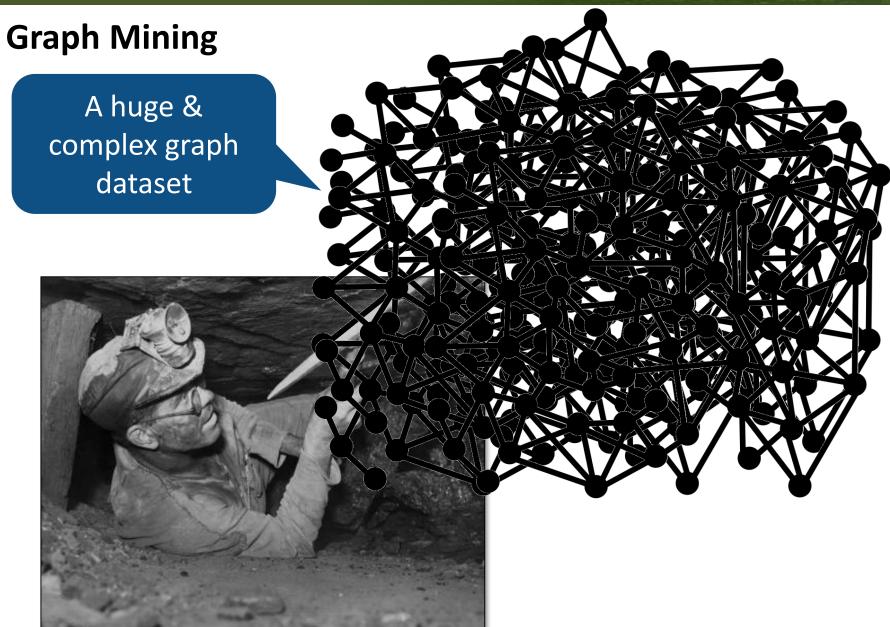


ProbGraph: High-Performance and High-Accuracy Graph Mining with Probabilistic Set Representations

M. BESTA, C. MIGLIOLI, P. S. LABINI, J. TĚTEK, P. IFF, R. KANAKAGIRI, S. ASHKBOOS, K. JANDA, M. PODSTAWSKI, G. KWASNIEWSKI, N. GLEINIG, F. VELLA, O. MUTLU, T. HOEFLER.

Graph Mining



Graph Mining

A huge &

complex graph

dataset

Pattern counting (triangles, higherorder cliques, dense subgraphs, ...)

Graph Mining

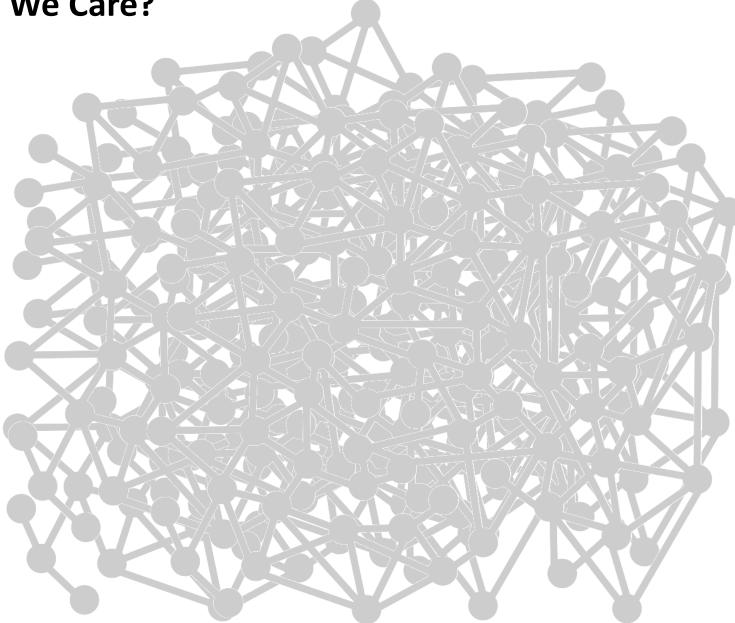
A huge &

complex graph

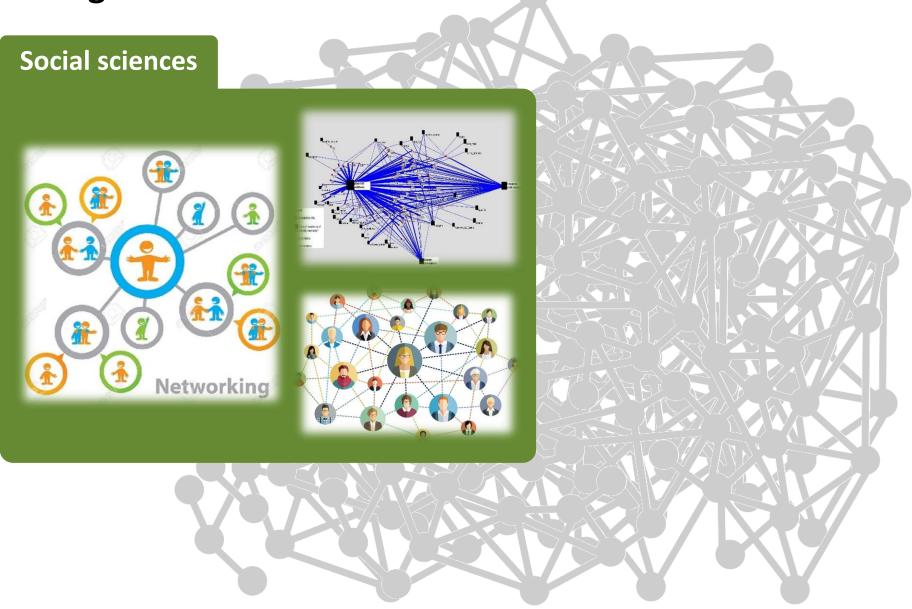
dataset

Pattern counting (triangles, higherorder cliques, dense subgraphs, ...)

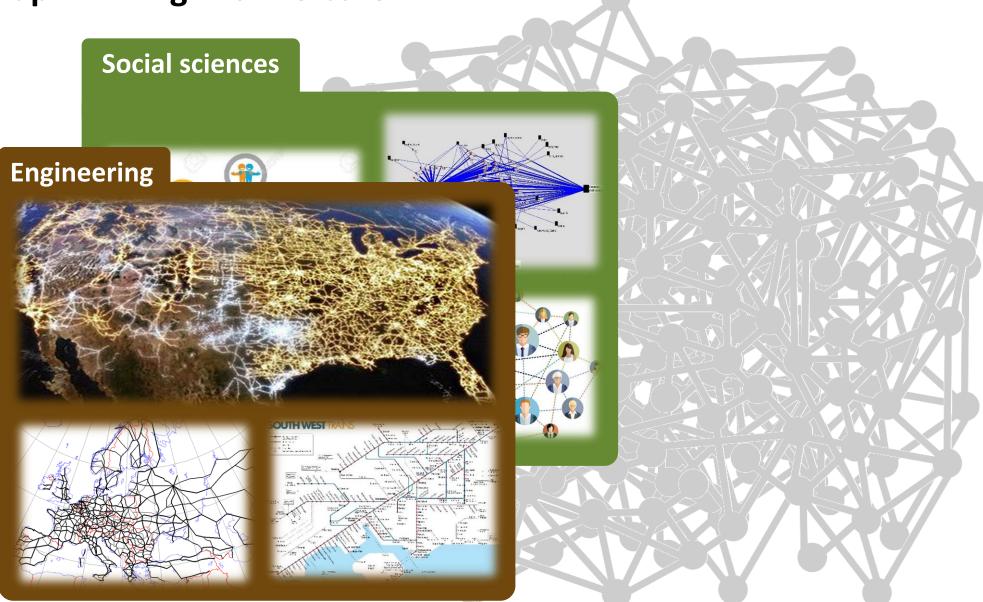
Clustering, Link Prediction, Vertex Similarity, ...



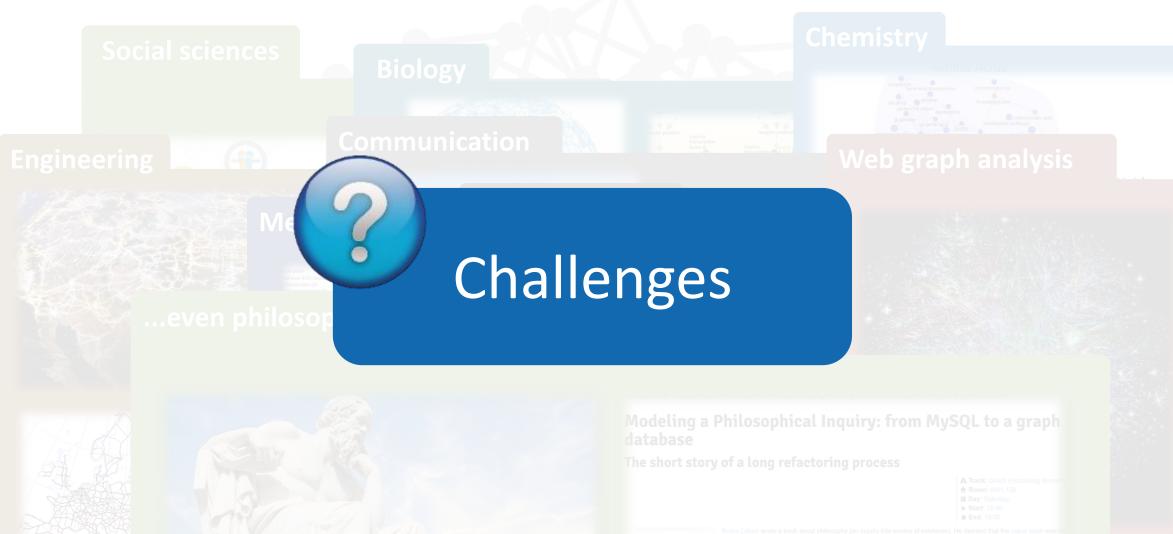
The second Part of



The second reality of



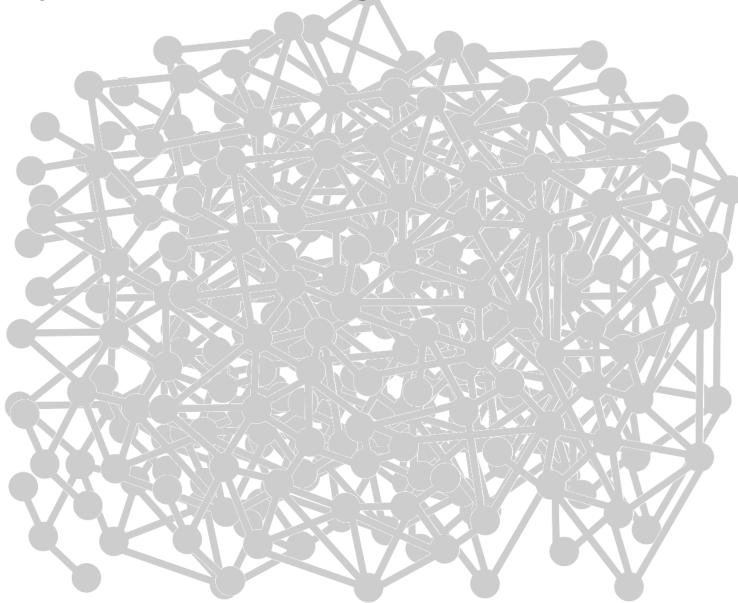
Graph Mining: Do We Care?



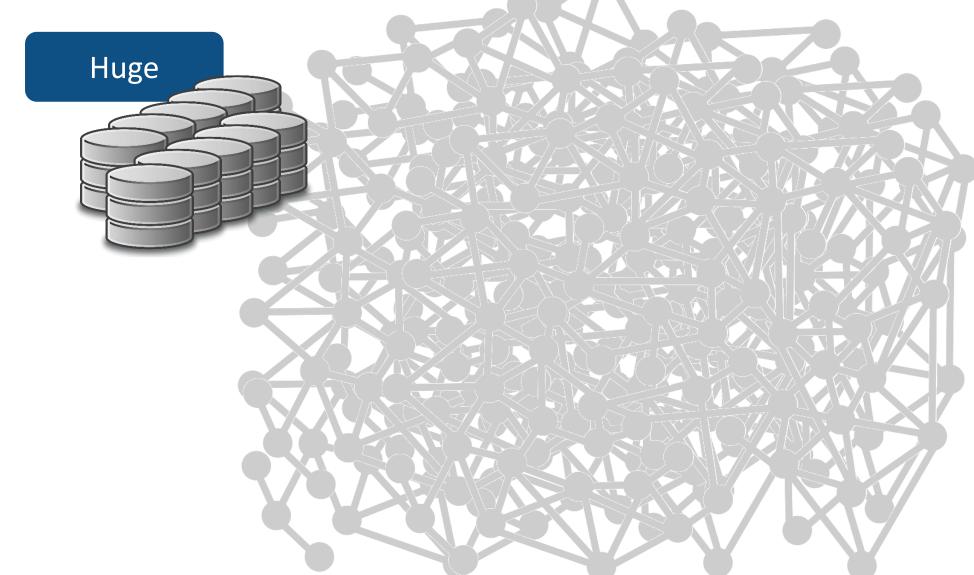
The state of the s

are the numerous brooks proceeding takin any plasmy the state of plasmy plasmy the state of the

