: Register file
: Operand formatting

- ALU: Operation and WRAM
- MERGE: Result formatting

SAFARI

27 1

DISPATCH)

FETCH1

FETCH2

FETCH3

READOP1

READOP2

<>

24-KB
IRAM

To the DMA engine |

gister File

READOP3

FORMAT

ALU1

ALU2

ALU3

ALU4

ipeline(Re

MERGE1

P

—_———————)

r

MERGE2

64-KB
WRAM

Arithmetic Throughput: Microbenchmark

e Goal

- Measure the maximum arithmetic throughput for different
datatypes and operations

e Microbenchmark

- We stream over an array in WRAM and perform read-modify-write
operations

Experiments on one DPU

We vary the number of tasklets from 1 to 24
Arithmetic operations: add, subtract, multiply, divide
Datatypes: int32, int64, float, double

* We measure cycles with an accurate cycle counter that the
SDK provides

- We include WRAM accesses (including address calculation) and
arithmetic operation

SAFARI 24

Arithmetic Throughput: 11 Tasklets

70 70
(a) INT32 (1DPU)

o]

o

D

o
1

(%
o
1
(%))
o
1

KEY OBSERVATION 1

The arithmetic
throughput of a DRAM
Processing Unit
saturates at 11 or more
tasklets.

I
o
1
N
o
1

30 A

w
o
1

N
o
1

Arithmetic Throughput (MOPS)
Arithmetic Throughput (MOPS)

This observation is
consistent for different
datatypes (INT32, INT64,
UINT32, UINT64, FLOAT,
DOUBLE) and operations
(ADD, SUB, MUL, DIV).

(2}
1
(2}

N
1
I

N
1
N

Arithmetic Throughput (MOPS)
w

Arithmetic Throughput (MOPS)
w

=
=

0

N 1N N O A N NN O A M
= A = a4 N N

#Tasklets

SAFARI 25

Arithmetic Throughput: Native Support

Arithmetic Throughput (MQP

Arithmetic Throughput (MQ

SN
1

w
1

(c) FLOAT (1 DPU)

A —A—ADD

/\ SUB
/\ =O-MUL
/'\ =0=DIV

SAFARI

Arithmetic Throughput (MQR

30 A

(b) INT64 (1 DPU)

#Tasklets

(d) DOUBLE (1 DPU)

KEY OBSERVATION 2

* DPUs provide native
hardware support for 32-
and 64-bit integer
addition and subtraction,
leading to high throughput
for these operations.

* DPUs do not natively

support 32- and 64-bit
multiplication and
division, and floating
point operations. These
operations are emulated by
the UPMEM runtime
library, leading to much
lower throughput.

DPU: WRAM Bandwidth

PIM Chip

-

4 DISPATCH)|

FETCH1
FETCH2
FETCH3
READOP1
READOP2
READOP3
FORMAT
ALU1
ALU2

c__:;ister File

v

ALU4
MERGE1
MERGE2

ipeline(Re

P

ALU3 4>

64-KB
WRAM

{

g

SAFARI

27

DPU: MRAM Latency and Bandwidth

PIM Chip
-
)
c
= 64-MB
Q) | 64 bits
- P DRAM
S (I\E;RII:I)
64-KB =
wraM €% ©
./
_

SAFARI

28

MRAM Bandwidth

e Goal

- Measure MRAM bandwidth for different access patterns

e Microbenchmarks

* mram read();
e mram write();

- Latency of a single DMA transfer for different transfer sizes

]

AVl benchmark
« COPY, COPY-DMA
e ADD, SCALE, TRIAD

- Strided access pattern
* Coarse-grain strided access
* Fine-grain strided access

- Random access pattern (GUPS)

* We do include accesses to MRAM

SAFARI

29

MRAM Read and Write Latency (1)

1000

Bandwidth (MB/s)

[EEN

=
o
|

628.23 -

MRAM Read -

- 128

T T T
< 0 O N <
in «+
o
i

2048

Data transfer size (bytes)

B
MRAM Bandwidth (in E)

2048

512

32

Latency (cycles)

1000

633.22

100

10

Bandwidth (MB/s)

1

MRAM Write -

2048

512

- 128

Latency (cycles)

32

00

Ssize

16

32
64
8
6
2

<
N 1N I
- &N "N O

i

2048

Data transfer size (bytes)

X frequencyppy

MRAM Latency

We can model the MRAM latency with a linear expression

MRAM Latency (in cycles) = a + BXsize

In our measurements, f equals 0.5 cycles/byte.
Theoretical maximum MRAM bandwidth = 700 MB/s at 350 MHz

SAFARI

30

MRAM Read and Write Latency (lI)

___ 1000 628.23 1000 633.22
“ MRAM Read - 2048 . @ MRAM Write - 2048
s S S s
< 100 L 512 % = 1001 - 512 %
E N f N
S o B o
Z 0 128 g 2 10 L 128 5
S 85 5 8
0 1 T T T T T T T T 32 o 1 T T T T | | | | 32
c0 O < 0 O o < o0 e} (o] AN < 0 O o < o0
— o (o) (g} LN — o < — on (\o} (@] LN i o <
Data transfer size (bytes) Data transfer size (bytes)

KEY OBSERVATION 4

* The DPU’s Main memory (MRAM) bank access latency increases

linearly with the transfer size.
* The maximum theoretical MRAM bandwidth is 2 bytes per cycle.