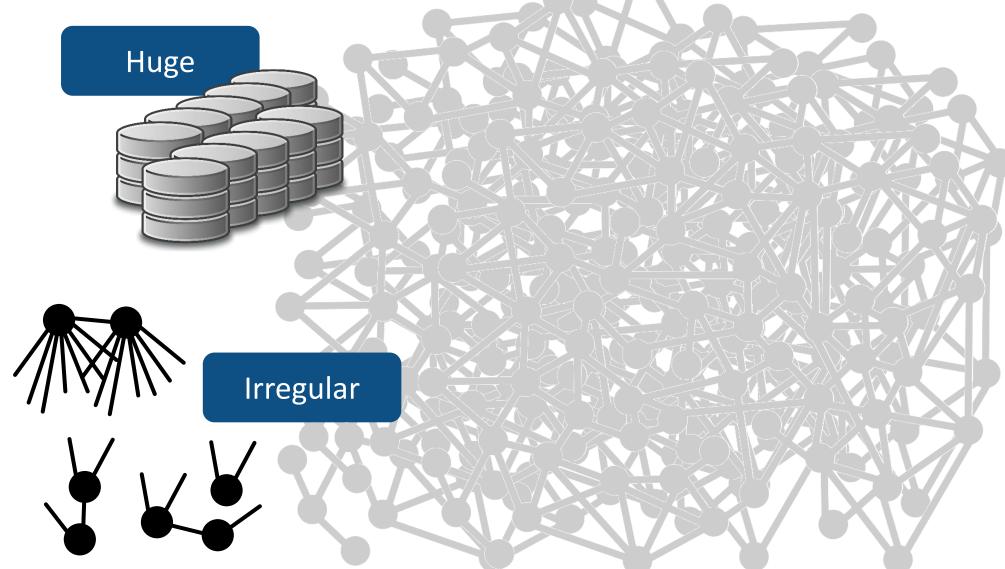
Graph Mining & Graph Datasets: Challenges



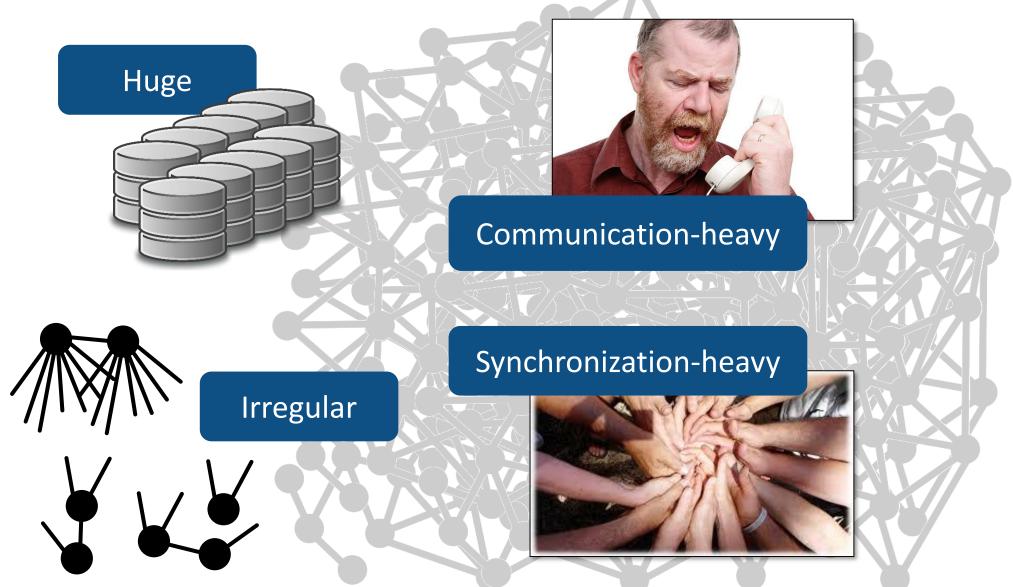
Graph Mining & Graph Datasets: Challenges



Graph Mining & Graph Datasets: Challenges



Graph Mining & Graph Datasets: Challenges



Huge

Graph Mining & Graph Datasets: Challenges

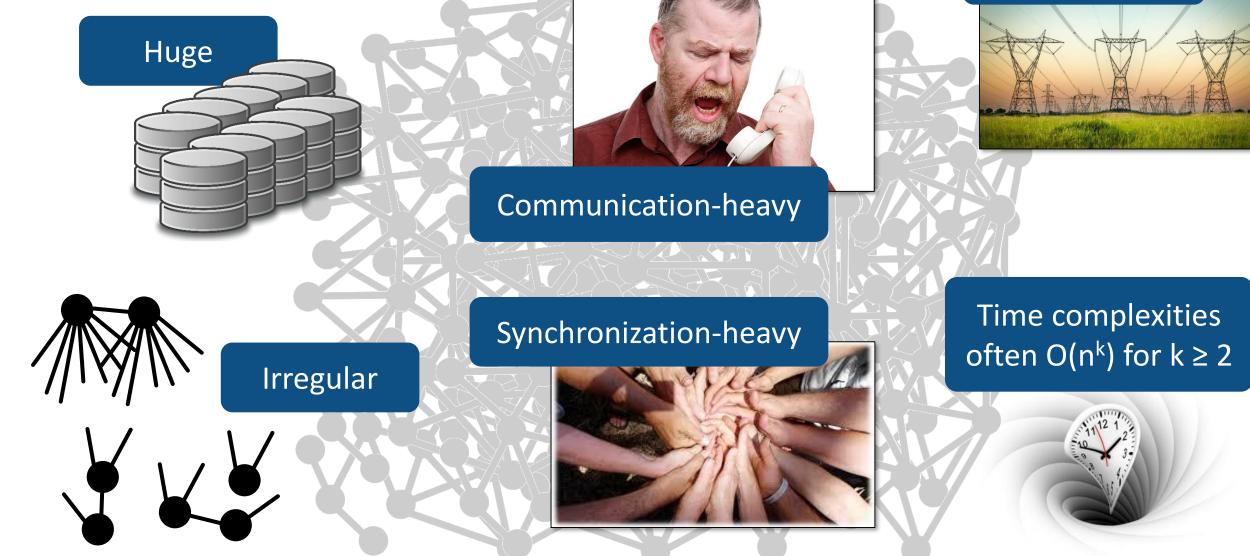
Irregular

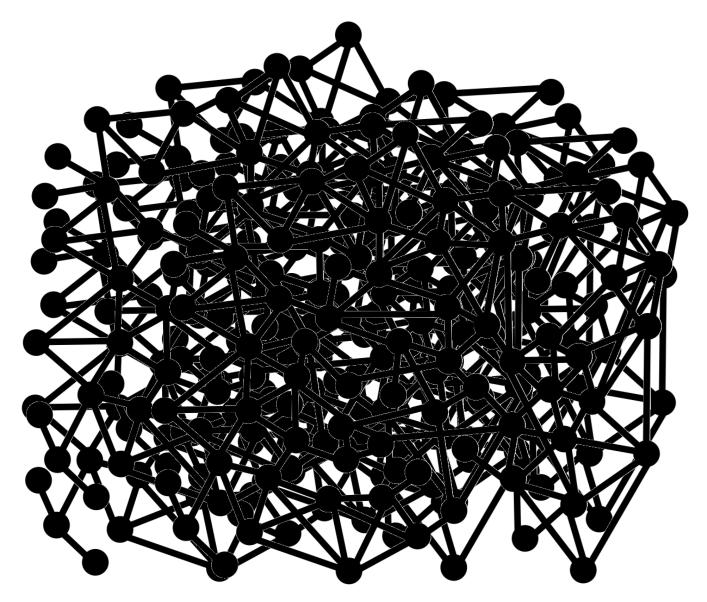
Communication-heavy

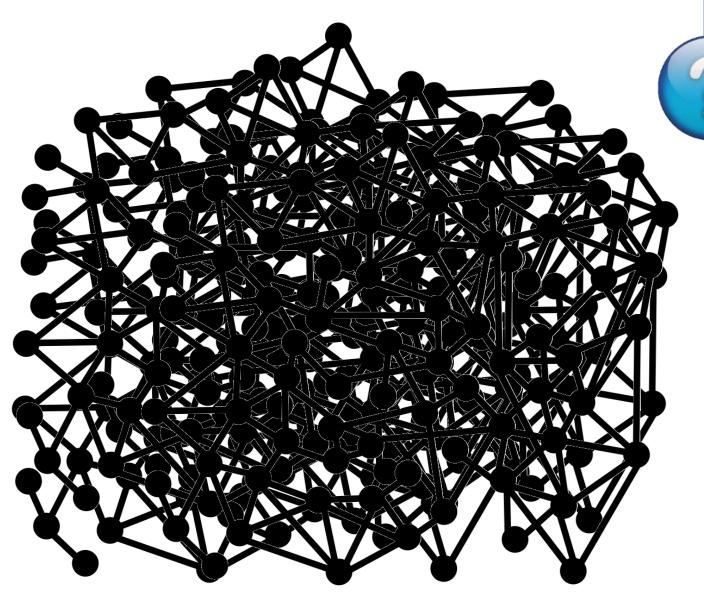
Power-hungry

Synchronization-heavy

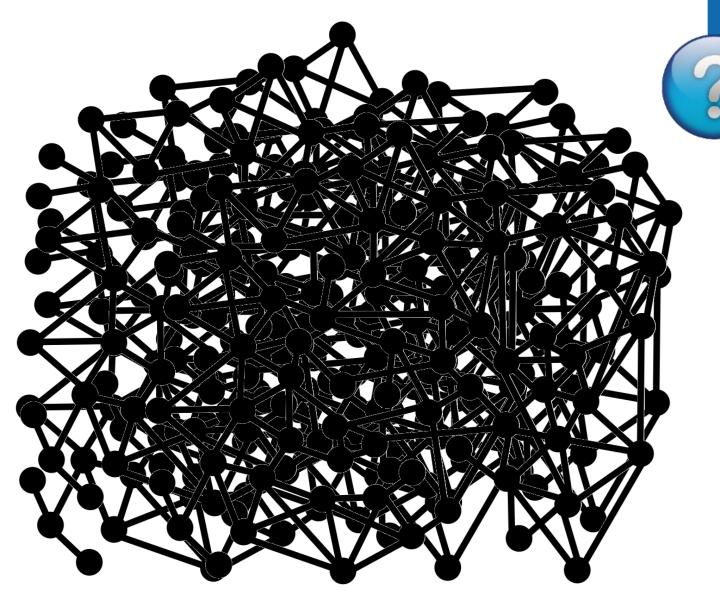
Graph Mining & Graph Datasets: Challenges







Do we need 100% accurate results in all cases?



Do we need 100% accurate results in all cases?

Let's say we can choose between...

Find all the patterns (e.g., cliques) in 1 day

Find ≥ 90% of all the patterns in 30 minutes

The choice is yours

Choose wisel

Do we need 100% accurate results in all cases?

Let's say we can choose between...

Find all the patterns (e.g., cliques) in 1 day

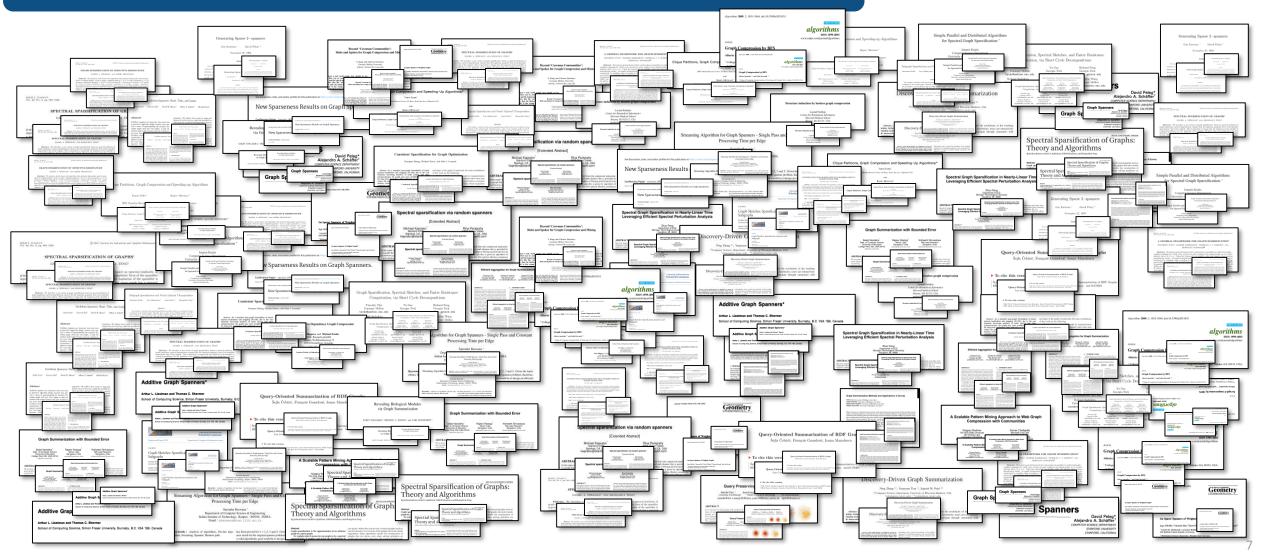
Find ≥ 90% of all the patterns in 30 minutes