SAFARI 31

MRAM Bandwidth

* Goal
- Measure MRAM bandwidth for different access patterns

e Microbenchmarks

- Latency of a single DMA transfer for different transfer sizes
* mram read();
* mram write();

- COPY, COPY-DMA

- STREAM benchmark
« ADD, SCALE, TRIAD

- Strided access pattern
* Coarse-grain strided access
* Fine-grain strided access

- Random access pattern (GUPS)

* We do include accesses to MRAM

SAFARI

32

STREAM Benchmark: Bandwidth Saturation

700 {STREAM (MRAM, INT64, 1DPU)

S © 600 -

< o

OEC S 500 - -0-COPY-DMA
=z S0 - ~o-COPY
A ~A-ADD

E E 300 - 3-SCALE

é 2 200 TRIAD

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
HTasklets

KEY OBSERVATION 5

 When the access latency to an MRAM banKk for a streaming benchmark (COPY-
DMA, COPY, ADD) is larger than the pipeline latency (i.e., execution latency of
arithmetic operations and WRAM accesses), the performance of the DPU saturates at a

number of tasklets smaller than 11. This is a memory-bound workload.

* When the pipeline latency for a streaming benchmark (SCALE, TRIAD) is larger
than the MRAM access latency, the performance of a DPU saturates at 11 tasklets.
This is a compute-bound workload.

SAFARI 33

MRAM Bandwidth

* Goal
- Measure MRAM bandwidth for different access patterns

* Microbenchmarks
- Latency of a single DMA transfer for different transfer sizes
* mram read();
e mram write();
- STREAM benchmark
 COPY, COPY-DMA
* ADD, SCALE, TRIAD

(- Strided access pattern)
* Coarse-grain strided access
* Fine-grain strided access
.- Random access pattern (GUPS) D
* We do include accesses to MRAM
SAFARI 34

DPU: Arithmetic Throughput vs. Operational Intensity

PIM Chip
(6 . ~

N
)
J

DISPATCH
FETCH1
FETCH2
FETCH3
READOP1
READOP2 >
READOP3
FORMAT ()
ALU1

ALU2 -
ALU3 4P e 4>

. WRAM
MERGE1

\ MERGE2

- Y
SAFARI

64-MB
DRAM
Bank
(MRAM)

64 bits
<>

v

DMA Engine

ipeline(Register File

P

\—
4
L

Arithmetic Throughput vs. Operational Intensity (1)

e Goal

- Characterize memory-bound regions and compute-bound regions for
different datatypes and operations

 Microbenchmark

- We load one chunk of an MRAM array into WRAM
- Perform a variable number of operations on the data
- Write back to MRAM

* The experiment is inspired by the Roofline model*

* We define operational intensity (Ol) as the number of
arithmetic ogerations performed per byte accessed from
MRAM (OP/B)

* The pipeline latency changes with the operational intensity,
but the MRAM access latency is fixed

SA FA Rl *S. Williams et al., “Roofline: An Insightful Visual Performance Model for Multi-core Architectures,” CACM, 2009

Arithmetic Throughput vs. Operational Intensity (II)

__64.00

cale

Arithmetic Throughput (MOPS, log s

0.03

(

32.00 -
16.00 -
8.00 ~
4.00 ~
2.00 ~
1.00 4
0.50 ~
0.25 ~
0.13 ~
0.06 -

In the memory-bound R
region, the arithmetic
throughput increases with
. the operational intensity)

(a) INT32, ADD (1 DPU)

Compute-bound
region region [

In the compute-bound R
region, the arithmetic
throughput is flat at its
Operational Intensity (OP/B) K maXimum)

Y o> o D © *x P
VN <y Vo v)) v N Vv
Q" O ¢ N > N

\the memory-bound region and the compute-bound region happens

The throughput saturation point is the operational intensity
where the transition between

v

The throughput saturation point is as low as ¥ OP/B,

i.e., 1integer addition per every 32-bit element fetched

SAFARI 37

Arithmetic Throughput vs.

Operational Intensity (lI)

© 32.00 (a) INT32, ADD (1 DPU)

Arithmetic Throughput (MOPS, lo
o
wv
o

2 > © AD (M ©

AN IR © v AR R

Q" O & > Y
Operational Intensity (OP/B)

Ny X D

32.00 J (€)FLOAT, ADD (1 DPU)

ic Throughput (MOPS, log scale)

0.13 4

[s1i]

Arithmetic Throughput (MOPS, lo

ic Throughput (MOPS, log scale)

16.00 A

1 (b) INT32, MUL (1 DPU)

D A% © &
WP R AD>)we@ »n ~r %%
0,\10%\/\,]/\,\\"&\'\'\\\”\\'\'\'\

Operational Intensity (OP/B)

The arithmetic throughput of a DRAM Processing Unit (DPU) saturates at
low or very low operational intensity (e.g., 1 integer addition per 32-bit

element). Thus, the DPU is fundamentally a compute-bound processor.
We expect most real-world workloads be compute-bound in the UPMEM PIM
architecture.