Start Start Barris Start Start

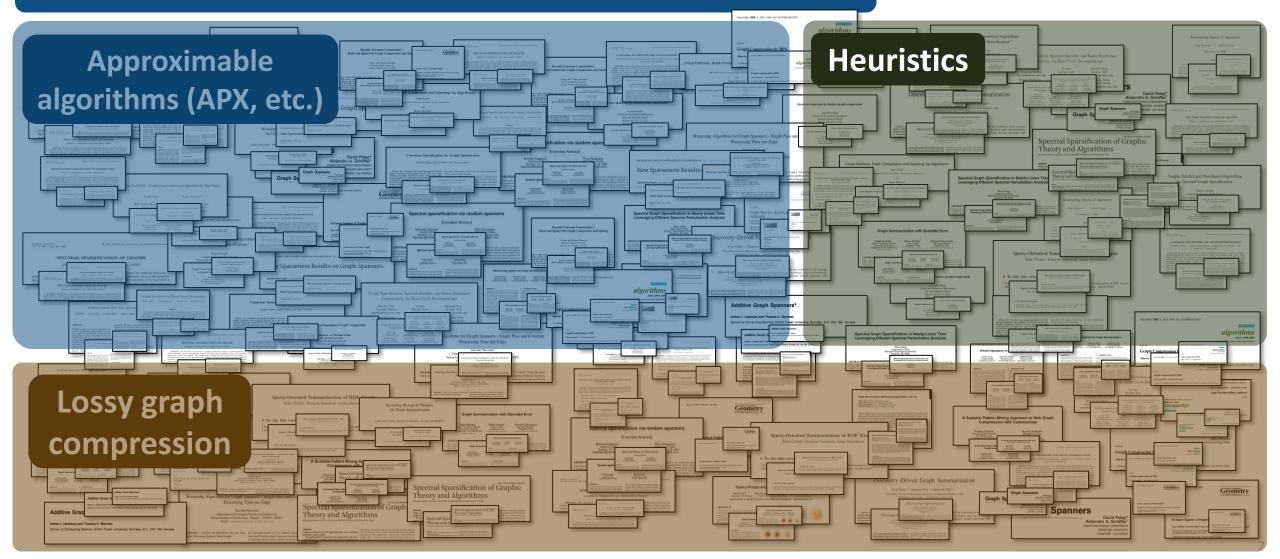
SPCL

Approximate Graph Processing: State & Challenges

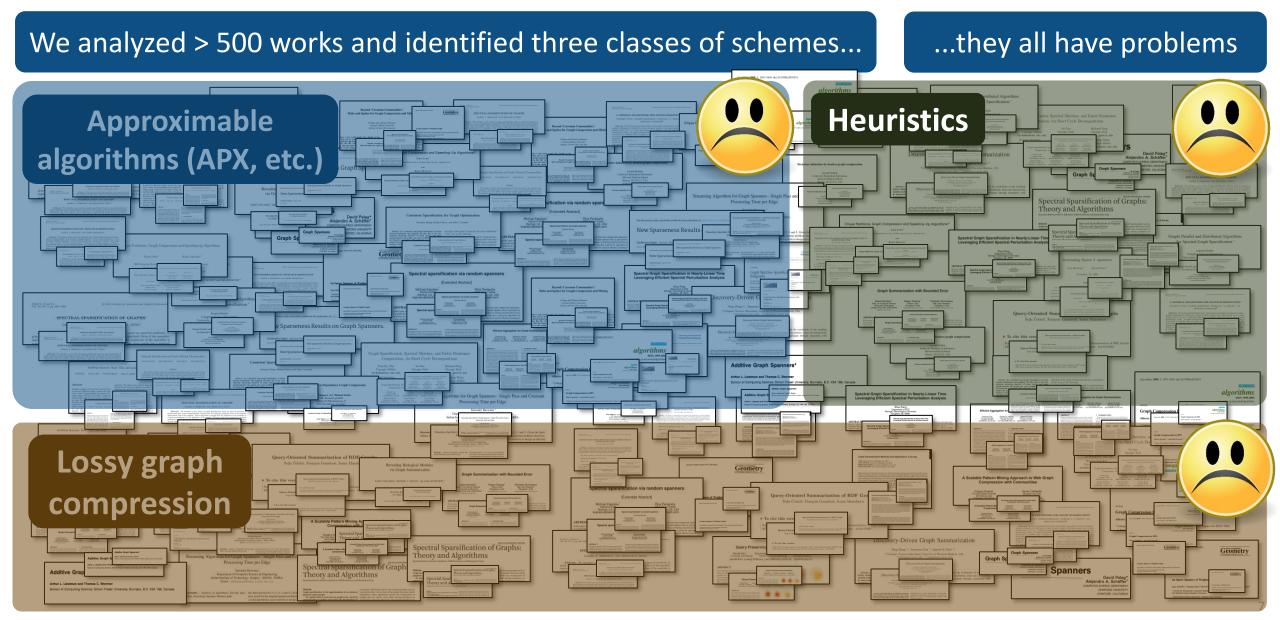
We analyzed > 500 works and identified three classes of schemes...



We analyzed > 500 works and identified three classes of schemes...



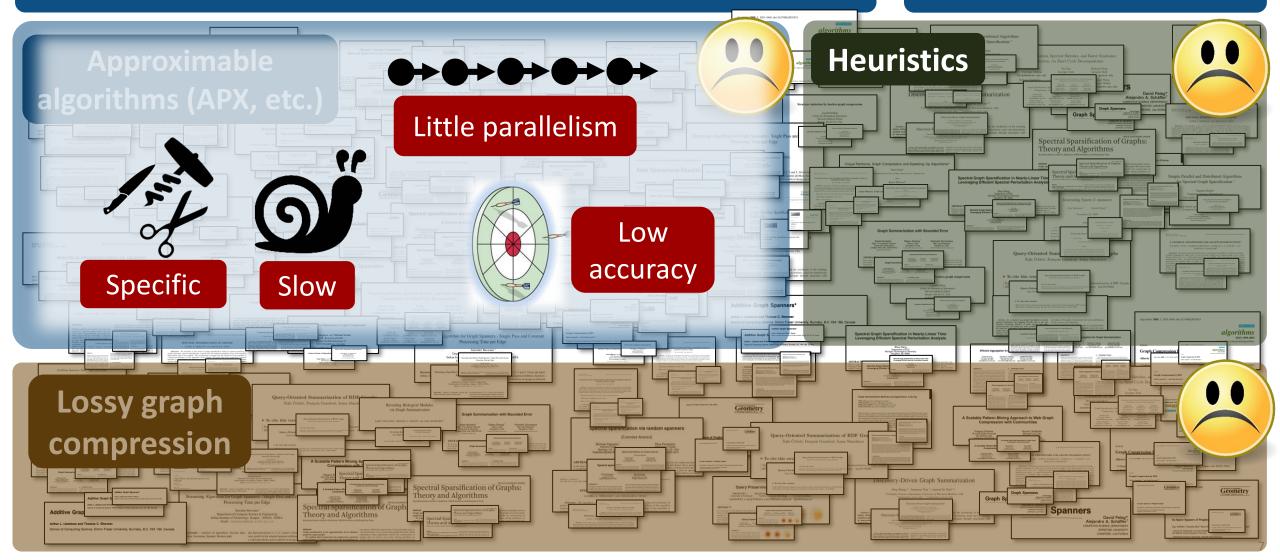
A CONTRACTOR THE THE



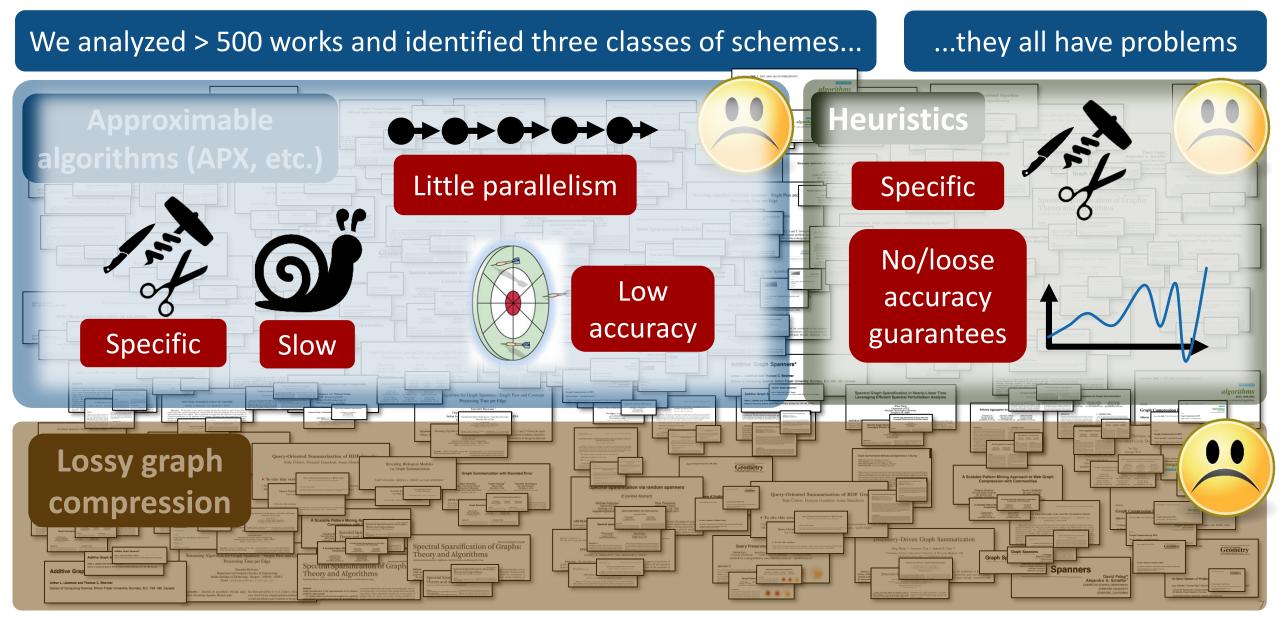
The sector of the top

We analyzed > 500 works and identified three classes of schemes...