SAFARI

38

Outline

(« Introduction N
- Accelerator Model

. - UPMEM-based PIM System Overview)

(¢ UPMEM PIM Programming)
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication

| - CPU-DPU/DPU-CPU Transfer Bandwidth)

(» DRAM Processing Unit h
- Arithmetic Throughput

g - WRAM and MRAM Bandwidth y

(¢ PrIM Benchmarks R
- Roofline Model

. - Benchmark Diversity)

(« Evaluation R
- Strong and Weak Scaling

- Comparison to CPU and GPU Y

* Key Takeaways

SAFARI

PriM Benchmarks

e Goal

- A common set of workloads that can be used to
e evaluate the UPMEM PIM architecture,
* compare software improvements and compilers,
* compare future PIM architectures and hardware

* Two key selection criteria:
- Selected workloads from different application domains
- Memory-bound workloads on processor-centric architectures

* 14 different workloads, 16 different benchmarks*

SA FARI *There are two versions for two of the workloads (HST, SCAN). 40

PrIM Benchmarks: Application Domains

Domain Benchmark Short name
Vector Addition VA
Dense linear algebra
Matrix-Vector Multiply GEMV
Sparse linear algebra Sparse Matrix-Vector Multiply SpMV
Select SEL
Databases
Unique UNI
Binary Search BS
Data analytics
Time Series Analysis TS
Graph processing Breadth-First Search BFS
Neural networks Multilayer Perceptron MLP
Bioinformatics Needleman-Wunsch NW
Image histogram (short) HST-S
Image processing
Image histogram (large) HST-L
Reduction RED
Prefix sum (scan-scan-add) SCAN-SSA
Parallel primitives
Prefix sum (reduce-scan-scan) SCAN-RSS
Matrix transposition TRNS

SAFARI 41

Roofline Model

* Intel Advisor on an Intel Xeon E3-1225 v6 CPU

16 - -~ 7 Peak compute performance
5 84 / G- MLP /
é sl 7 Gemvy ew
= - BS~@Q/(§HST
s 27 @ UNI_ &~ NW
& 1 - V—¢g O TRNS
S © 0% GRED
£ 05 | SEL BFS
9 SCAN
W
0.25 -&
0.125 . .
0.01 0.1 1 10

Arithmetic Intensity (OP/B)

[All workloads fall in the memory-bound area of the Roofline]

SAFARI 42

PrIM Benchmarks: Diversity

* PrIM benchmarks are diverse:
- Memory access patterns
- Operations and datatypes
- Communication/synchronization

: Memory access pattern Computation pattern

Domiain Benclimntle ShurtuEme Sequential T Stridedpl Random Oper;:tions II) Datatype Intra-DPU | Inter-DPU

Dense linearalgeben Vector Addition VA Yes add int32_t
Matrix-Vector Multiply GEMV Yes add, mul uint32_t

Sparse linear algebra | Sparse Matrix-Vector Multiply SpMV Yes Yes add, mul float

Databases Select SEL Yes add, compare int64_t handshake, barrier Yes
Unique UNI Yes add, compare int64_t handshake, barrier Yes

. Binary Search BS Yes Yes compare int64_t

Data analytics Time }Slteries Analysis TS Yes add, sub,pmul, div int32_t

Graph processing Breadth-First Search BFS Yes Yes bitwise logic uint64_t barrier, mutex Yes

Neural networks Multilayer Perceptron MLP Yes add, mul, compare | int32_t

Bioinformatics Needleman-Wunsch NW Yes Yes add, sub, compare int32_t barrier Yes

JiagE ProCEHaiE Image histogram (short) HST-S Yes Yes add uint32_t barrier Yes
Image histogram (long) HST-L Yes Yes add uint32_t barrier, mutex Yes
Reduction RED Yes Yes add int64_t barrier Yes

Parallel primitives Prefix sum (scan-scan-add) SCAN-SSA Yes add int64_t §| handshake, barrier Yes
Prefix sum (reduce-scan-scan) | SCAN-RSS Yes add int64_t | handshake, barrier Yes
Matrix transposition TRNS Yes Yes add, sub, mul int64_t mutex

SAFARI

43

Outline

(« Introduction b
- Accelerator Model

. - UPMEM-based PIM System Overview)

(¢ UPMEM PIM Programming)
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication

| - CPU-DPU/DPU-CPU Transfer Bandwidth)

(» DRAM Processing Unit h
- Arithmetic Throughput

. - WRAM and MRAM Bandwidth y

(¢ PrIM Benchmarks R
- Roofline Model

. - Benchmark Diversity)

(» Evaluation B
- Strong and Weak Scaling

. - Comparison to CPU and GPU)

* Key Takeaways

SAFARI

Evaluation Methodology

* We evaluate the 16 PrIM benchmarks on two UPMEM-
based systems:
- 2,556-DPU system
- 640-DPU system

* Strong and weak scaling experiments on the 2,556-DPU
system
- 1 DPU with different numbers of tasklets
- 1rank (strong and weak)
- Up to 32 ranks

Strong scaling refers to how the execution time of a program solving a particular problem varies
with the number of processors for a fixed problem size

Weak scaling refers to how the execution time of a program solving a particular problem varies
with the number of processors for a fixed problem size per processor

\

SAFARI 45

Evaluation Methodology

* We evaluate the 16 PrIM benchmarks on two UPMEM-
based systems:
- 2,556-DPU system
- 640-DPU system

* Strong and weak scaling experiments on the 2,556-DPU
system
- 1 DPU with different numbers of tasklets
- 1rank (strong and weak)
- Up to 32 ranks

* Comparison of both UPMEM-based PIM systems to
state-of-the-art CPU and GPU

- Intel Xeon E3-1240 CPU
- NVIDIA TitanV GPU

SAFARI 46

Strong Scaling: 1 DPU (1)

* Strong scaling
experiments on 1 DPU

- We set the number
of tasklets to 1, 2, 4,
8,and 16

- We show the
breakdown of
execution time:

* DPU: Execution
time on the DPU

* |nter-DPU: Time for
inter-DPU
communication via
the host CPU

* CPU-DPU: Time for
CPU to DPU
transfer of input
data

e DPU-CPU: Time for

DPU to CPU
transfer of final
results

- Speedup over 1
tasklet

Execution Time (ms

800
600
400
200

0
VA

EZADPU-CPU

= CPU-DPU
(I | nter-DPU

[DPU

N

a=Q=Speedup

oz
"

L7z
S

— N < o0 O
i

#tasklets per DPU

14

12

Speedup

SAFARI

47

Strong Scaling: 1 DPU (lI)

3DPU-CPU ZZ3DPU-CPU

ESNCPU-DPU [- [10000 - [[E=3CPU-DPU

1200

8
1000 D I nter-DPU | _ - " :ggg - _ I nter-DPU 7 (VA, GEMV, SpMV’ SEL, UNI, TS’ \
S wo < 5 e :o| | MLP, NW, HST-S, RED, SCAN-SSA
= = I~ = °
5 5 5 o 5 oo . (Scan kernel), SCAN-RSS (both
g o I A | : g 0 g o . kernels), and TRNS (Step 2 kernel),
- S =IE i o . the best performing number of
0 0 0 0
#tasklets per DPU IG i UaSklets IS 16)

#tasklets per DPU #tasklets per DPU #tasklets per DPU

8 140000
= D Inter-DPU L7 120000
77 ==y Z oooo : Speedups 1.5-2.0x as we double the
o 3 LE a0ooo 3 number of tasklets from 1to 8.
5 4 & 60000 4
S w0 2o S o 49 Speedups 1.2-1.5x from 8 to 16,
o 200 L % 20000 2 since the pipeline throughput
UNI o e e g A e saturates at 11 tasklets
#tasklets per DPU #tasklets per DPU k J
12 s 1600 ggﬂj;gg
1400 I | nter-DPU
B | 2 12 KEY OBSERVATION 10
'E 800 6 'g '§ 'E 1222
R E A number of tasklets
] 400 g o 400
“ 200 2 “ “ 200

greater than 11 is a good
choice for most real-

- N < 0 ©
—

MLP - N < © ©

=
=3

#tasklets per DPU #tasklets per DPU
ety Ry . . 2 T —
ooy | e = world workloads we
| — Speedup (Add) 7 —) p2 - 12
E 2000
= s s |
£ 150 £ i | ° tested (16 kernels out of 19
lii € 1500 4 _ch £ 1500 I _g,
= = |
. . 3l | kernels from 16
¢ 0 E e B .
g | 2 benchmarks), as it fully
0 0 0 0 + 0
RED = & ¥ o g9 CAN-SSA = N ¥ @ g SCAN-RSS ™ l h U’ pp l
#tasklets per DPU #tasklets per DPU #tasklets per DPU #tasklets per DPU utl lzeS t e DP S l e lne'

SAFARI

Strong Scaling: 1 DPU (llI)

S do not use intra-DPU
([synchronization primitives

" VA, GEMV, SpMV, BS, TS, MLP, HST- |

J

kernel), SCAN-RSS (both kernels),
_synchronization is lightweight

[In SEL, UNI, NW, RED, SCAN-SSA (Scan |

(BFS, HST-L, TRNS (Step 3) use

when accessing shared data
_Structures

mutexes, which cause contention

J
~

SAFARI

49

Strong Scaling: 1 DPU (IV)

HST-L — ~ ¥ =@ @
#tasklets per DPU

Z=1DPU-CPU
1800 - E=9 CPU-DPU 6
1600 - I | nter-DPU
> I DPU - 5
£ 1400 4B w@=speedup
o 1200 4
g 1000
s |_
S 600
(&)
L 400
L
200
0

" VA, GEMV, SpMV, BS, TS, MLP, HST- |
S do not use synchronization
([primitives y

[In SEL, UNI, NW, RED, SCAN-SSA (Scan R
kernel), SCAN-RSS (both kernels),
_synchronization is lightweight

J
(BFS, HST-L, TRNS (Step 3) use B
mutexes, which cause contention
when accessing shared data

_Structures y

KEY OBSERVATION 11

Intensive use of intra-DPU
synchronization across
tasklets (e.g., mutexes,
barriers, handshakes)

may limit scalability,
sometimes causing the best
performing number of
tasklets to be lower than
11.

SAFARI

Strong Scaling: 1 Rank

* Strong scaling
experiments on 1 rank

- We set the number of
tasklets to the best
performing one

- The number of DPUs
is1, 4,16, 64

- We show the
breakdown of
execution time:

* DPU: Execution time
on the DPU

* Inter-DPU: Time for
inter-DPU
communication via
the host CPU

* (CPU-DPU: Time for
CPU to DPU transfer
of input data

* DPU-CPU: Time for
DPU to CPU transfer
of final results

- Speedup over 1 DPU

nN
=]
S

Execution Time (ms)
bR
o w
o o

Now

100

Execution Time (ms)
N
o
o

wu
o o

UNI

1400

1200

1000
800
600

400

Execution Time (ms)

200

MLP

ZZaDPU-CPU
EXHCPU-DPU
(I | nter-DPU
[DPU

Speedu

70

r 60

50

+ 40

30

20

Execution Time (ms)

10

Speedup

Speedup

Speedup

Speedup

EZZaDPU-CPU

[EZZDPU-CPU
2500 [S=1CPU-DPU
(I | nter-DPU
@ 2000
£
[
£ 1500
E
c
.S 1000
=
>
o
53
X 500
0
BS
EZZ3DPU-CPU
2500 CSSJ1CPU-DPU
(D | nter-DPU
F 2000 aaoey
£
()
£ 1500
E
c
S 1000
=
>
o
153
X 500
0
NW
#DPUs
X DPU-CPU =S CPU-DPU
D Inter-DPU I DPU (Scan)
[DPU (Add) wddesSpeedup (Scan)
Q= Speedup (Add)
= 700
£ 600
g s00
=
s 400
2 300
3
g 200
w 100
0
SCAN-SSA = ¥ 8 &
#DPUs

Speedup

Speedup

Speedup

— 70

60
50
40
30
20
10

Speedup

1000

Execution Time (ms)
w
o
o

E=aDPU-CPU
I nter-DPU
EEmDPU (Reduce)
=@=5peedup (Red.)

& 6.E+02

£

2 5.E+02

£ 4402

S 3.E+02

=

3 2.E+02

(7]

3 1E+02
0.E+00

SCAN-RSS

21 DPU-CPU
=3 CPU-DPU
(I | nter-DPY
[DPU
Speedu

D=Speedup

I 40
F 30
F 20
I 10
+ 0
< o«
- ©
#DPUs
E=3CPU-DPU
I DPU (Scan)
= Speedup (Scan)
H 70
60
50
1)
30
20
10
0

< o <t
— X<}

#DPUs

Speedup

Speedup

Speedup

1400
1200
1000
800
600
400

Execution Time (ms)

200

BFS

= 7.E+05
£ 6Ev05
g sE+05
=
- 4.E+05
2 3E+05
3 28405
& 1.E+05
0.E+00

TRNS

EZ3DPU-CPU
(I Inter-DPU

B DPU (Step 2)
=O=Speedup (Step 2)

-

TE=9CPU-DPU (Step 1
I DPU (Step 3)
«hSpeedup (Step 3)

< o
—

#DPUs

O R N WA OO N O

SAFARI

Strong Scaling: 32 Ranks

* Strong scaling
experiments on 32

rank

- We set the number
of tasklets to the
best performing one

- The number of DPUs
is 256, 512, 1024,
2048

- We show the

breakdown of
execution time:

DPU: Execution
time on the DPU
Inter-DPU: Time for
inter-DPU

communication via
the host CPU

We do not show
CPU-DPU/DPU-CPU
transfer times

- Speedup over 256
DFIDDUS g

N WS U N
© o oo o

Execution Time (ms)
o

=
o

Execution Time (ms)

UNI

1200

1000

3
=}
S

Execution Time (ms)
B [o2)
o o
o o

N}
o
S

o

MLP

(I | nter-DPU
= DPU

/’)

=O=5peedup

o
N
~

(]

256

o~ <
~ N
n o

=1
#DPUs

(I | nter-DPU
. DPU
«=Q=Speedup

2048

P
I
le H
(

mmm [nter-DPU
= DPU
«@=Speedup

o~ <
- o~
n o
=
#DPUs

2048

O B N W A GO N O R N W AU O N ® O R N WA U O N

O Rk N W A U O N ®

Speedup

Speedup

Speedup

Speedup

160
140

2o
o
& o

@
o

Execution Time (ms)
B]
o o

20

700 -

—. 600

)

=500

g

£ 400

S 300

S

3 200

(7]

3

& 100
0

BS

100000
90000
“» 80000
~— 70000
£ 60000
g
§ 20000
5
g 30000
35 20000
10000
0
NW

N W W B
g o a o
o & © o

Execution Time (ms)
2R N
w o wu o
o o o o o

SCAN-SSA

256

“

mm Inter -DPU
I DPU (Scan)
EEEDPU (Add)
«BSpeedup (Scan)
=O=5peedup (Add)

<
Al o
n =}
-
#DPUs

D [nter-DPU
. DPU
=0=Speedup

2048

2048

600

3000

e (ms,
NN
Q w
S 9o
S o

Execution Ti
RN
w o v
o o o
o o o

I |nter-DPU
 DPU
|=0=S5peedup

i)

o~ <
— o
n o

S
#DPUs

2048

0
TS 8 § I 2
o~ wn o o
- 1
#DPUs
40
(I I nter-DPU
35 0Py
30 =Q=Speedup

N
a

Execution Time (ms)
I
w o

=
o

3
T‘ou‘
(%]

350

BONON W
u 9o u 9o
© © o o©

Execution Time (ms)
S
o

50

SCAN-RSS

~

56

~ <
~ N
n o
=1
#DPUs

‘ammm Inter -DPU
N DPU (Scan)
EEIDPU (Reduce)
«l=speedup (Scan)
=O=speedup (Red.)

<
- o
n =}
=
#DPUs

7

6

5
s

43
b

38
@

2

1

o

8

7

6

5 a
S

473
8

3n

2

1

0

10

Speedup

160

Execution Time (ms)
T

N B O ON B
O O O O O © o o

9000
8000
€ 7000
@ 6000
£ 5000
5 4000
5 3000
3
£ 2000
1000

BFS

.
N
=]

(D [nter-DPU
[DPU [
«@=Speedup L
© ~ < ©
n B N 5
~ n o =}
— ~N

© ~ <+ ©
rl — N <
~ n o o
- ~N

#DPUs

Execution Time (ms)
N B (o)} 00 5
o o o o o

T
wm
N
'_O

3500
3000

BN N
o o a
o 9 9
S & o

Execution Time (ms)
=
o
o
o

o
o
o o

TRNS

I | nter-DPU
| DPU B
|=Q=Speedup
e} o] < 0
n L=l [8
~ n o o
= N
#DPUs
‘@ Inter DPU
EEEDPU (Step 3)
EEIDPU (Step 2)
«d=5peedup (Step 3)
e@==Speedup (Step 2)
o o~ < e}
N Rl N 8
~ wn o (=]
= N
#DPUs