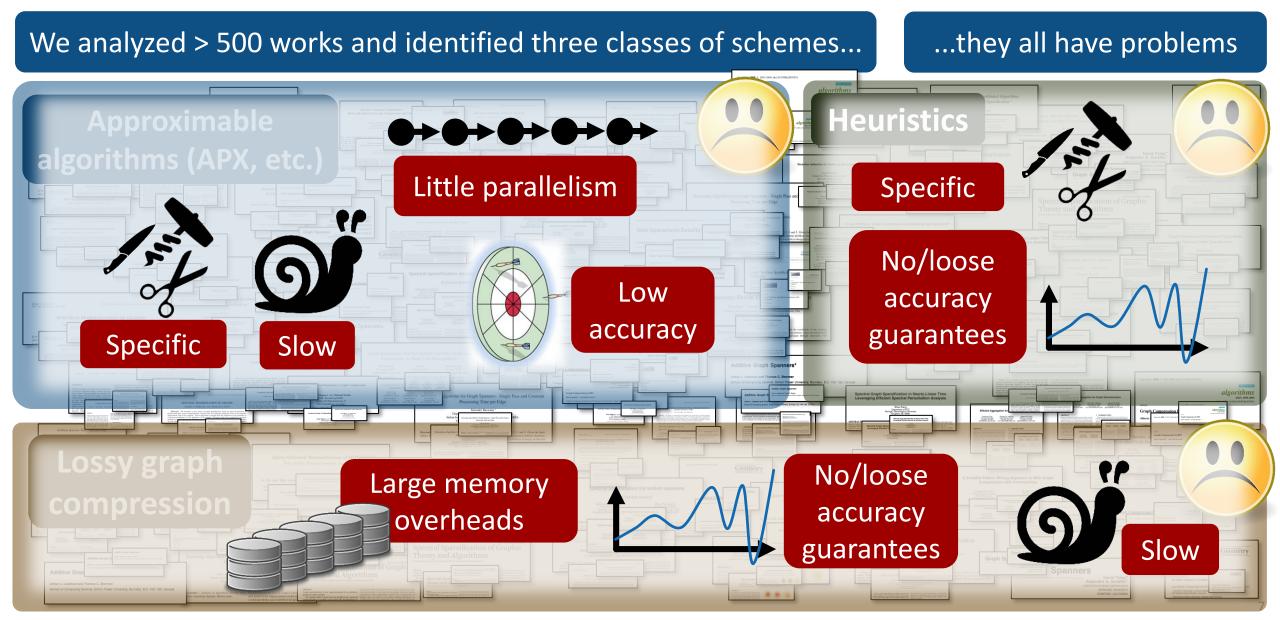
...they all have problems



Cartana - ----



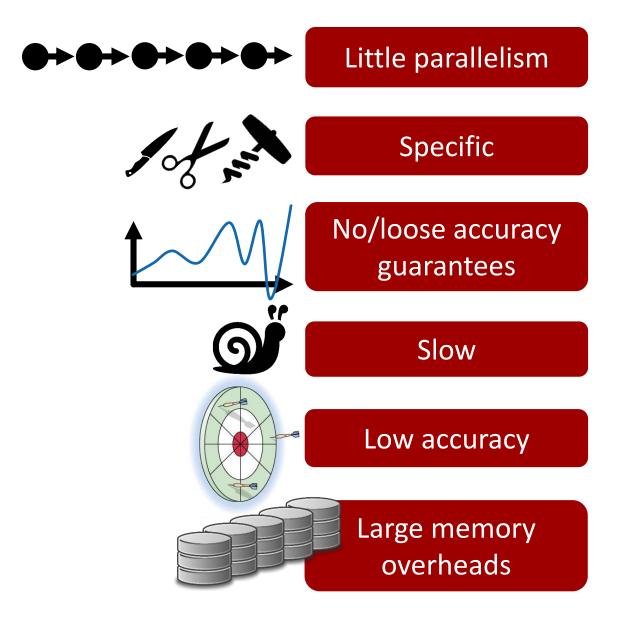
Party and and the

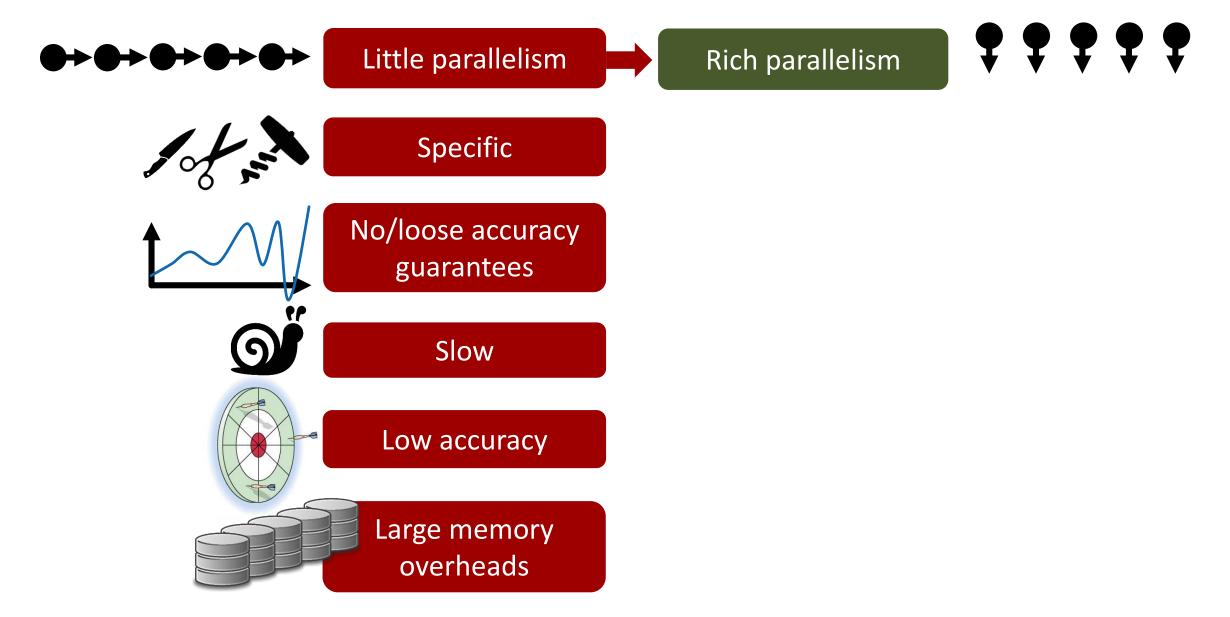


Station -

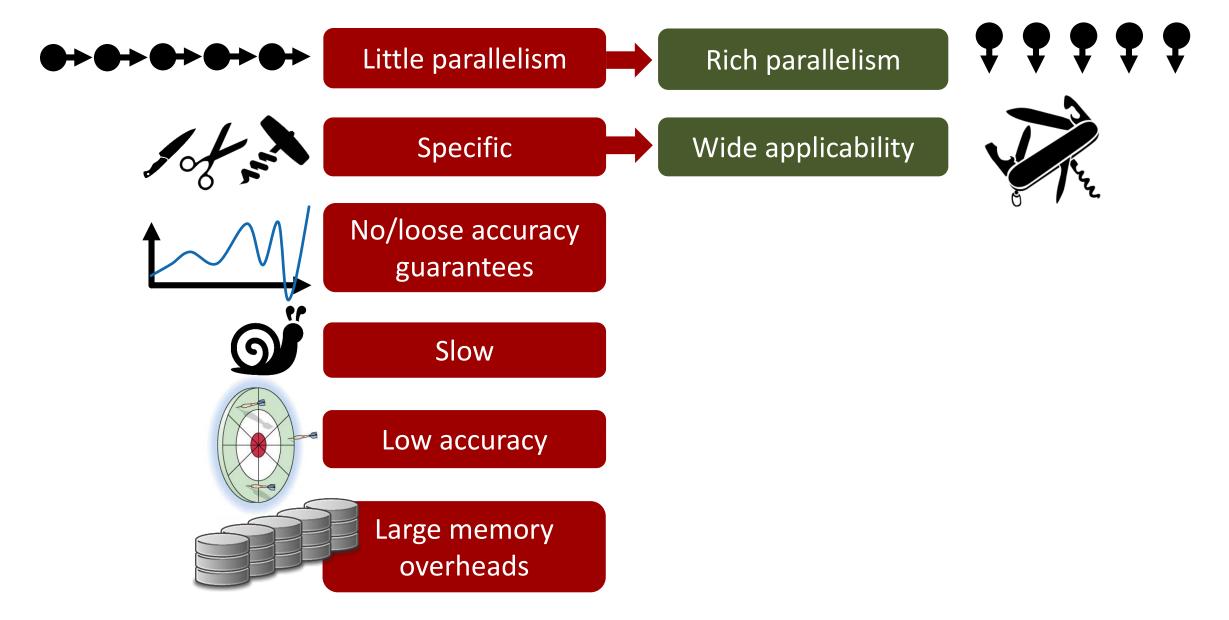
Mary & Barris Participation

all of the second second second

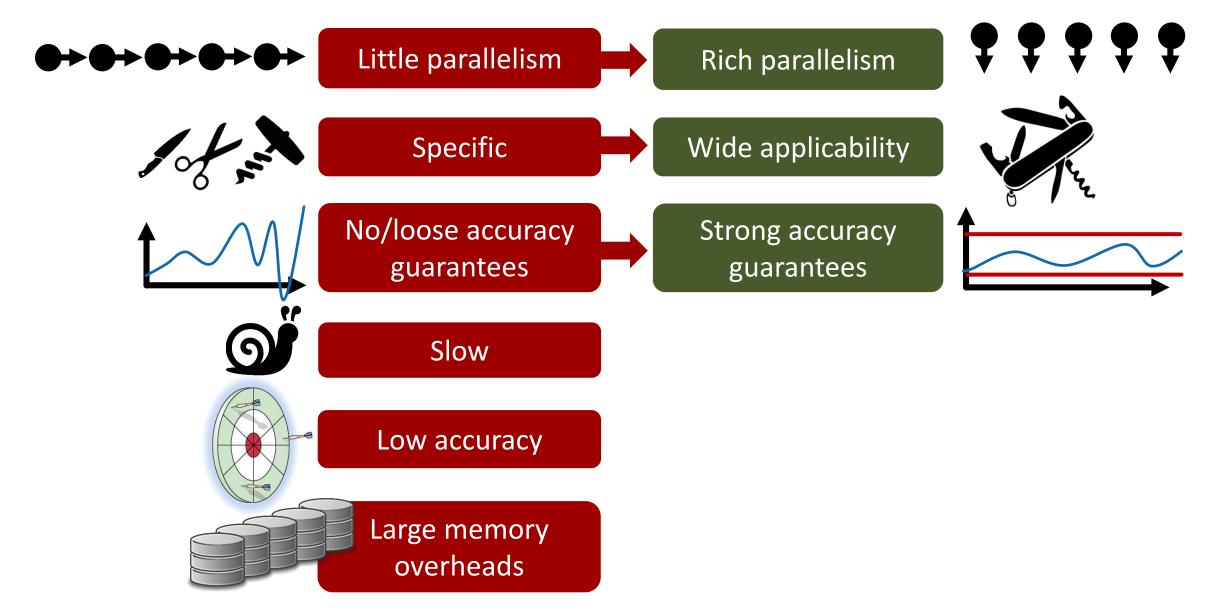




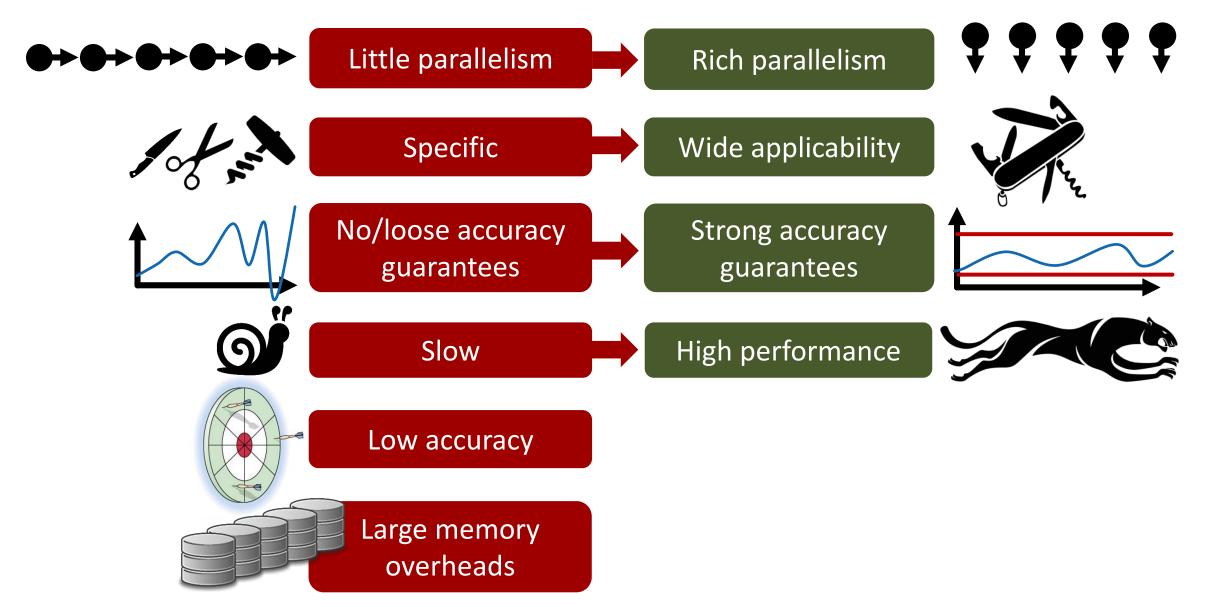
and the second second second



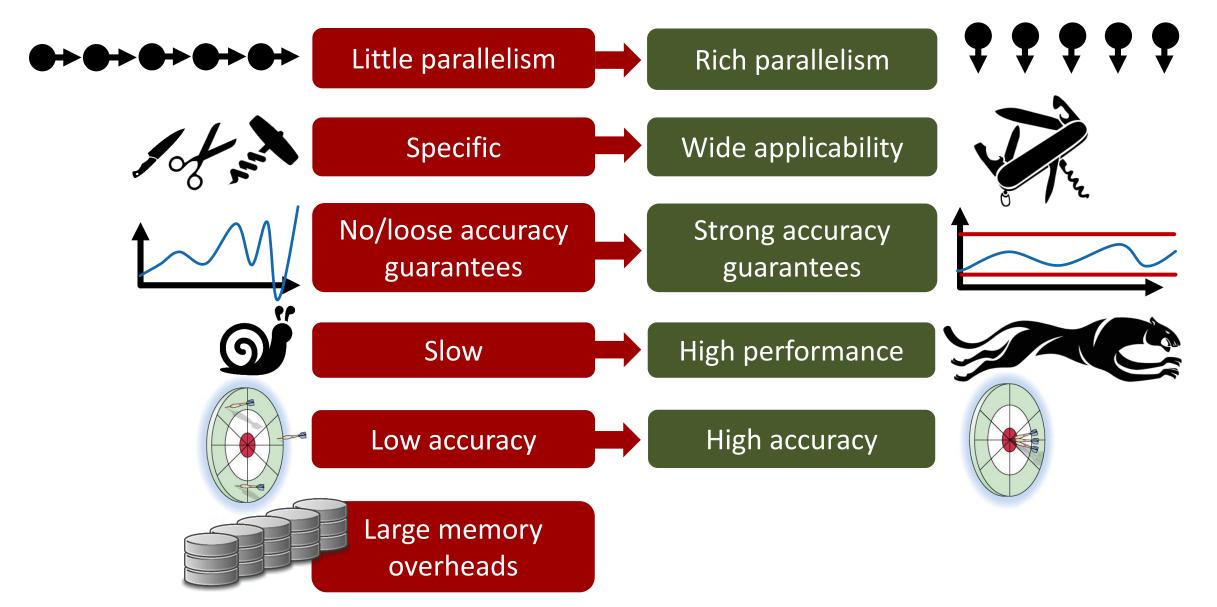
A CONTRACTOR OF



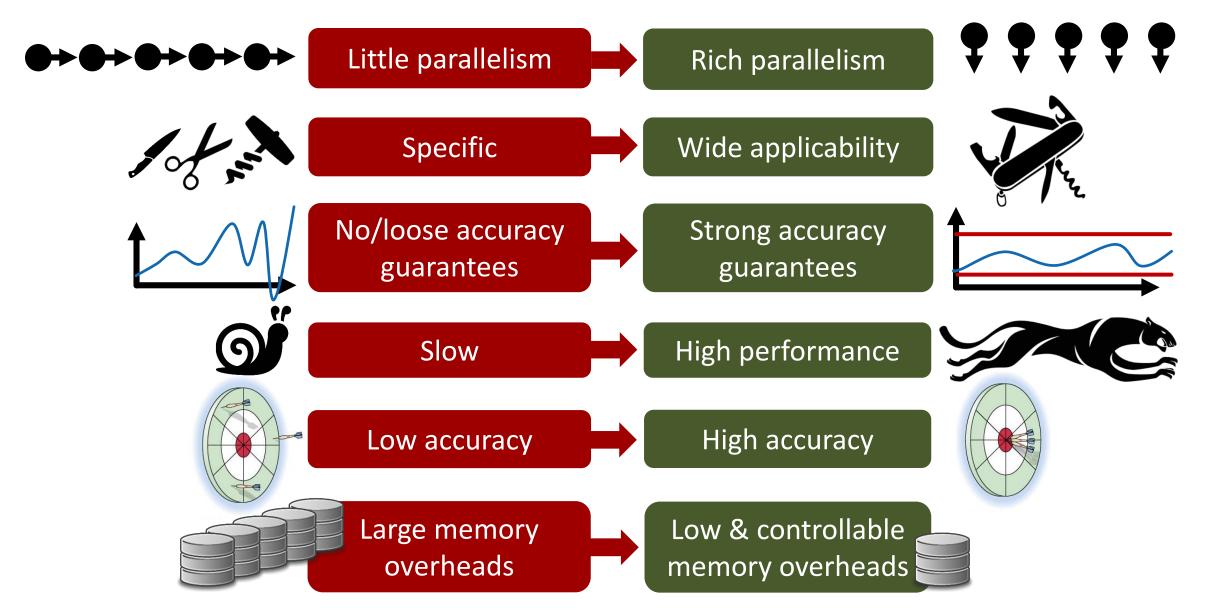
all the second



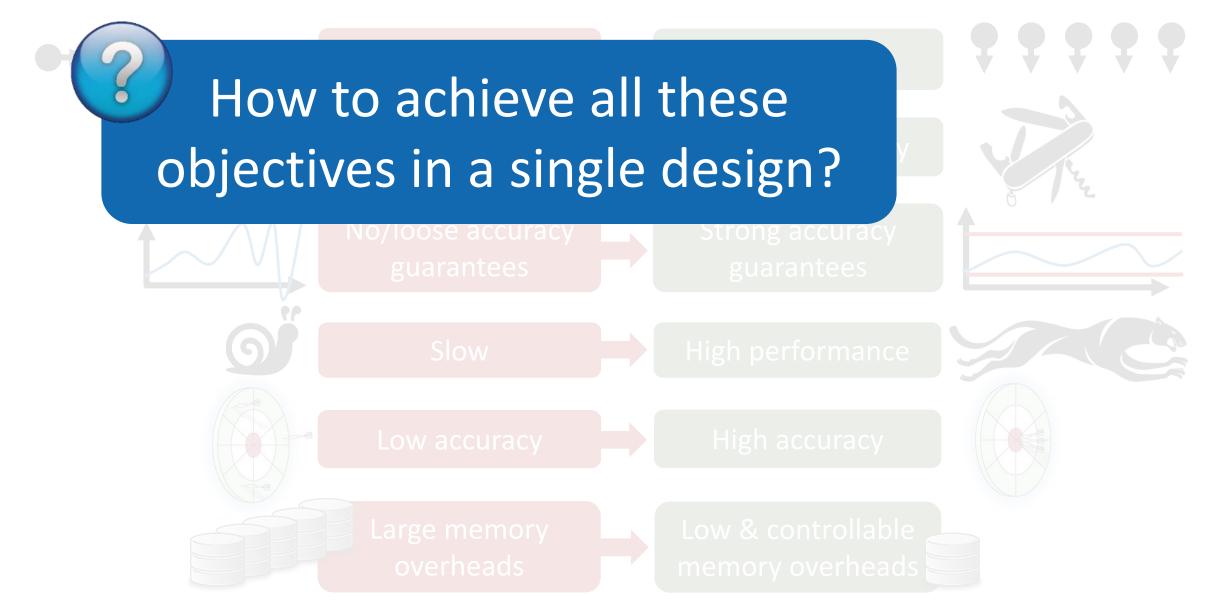
Contraction of the second



Contra and and



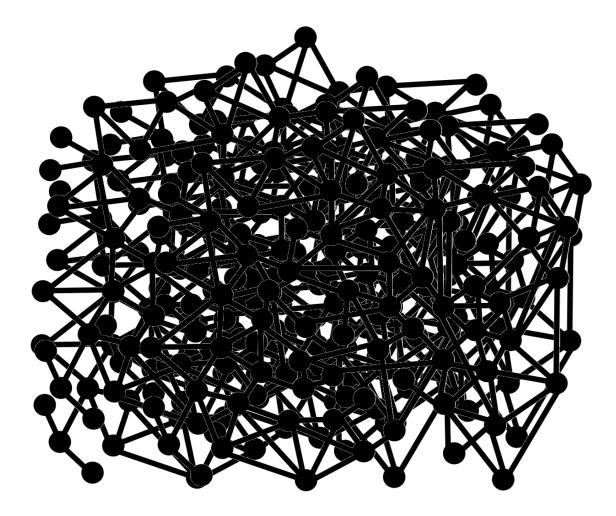
The second



A PARA CARACTER

Approximate Graph Processing: Current Issues & Our Objectives

a line and a second

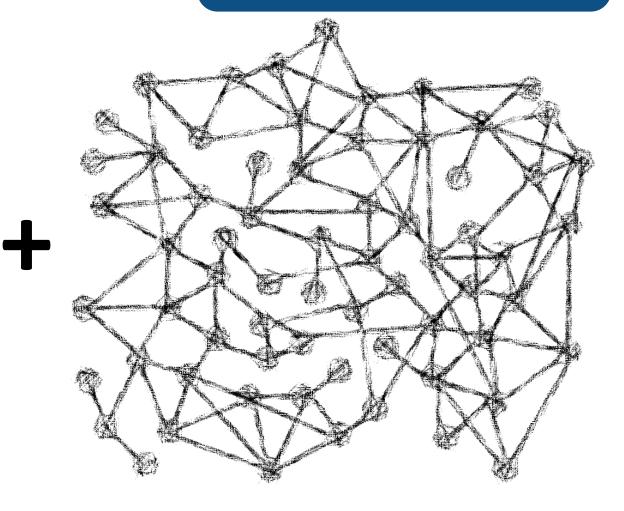


Keep the original graph

Keep the original graph

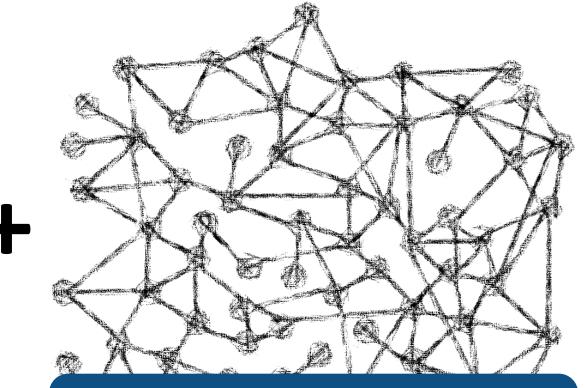


Maintain a very small "sketch" of a graph



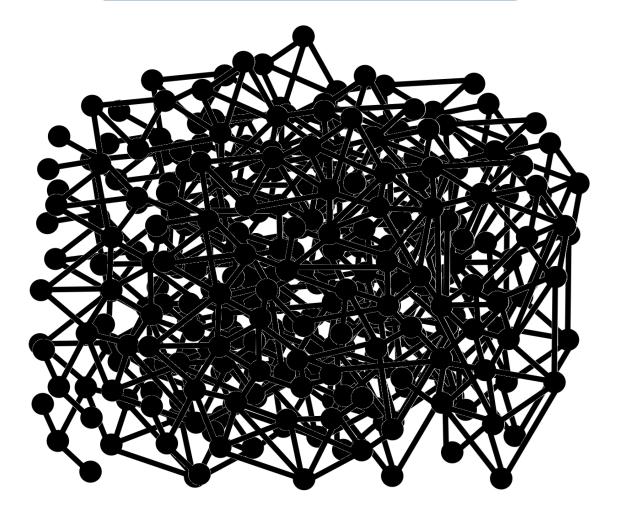
Keep the original graph

Maintain a very small "sketch" of a graph



Use the sketch to answer performance critical queries

Keep the original graph



Maintain a very small "sketch" of a graph

What design to use for the sketch, to satisfy all the goals?

Use the sketch to answer performance critical queries

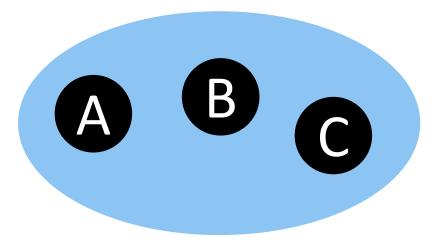
<u>ProbGraph key idea</u>: Use probabilistic set representations (set sketches) $-\frac{1}{2}$

as a the section of the

A CAR AND A COMPANY AND

<u>ProbGraph key idea</u>: Use probabilistic set representations (set sketches)

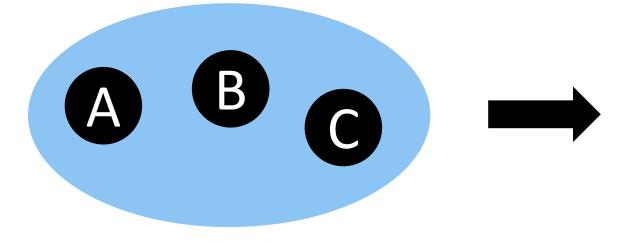
A set = {A, B, C}



ProbGraph key idea: Use probabilistic set representations (set sketches)

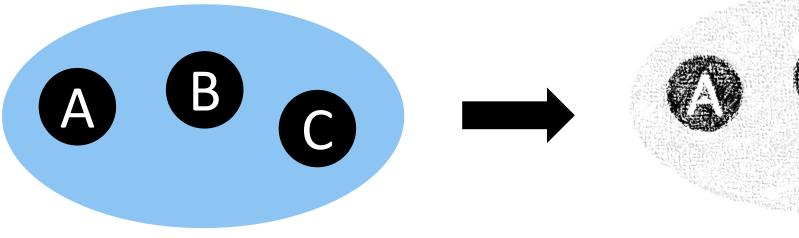
and the manufacture way

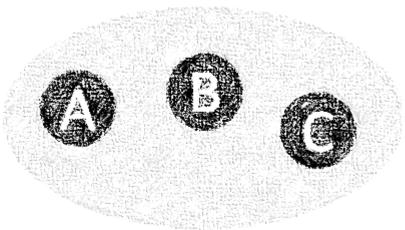
A set = $\{A, B, C\}$



<u>ProbGraph key idea</u>: Use probabilistic set representations (set sketches)

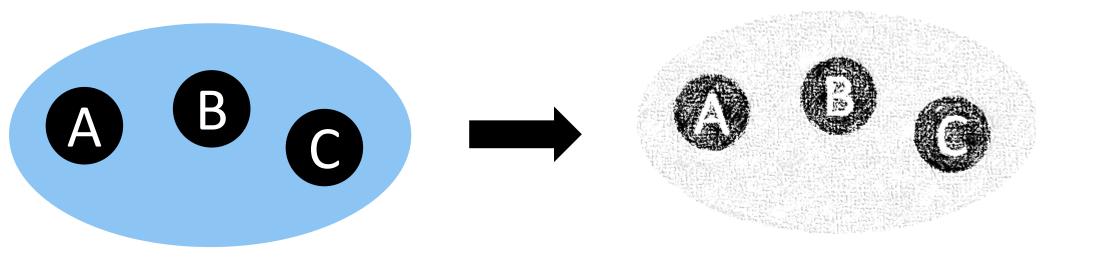
A set = $\{A, B, C\}$



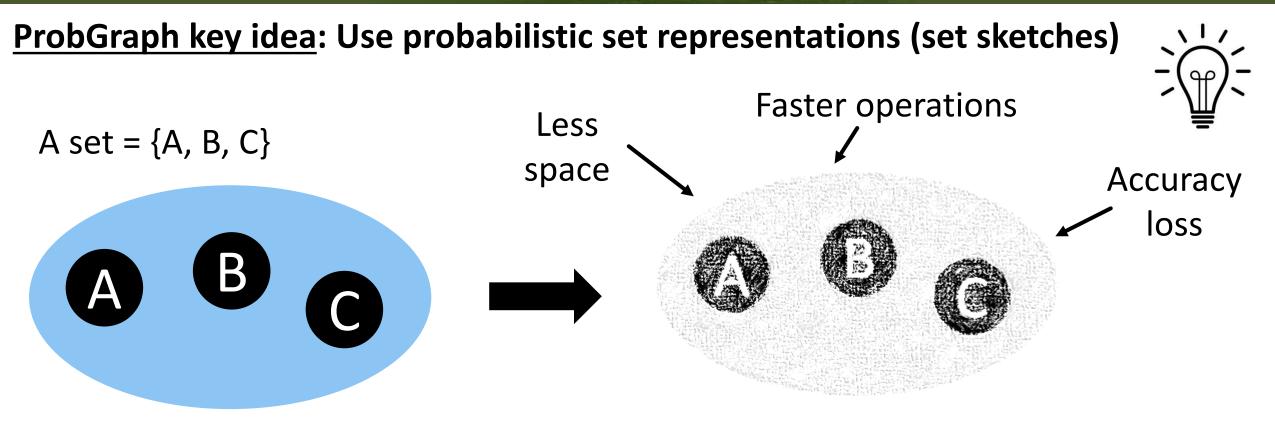


<u>ProbGraph key idea</u>: Use probabilistic set representations (set sketches)

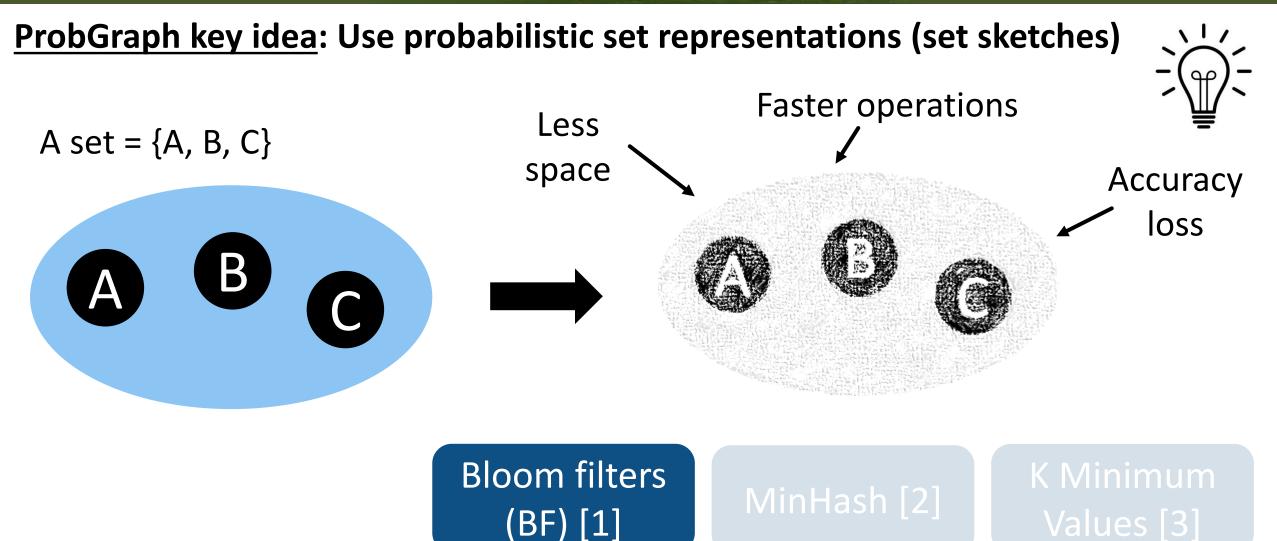
A set = $\{A, B, C\}$



[1] B. H. Bloom, "Space/time trade-offs in hash coding with allowable errors", CACM, 1970.
[2] A. Z. Broder, "On the resemblance and containment of documents", IEEE SEQUENCES, 1997.
[3] Z. Bar-Yossef et al., "Counting distinct elements in a data stream", in RANDOM, 2002.