O R, N WAV NV

O R N WA U O N ® O

O R, N WA U O N ® O

Speedup

Speedup

Speedup

Speedup

SAFARI

Weak Scaling: 1 Rank

700

3500 10000

£ DPU-CPU @ DPU-CPU @DPU-CPU 9000 J B DPU-CPU
- 690 { = CPU-DPU - 390 {8 CPU-DPU o 3000 1 CPU-DPU = 8000 | B CPU-DPU 7
£ 5g0 JMInter-DPU E)59 | @mInter-DPU E 7500 | Minter-DPU £ 5000 | m Inter-DPU
P) mDPU) mDPU o mDPU
o = o = s | KEY OBSERVATION 17
= (= (= = 5000 A
50 5 150 5 1500 § 200 |
3 200 2 100 2 1000 2 3000 -
i 5 i 5 2000 4 7 :
w0 2000 | %, Equally-sized problems
[ZZ23 4
0 0 0 0 === -

sMv < v 8 g s - v 8 g assigned to different DPUs

#DPUs #DPUs #DPUs . .

10000 3000 alld llttle/no lntel“-DPU

9000 4 B DPU-CPU EDPU-CPU . .
g o fouon, 7 = || @imerop synchronization lead to

7000 "o 2000 - 1 . .
£ a0 £ = linear weak scaling of the
e < 109 S CPU-Dh 5cruony execution time spent on the
,_%), 2000 I%" 500 m Inter-DPU m Inter-DPU

W DPU

DPUs (i.e., constant execution

UNI - v 2 8 BS - v

woPUs o oot R time when we increase the

oo Jaoruc 200 @D | number of DPUs and the
7350 | B imer or 7 2000 | BT 1 ‘ ° ‘ d ' dingl
gaoo mInter-DPU i‘z‘ﬁﬁﬁ Jjmie o | ataset size accor Ing Y)
= 250 = |
£ S gggg @DPU-CPU ° @DPU-CPU
Elel g oo [CPU-DPU ° B imtorbpU
o] ® o] KEY OBSERVATION 18

50 2000 mDPU

0] o — ADPU__
MLP % Y g § NW 0~ Y g 3

#DPUs #DPUs Sustained bandwidth of

700 1600 1200
0 |BeuDm o | Boruony O parallel CPU-DPU/DPU-CPU
£ 500 J MInter-DPU E 1200 - lll:;;ir-chU £ WOPU (Scan) . .
5 |mory % 1000 | BOPY 20 5 800 - ony esue transfers inside a rank of
0 = g0 | = 600 . .
§ o § o] 5 DPUs increases sublinearly
g 200 § 00 | g .
Z 100 LI & 20 with the number of DPUs.

0 0 - 0 4
RED - = 5 3 SCAN-SSA N 3 3 SCAN-RSS ~ a 3

SAFARI 53

CPU/GPU: Evaluation Methodology

* Comparison of both UPMEM-based PIM systems to
state-of-the-art CPU and GPU

- Intel Xeon E3-1240 CPU
- NVIDIA TitanV GPU

* We use state-of-the-art CPU and GPU counterparts of
PriM benchmarks

- https://github.com/CMU-SAFARI/prim-benchmarks

* We use the largest dataset that we can fit in the GPU
memory

* We show overall execution time, including DPU kernel
time and inter DPU communication

SAFARI 54

https://github.com/CMU-SAFARI/prim-benchmarks

CPU/GPU: Performance Comparison (1)

< 1024.000
'® 256.000
wn

> 64.000
S 16.000
S 4.000
S 1.000
5 0.250
3 0.063
2 0.016
@ 0.004
g 0.001
(Vp)]

O CPU 1 GPU 640 DPUs 2556 DPUs
- 1 1
_ I S p— — !
N R l ~ !
n 1 1
N : : N _| 1 1
N \ My =]] \ r N My I 1
Py A A & I M Iy : :
| M A N N M A I N . i
N & \ o N M y I 1 1
. N N \ d M k y I 1 iy 1
N N N N M K N N 1 - y 1
N . b 1 N 1 h
4 s VIS NN N ! d \ ! N
k A y M Iy A 1 N ! A Ny ! :
_ Iy o N) I M N A | Iy i | N
o o \ A M X \ a 1 1 N i N
| M W ™ Y & M h A 1 & iy 1 N
M A iy i . & 1 k] 1 il I 1
A N i \ A W & N 1 4 Iy 1 iy
N \ My \ =] \ [1] ! M I ! ‘
N N N Iy N N N ! o N iy ! N
<lzlzlgl2lz]als|aly zlzlelel2]z AR
v | D Sl hle|lon|lc| & a|ls|z — | = | <
\] = w o 2 2 | W
T|T z |2 © | S| 3| s
Al & S| 2
o0
More PIM-suitable workloads (1) Less PIM-suitable workloads (2)

The 2,556-DPU and the 640-DPU systems outperform the CPU for

all benchmarks except SpMV, BFS, and NW

The 2,556-DPU and the 640-DPU are, respectively, 93.0x and 27.9x

faster than the CPU for 13 of the PrIM benchmarks

SAFARI

55

CPU/GPU: Performance Comparison (Il)