[1] B. H. Bloom, "Space/time trade-offs in hash coding with allowable errors", CACM, 1970.
[2] A. Z. Broder, "On the resemblance and containment of documents", IEEE SEQUENCES, 1997.
[3] Z. Bar-Yossef et al., "Counting distinct elements in a data stream", in RANDOM, 2002.



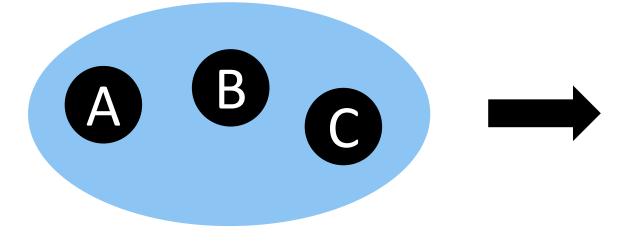
a second

[1] B. H. Bloom, "Space/time trade-offs in hash coding with allowable errors", CACM, 1970.
[2] A. Z. Broder, "On the resemblance and containment of documents", IEEE SEQUENCES, 1997.
[3] Z. Bar-Yossef et al., "Counting distinct elements in a data stream", in RANDOM, 2002.

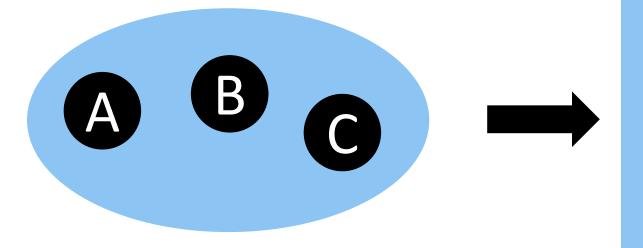
Station -

Bloom Filters for Graph Mining

A set = $\{A, B, C\}$



A set = $\{A, B, C\}$

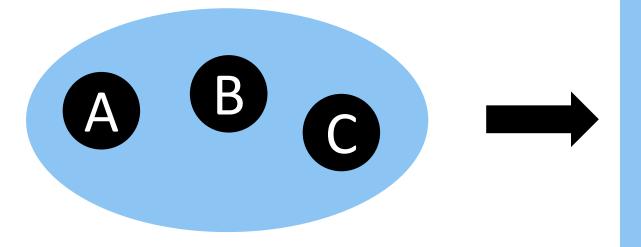


Bloom filter \mathcal{B}_X of X

The second

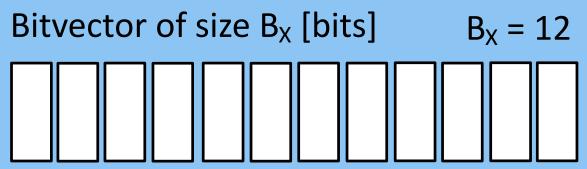
Bitvector of size B_X [bits]

A set = $\{A, B, C\}$

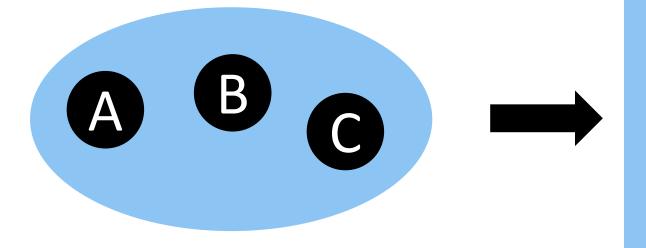


Bloom filter \mathcal{B}_X of X

all the second

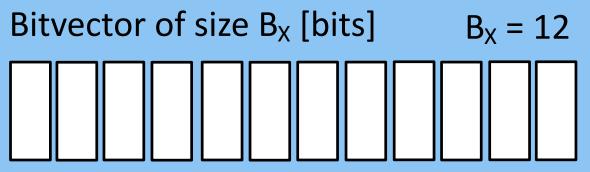


A set = $\{A, B, C\}$



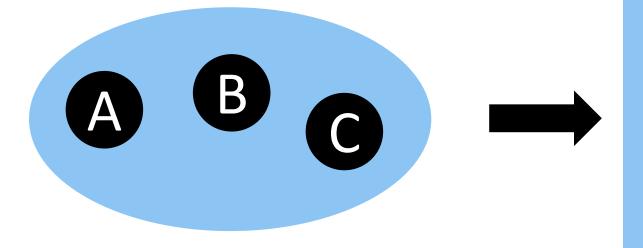
Bloom filter \mathcal{B}_X of X

A CONTRACTOR



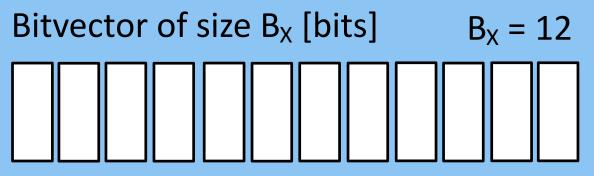
Hash functions $h_1, ..., h_b$ $h_i : X \rightarrow \{1, ..., B_X\}$

A set = $\{A, B, C\}$



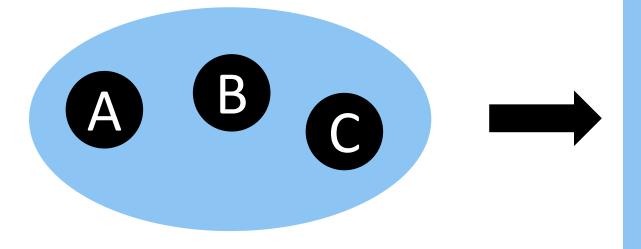
Bloom filter \mathcal{B}_X of X

Contained and



Hash functions $h_1, ..., h_b$ $h_i : X \to \{1, ..., B_X\}$ b = 2 $h_2, h_1 : X \to \{1, ..., 12\}$

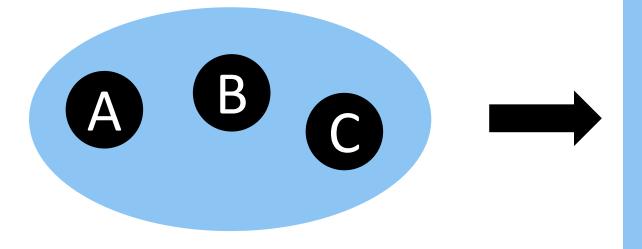
A set = $\{A, B, C\}$



Bloom filter \mathcal{B}_{X} of X Bitvector of size B_x [bits] $B_{\rm X} = 12$ Hash functions $h_1, ..., h_b$ $h_i: X \rightarrow \{1, ..., B_X\}$ b = 2 $h_2, h_1 : X \rightarrow \{1, ..., 12\}$ $h_1(A) = 3$ $h_2(A) = 5$

all the second and the

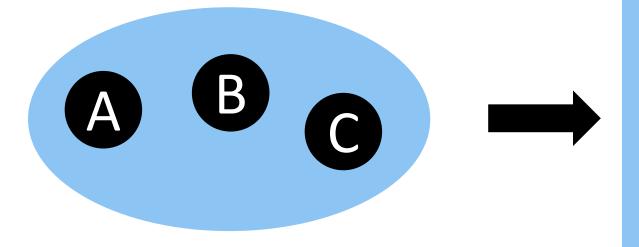
A set = $\{A, B, C\}$



Bloom filter \mathcal{B}_{X} of X Bitvector of size B_x [bits] $B_{\rm X} = 12$ Hash functions $h_1, ..., h_b$ $h_i: X \rightarrow \{1, ..., B_X\}$ b = 2 $h_2, h_1 : X \rightarrow \{1, ..., 12\}$ $h_1(A) = 3$ $h_2(A) = 5$ = 5

all the second s

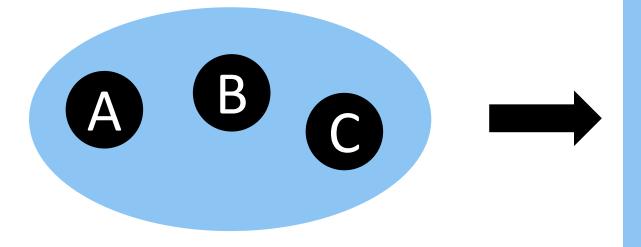
A set = $\{A, B, C\}$



Bloom filter \mathcal{B}_{X} of X Bitvector of size B_x [bits] $B_{\rm X} = 12$ Hash functions $h_1, ..., h_b$ $h_i: X \rightarrow \{1, ..., B_X\}$ b = 2 $h_2, h_1 : X \rightarrow \{1, ..., 12\}$ $h_1(A) = 3$ $h_1(B) = 1$ $h_2(B) = 5 h_2(B) = 8$

eller a second the

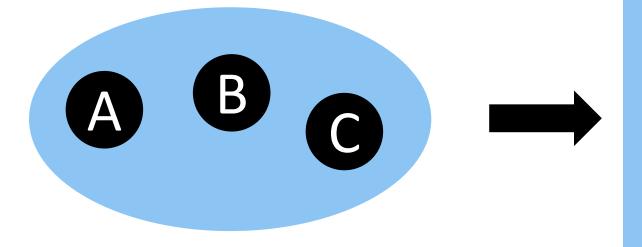
A set = $\{A, B, C\}$



Bloom filter \mathcal{B}_{X} of X Bitvector of size B_x [bits] $B_{x} = 12$ Hash functions $h_1, ..., h_b$ $h_i: X \rightarrow \{1, ..., B_X\}$ b = 2 $h_2, h_1 : X \rightarrow \{1, ..., 12\}$ $h_1(A) = 3$ $h_1(B) = 1$ $h_2(B) = 5 h_2(B) = 8$

all which have been the

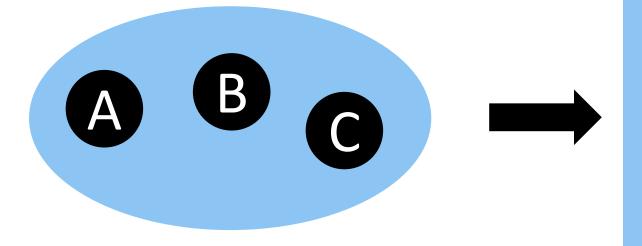
A set = $\{A, B, C\}$



Bloom filter \mathcal{B}_{x} of X Bitvector of size B_x [bits] $B_{x} = 12$ Hash functions $h_1, ..., h_b$ $h_i: X \rightarrow \{1, ..., B_X\}$ b = 2 $h_2, h_1 : X \rightarrow \{1, ..., 12\}$ $h_1(A) = 3$ $h_1(B) = 1$ $h_1(C) = 4$ $h_2(B) = 5$ $h_2(C) = 11$

Conta and and the

A set = $\{A, B, C\}$

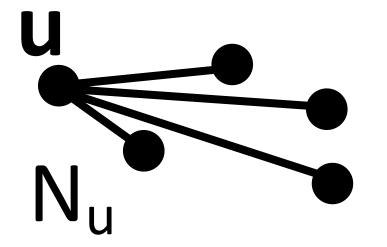


Bloom filter \mathcal{B}_{x} of X Bitvector of size B_x [bits] $B_{x} = 12$ Hash functions $h_1, ..., h_b$ $h_i: X \rightarrow \{1, ..., B_X\}$ b = 2 $h_2, h_1 : X \rightarrow \{1, ..., 12\}$ $h_1(A) = 3$ $h_1(B) = 1$ $h_1(C) = 4$ $h_2(B) = 8 h_2(C) = 11$

Conta and and the

Carta and and

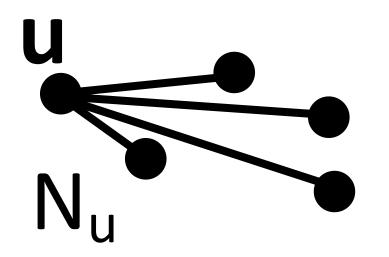
Bloom Filters for Graph Mining



The second

Bloom Filters for Graph Mining

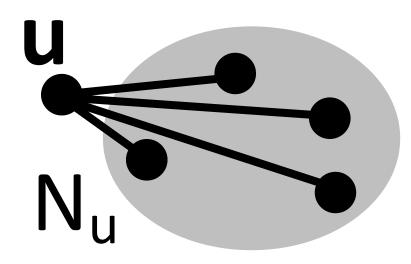
Each neighborhood N_u is a <u>set</u> of vertices



The second

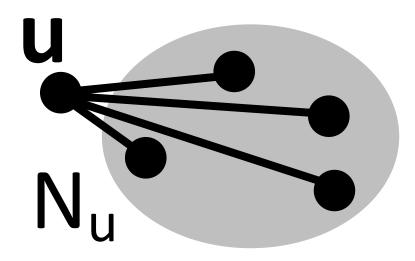
Bloom Filters for Graph Mining

Each neighborhood N_u is a <u>set</u> of vertices



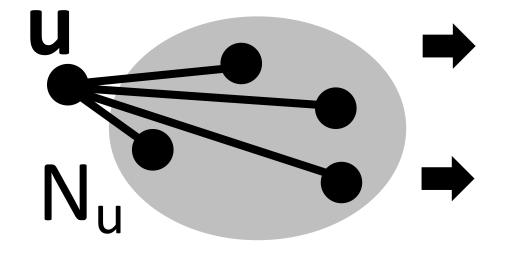
Each neighborhood N_u is a <u>set</u> of vertices

"Sketch" each N_u with a Bloom filter



Each neighborhood N_u is a <u>set</u> of vertices

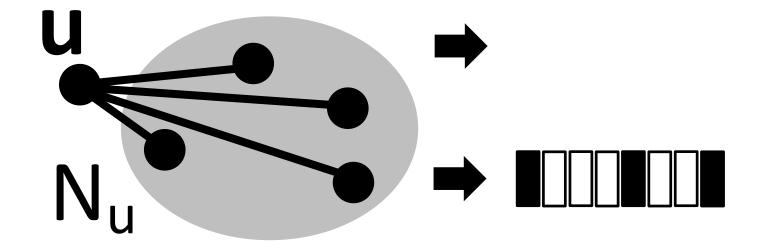
"Sketch" each N_u with a Bloom filter



Each neighborhood N_u is a <u>set</u> of vertices

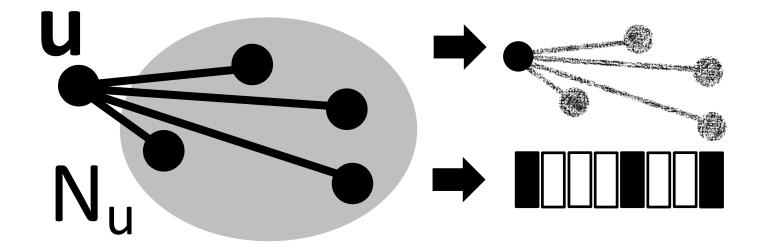
"Sketch" each N_u with a Bloom filter

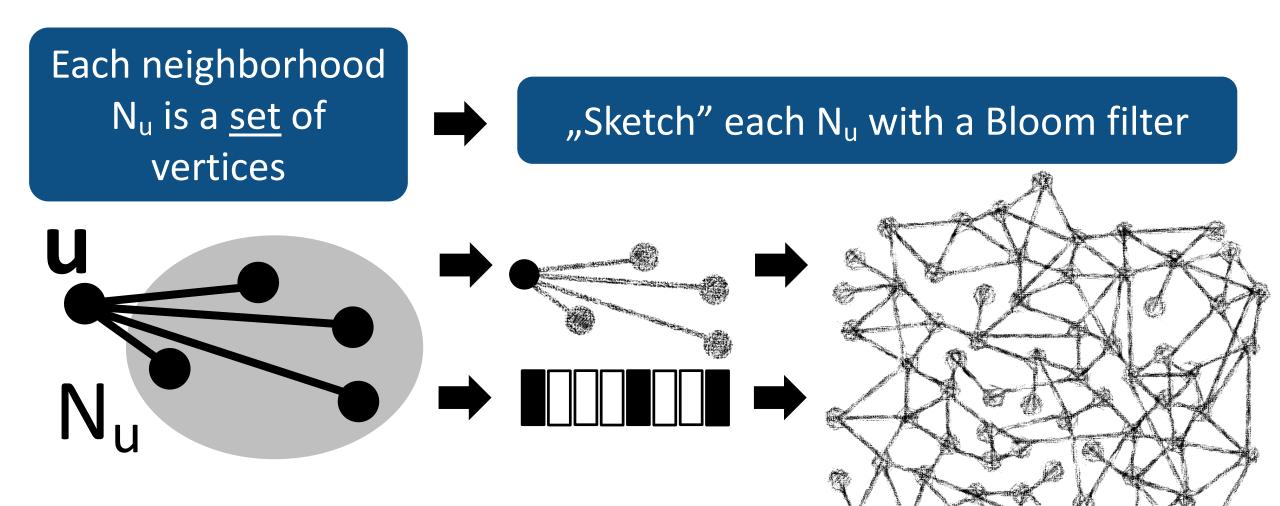
1000



Each neighborhood N_u is a <u>set</u> of vertices

"Sketch" each N_u with a Bloom filter





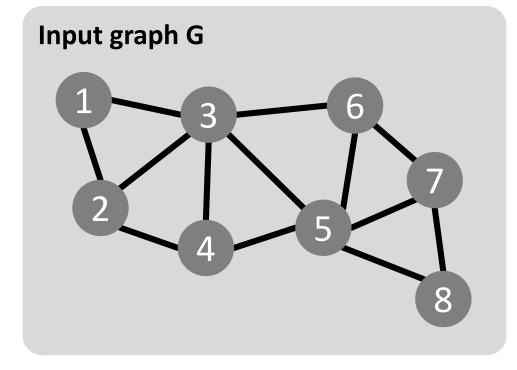
11

all a fair and the second

ProbGraph: Summary of Design

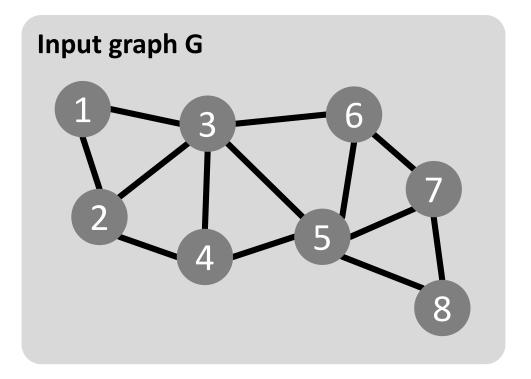
and the second

ProbGraph: Summary of Design



***SPCL

ProbGraph: Summary of Design

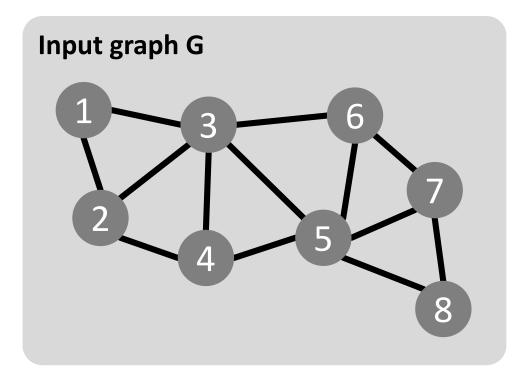


Standard graph representation (e.g., CSR)

12

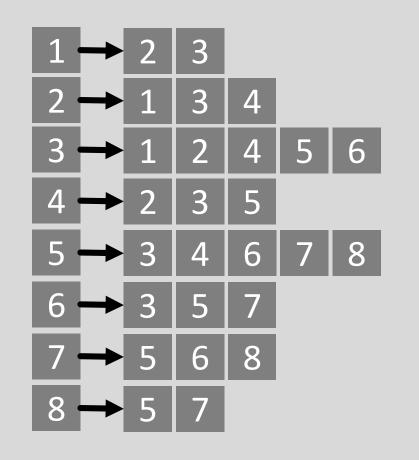
***SPCL

ProbGraph: Summary of Design

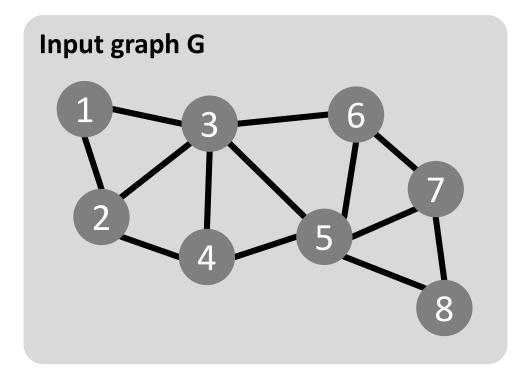


Standard graph representation (e.g., CSR)

The second

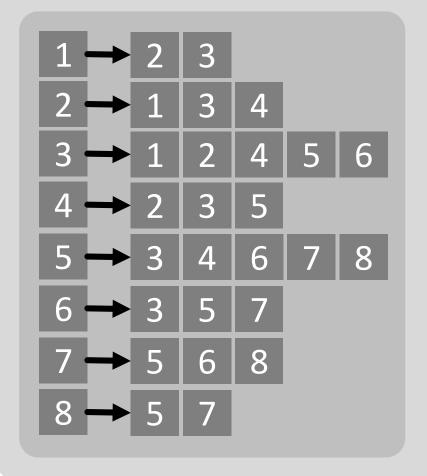


ProbGraph: Summary of Design

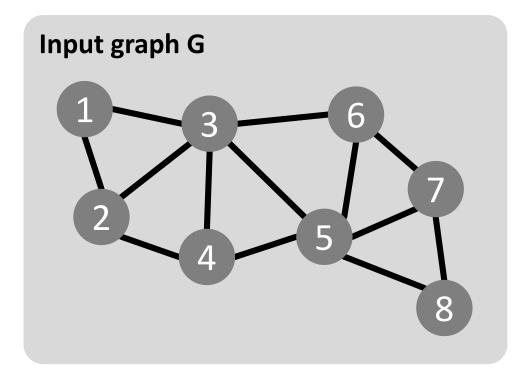


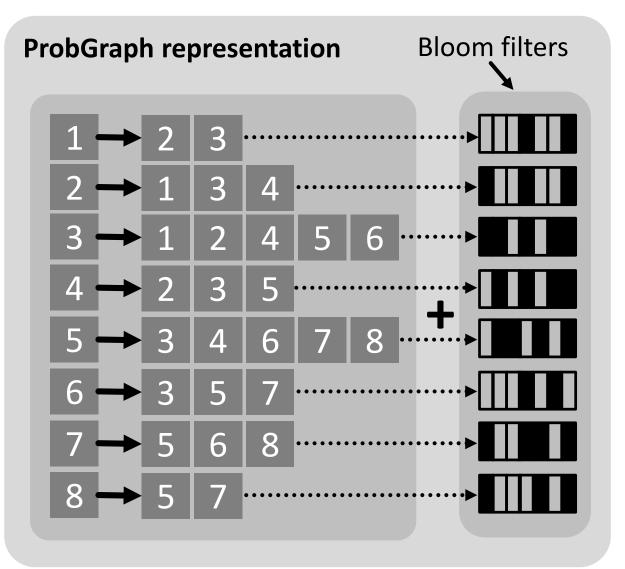
ProbGraph representation

State - ----



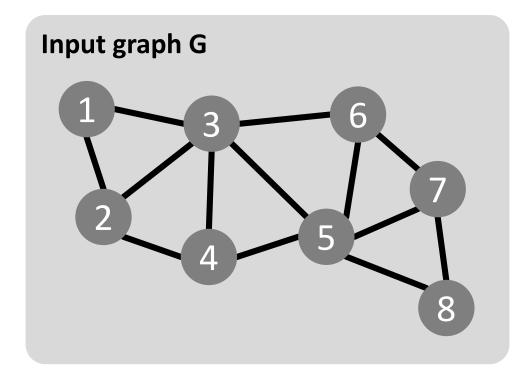
ProbGraph: Summary of Design

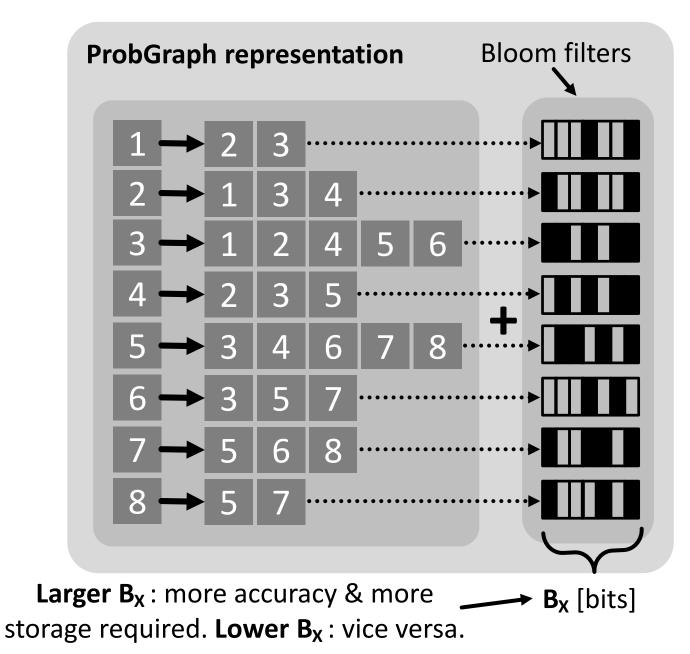




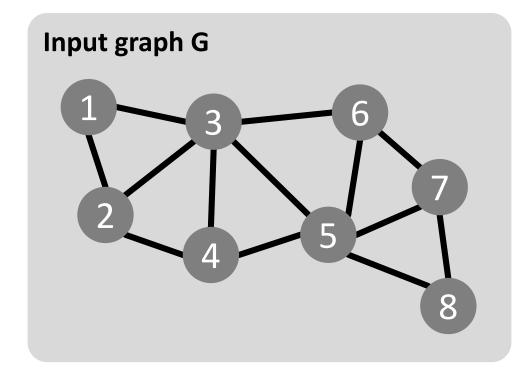
The seal

ProbGraph: Summary of Design

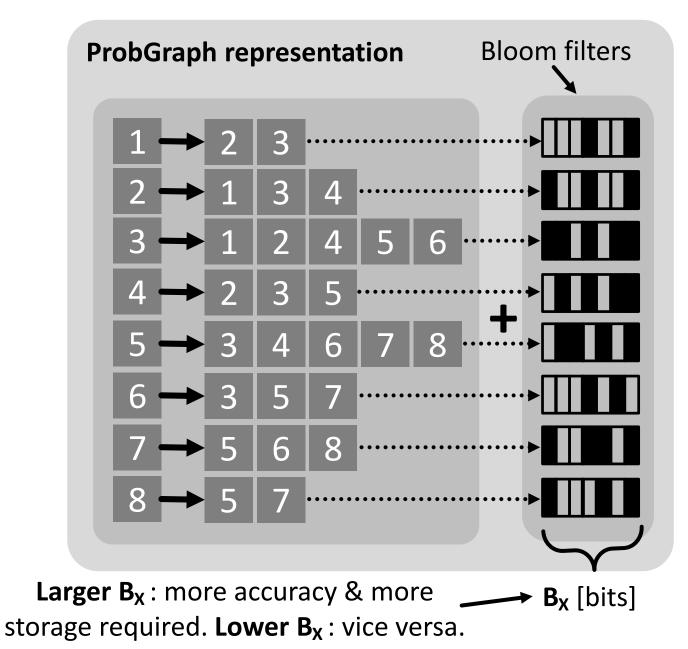




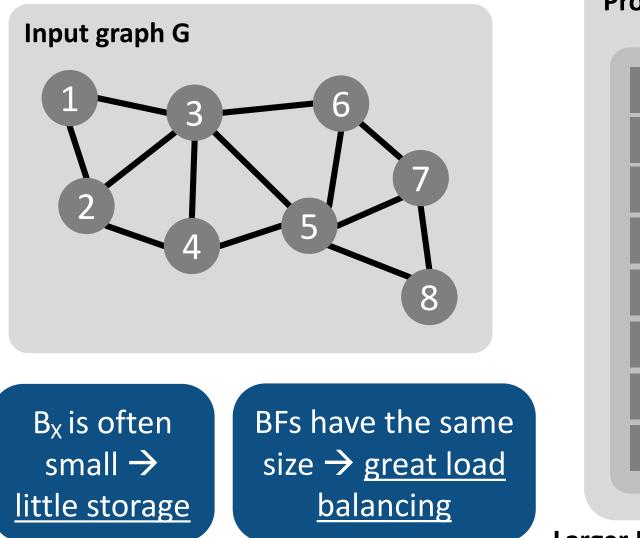
ProbGraph: Summary of Design



B_x is often small → <u>little storage</u>



ProbGraph: Summary of Design





State and and

Provident and

Traditional BF use case: presence tracking

Proventiers

Traditional BF use case: presence tracking

Printer

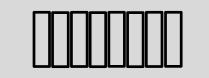
Traditional BF use case: presence tracking

A BF cache tracking the presence of data

Traditional BF use case: presence tracking

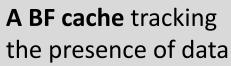
A BF cache tracking the presence of data

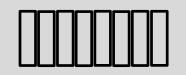
the second second



How does our idea compare to other Bloom filter use cases?