More PIM-suitable workloads (1)

Less PIM-suitable workloads (2)

The 2,556-DPU outperforms the GPU
for 10 PriIM benchmarks with an average of 2.54x

The performance of the 640-DPU is within 65%

[CPU 1 GPU 640 DPUs 2556 DPUs
< 1024.000 - 7 -
Q - N o 1
© 256.000 - AN AR \ | : |
z 64.000—‘5 A) - I) A -
S 16.000 { | -l RN :
> a0 A8 IR AR) SR o
(a1 _
& 1.000 - - .
= 0250 /|| N1 N R N IHN I R : \ \ ! N
g ~ 8 1Y IS A . \ 1IN
My I
g ooor TR TR AN AN A ¥R N A :: Y D
v 0.001 L A A \ ! §
o
(%) < - >) v - o) < wn %) > > (%) wn [a¥ =l <| =z
182\8|2)7\8(3(8 8] 313|782/ |2|8|3
T T I e = W a z|z|u
<
2|3 AR

the performance of the GPU for the same 10 PriIM benchmarks

SAFARI

56

CPU/GPU: Performance Comparison (lI)

o CPU 1GPU 640 DPUs 2556 DPUs
1024.000 .
256.000 - ¥
64.000 | []
16.000 -
4.000 -
1.000
0.250 -
0.063 -
0.016 -
0.004 -
0.001

A A)

Wl I A

il i A A A

Il A i
A A

i i A
G i

I A |

A i

Il L 4

Il A

Speedup over CPU (log scale)

KEY OBSERVATION 19

The UPMEM-based PIM system can outperform a state-of-the-art GPU
on workloads with three key characteristics:
1. Streaming memory accesses

GMEAN

2. No or little inter-DPU synchronization

3. No or little use of integer multiplication, integer division, or floating
point operations

These three key characteristics make a workload potentially suitable to

the UPMEM PIM architecture.

SAFARI 57

CPU/GPU: Energy Comparison

256.00

o CPU 1 GPU 640 DPUs

128.00 -
64.00 -
32.00 -
16.00 -
8.00 -
4.00 -
2.00 -

1.00

0.50 -
0.25 -
0.13 -
0.06 -
0.03

]

Energy savings over CPU (log scale)
VA

SEL

UNI
BS
HST-S
HST-L
RED

SCAN-SSA
SCAN-RSS

TRNS

More PIM-suitable workloads (1)

GEMV
SpMV
TS
BFS
MLP
NW

Less PIM-suitable workloads (2)

GMEAN (1)

GMEAN (2)

The 640-DPU system consumes on average 1.64x less energy than
the CPU for all 16 PrIM benchmarks

For 12 benchmarks, the 640-DPU system provides energy savings

GMEAN

of 5.23x over the CPU

SAFARI

58

Outline

(« Introduction b
- Accelerator Model

. - UPMEM-based PIM System Overview)

(¢ UPMEM PIM Programming)
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication

| - CPU-DPU/DPU-CPU Transfer Bandwidth)

(» DRAM Processing Unit h
- Arithmetic Throughput

. - WRAM and MRAM Bandwidth y

(¢ PrIM Benchmarks R
- Roofline Model

. - Benchmark Diversity)

(+ Evaluation b
- Strong and Weak Scaling

- Comparison to CPU and GPU Y

* Key Takeaways

SAFARI

Key Takeaway 1

64.00

0.03

Arithmetic Throughput (MOPS, log scale)

32.00 A
16.00 -
8.00 -
4.00 -
2.00 +
1.00 ~
0.50 -
0.25 ~
0.13 ~
0.06 -

(a) INT32, ADD (1 DPU)

Memory-bound
region

Compute-bound

region

@ > A o D o ©
VN <5 Vo v)) v
Q" O ¢ N/ > N

Operational Intensity (OP/B)

KEY TAKEAWAY 1

NV X D

The throughput
saturation point is as low
as ¥a OP/B,

i.e., 1integer addition per
every 32-bit element
fetched

The UPMEM PIM architecture is fundamentally compute bound.

As aresult, the most suitable workloads are memory-bound.

SAFARI

60

Key Takeaway 2

1024.000

o CPU GPU

640 DPUs

2556 DPUs

256.000 -
64.000 -
16.000 -
4.000 -
1.000

0.250 -
0.063 -
0.016 -
0.004 -
0.001

Speedup over CPU (log scale)

VA

SEL

UNI

BS

HST-S
HST-L

RED
SCAN-SSA
SCAN-RSS

TRNS

More PIM-suitable workloads (1)

KEY TAKEAWAY 2
The most well-suited workloads for the UPMEM PIM architecture

use no arithmetic operations or use only simple operations (e.g.,
bitwise operations and integer addition/subtraction).

SAFARI

GEMV
SpMV
TS
BFS
MLP
NW

Less PIM-suitable workloads (2)

GMEAN (1)

GMEAN (2)

GMEAN

01

Key Takeaway 3

_ NV3IND
[A
: (z) NVIWD
o Fg g FFFFyFFrFrd
_ (T) NVIWD
........................ —
o
(7,)
FFEFFFFF e]
_ MN m
| . FEEEEEFEFEFE m
_ d1N o
S
] Q
_ S4d o
©
L A x
: Sl 3
1
(i A N
_ AWdS a
a
(2] | i
Q
2 AW3ID =
i Y R A UL SN P S S P B
(o}
LN
LN
(V]
| & EEEFEFEFFEFF
¥ _ SNY1
| A i A \1'—'
_ SSY-NVIS =
(7] (7]
w | A A A w
o | VSS-NVIS | 8
o -z
< FFFFFFEFFFyFrFyFryFyrFyr) S
e} _ a3y m
" i h
_ 7-1SH o]
©
=
[A A A A u
= : S-1SH]
O >
D " . A A —
_ Sd o
g
[i o
I E INN S
@ FFFFFFFFFg gy FFFFFrFr)
o _ 13S
" i
i VA
O OO 0O 00O Mm W
OO0 OO0 00O WMNMmMuLVU-HOOoO
©Co0oooonNOOoOoOo
T O <FT O T H OO O OO
N 1N O
(@ Mo\
—

(1e3s 80]) NdD 49n0 dnpaads

KEY TAKEAWAY 3

=
J—y
A
=
=
=
o
=
<)
=
wd
o
=
2
.=
9
S
k
o
=)
=
=
<]
=
=
?
O
=
wd
2]
=
=
<)
=
=

7))
—
A
an]

7]

7]

(@)

S

()

«

e

o
u
b

«

()
u

S

=

=]

(S

o

e

B

(@)

Q
o
)
b
“

Q
=

=]

op

[<B)

9

L

|

-
)

()

Q
b
u
=

1)

)

4+

_—
=
(@)
ﬁ
°)
=
=
=]
£
£
(@)
()
=
(=
2
B
Q
)
=
&

62

SAFARI

Key Takeaway 4

KEY TAKEAWAY 4

e UPMEM-based PIM systems outperform state-of-the-art CPUs in
terms of performance and energy efficiency on most of PrIM
benchmarks.

e UPMEM-based PIM systems outperform state-of-the-art GPUs on

a majority of PrIM benchmarks, and the outlook is even more
positive for future PIM systems.

e UPMEM-based PIM systems are more energy-efficient than state-
of-the-art CPUs and GPUs on workloads that they provide
performance improvements over the CPUs and the GPUs.

SAFARI

Executive Summary

+ Data movement between .memo(?//stora ge units and compute units is a major
contributor to execution time and energy consumption

. Processing-in—l\/\emory (PIM) is a paradigm that can tackle the data movement
bottlenec
- Though explored for +50 years, technology challenges prevented the successful materialization

* UPMEM has designed and fabricated the first publicly-available real-world PIM
architecture
- DDR4 chips embedding in-order multithreaded DRAM Processing Units (DPUs)

* Our work:
- Introduction to UPMEM programming model and PIM architecture
- Microbenchmark-based characterization of the DPU
- Benchmarking and workload suitability study

* Main contributions:
- Comprehensive characterization and analysis of the first commercially-available PIM architecture

- PrIM (Processing-In-Memory) benchmarks:
* 16 workloads that are memory-bound in conventional processor-centric systems
» Strong and weak scaling characteristics

- Comparison to state-of-the-art CPU and GPU

* Takeaways:
- Workload characteristics for PIM suitability

- Programming recommendations
- Suggestions and hints for hardware and architecture designers of future PIM systems
- PrIM: (a) programming samples, (b) evaluation and comparison of current and future PIM systems

SAFARI 64

Understanding a Modern PIM Architecture

Understanding a Modern Processing-in-Memory Architecture:
Benchmarking and Experimental Characterization

1

Juan Gémez-Luna! Izzat E1 Hajj> Ivan Fernandez!3 Christina Giannoula®-*

Geraldo F. Oliveira! Onur Mutlu!
IETH Ziirich 2American University of Beirut *University of Malaga *National Technical University of Athens

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

SAFARI 65

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

PrIM Repository

* All microbenchmarks, benchmarks, and scripts
* https://github.com/CMU-SAFARI/prim-benchmarks

H CMU-SAFARI/ prim-benchmarks @ Unwatch ~ 2 {7 star 2 % Fork 1

<> Code () Issues 1 Pull requests (*) Actions ["1] Projects [wiki () Security [~ Insights 51 Settings

¥ main + prim-benchmarks / README.md Go to file

Juan Gomez Luna PrIM -- first commit Latest commit 3desb49 9 days ago O History

A 1 contributor

‘= 168 lines (132 sloc) 5.79 KB Raw Blame G 2 O

PrIM (Processing-In-Memory Benchmarks)

PrIM is the first benchmark suite for a real-world processing-in-memory (PIM) architecture. PrIM is developed to evaluate,
analyze, and characterize the first publicly-available real-world processing-in-memory (PIM) architecture, the UPMEM PIM
architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called
DRAM Processing Units (DPUs), integrated in the same chip.

PrIM provides a common set of workloads to evaluate the UPMEM PIM architecture with and can be useful for programming,
architecture and system researchers all alike to improve multiple aspects of future PIM hardware and software. The workloads
have different characteristics, exhibiting heterogeneity in their memory access patterns, operations and data types, and
communication patterns. This repository also contains baseline CPU and GPU implementations of PrIM benchmarks for
comparison purposes.

Prim also includes a set of microbenchmarks can be used to assess various architecture limits such as compute throughput and
memory bandwidth.

SAFARI 66

https://github.com/CMU-SAFARI/prim-benchmarks

Understanding a Modern
Processing-in-Memory Architecture:

Benchmarking and Experimental Characterization

Juan Gomez Luna, Izzat El Hajj,
lvan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, Onur Mutlu

ellgoluj@gmail.com

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

m Ziirich SA F A R ’

https://arxiv.org/pdf/2105.03814.pdf
https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