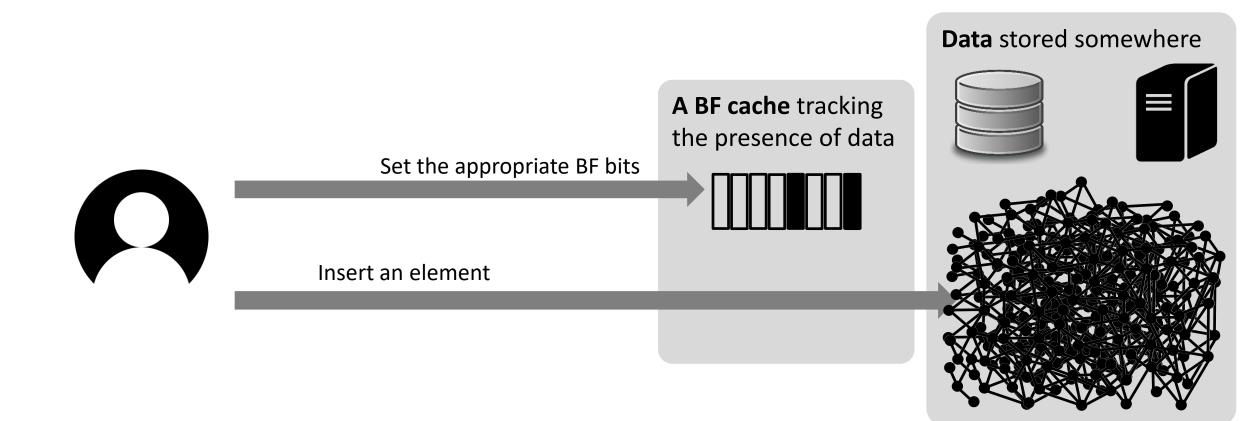
Traditional BF use case: presence tracking



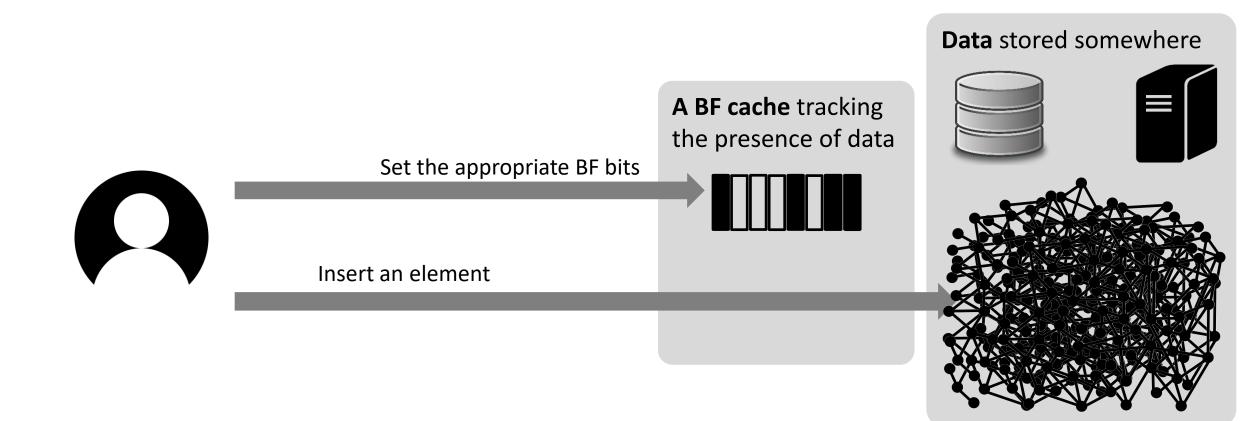


Insert an element

Traditional BF use case: presence tracking

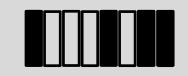


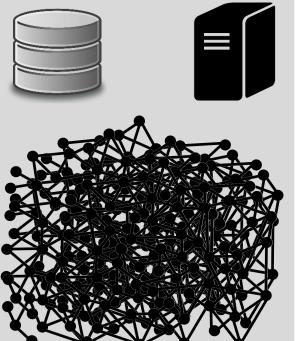
Traditional BF use case: presence tracking



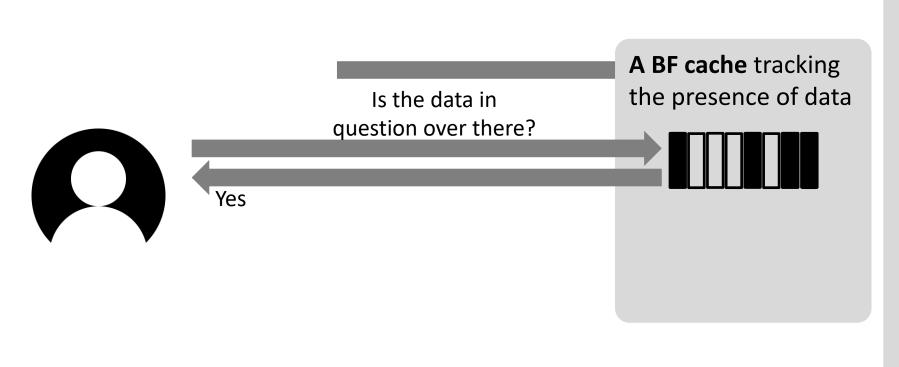
Traditional BF use case: presence tracking

A BF cache tracking the presence of data

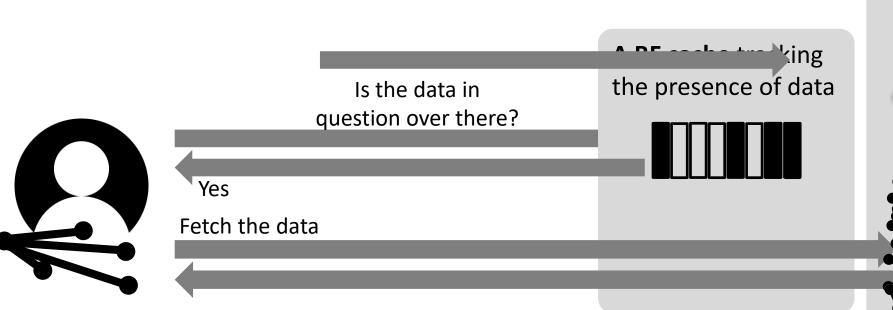


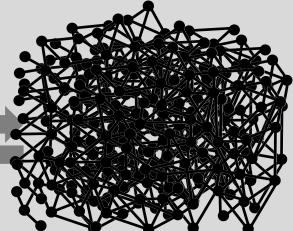


Traditional BF use case: presence tracking

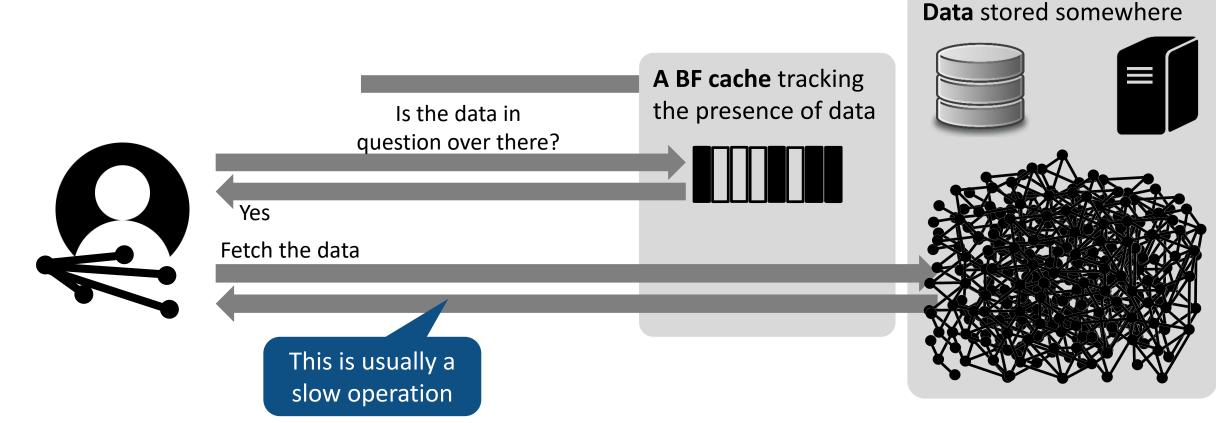


Traditional BF use case: presence tracking

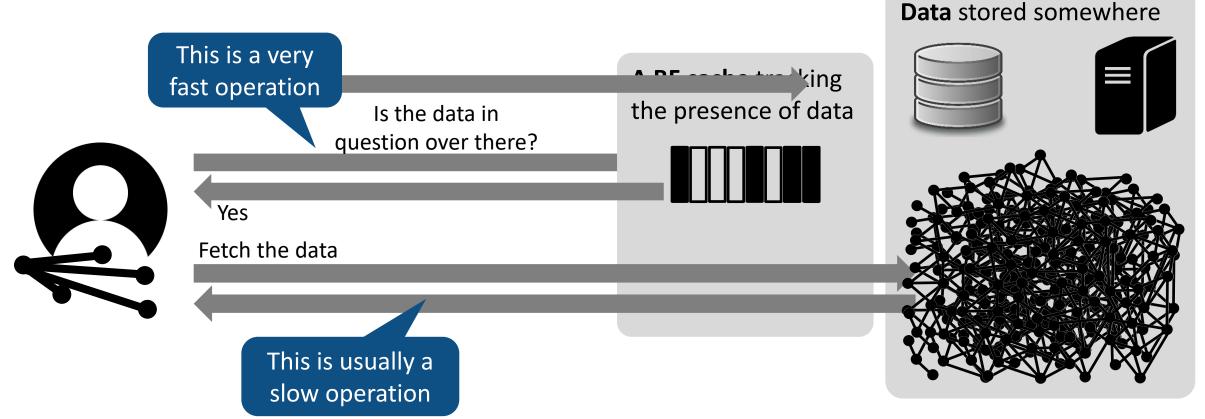




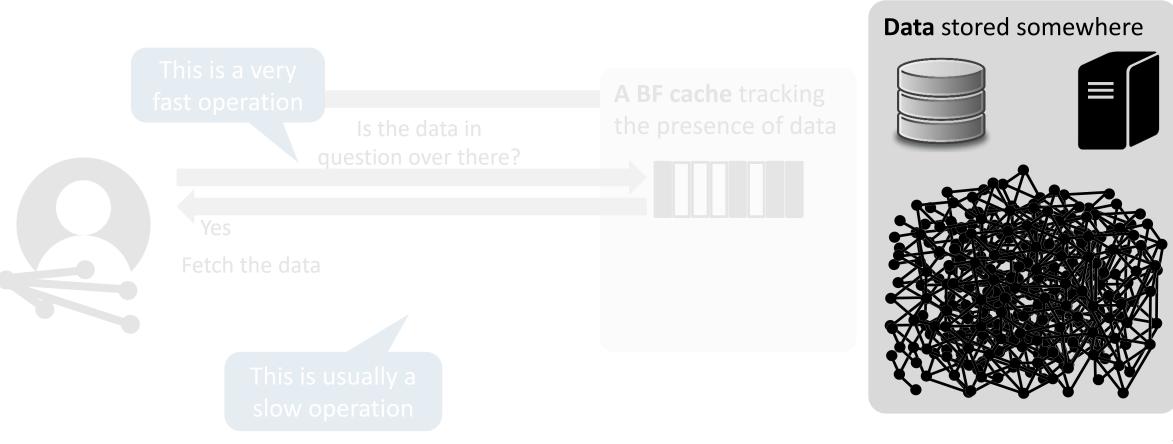
Traditional BF use case: presence tracking



Traditional BF use case: presence tracking



r Bloom filter use cases?



All Charles and

r Bloom filter use cases?

We use BFs as a sketch of the actual dataset

F cools the king e presence of data

The second second

Data stored somewhere

Yes

Fetch the data

This is usually a slow operation

r Bloom filter use cases?

We use BFs as a sketch of the actual dataset

BF cache tracking e presence of data

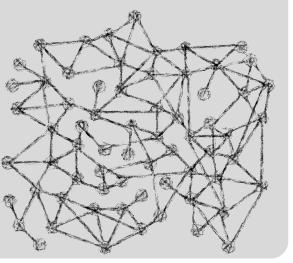
All the second second second

Data stored somewhere

Yes

Fetch the data

This is usually a slow operation



Bloom filter use cases?

We use BFs as a sketch of the actual dataset

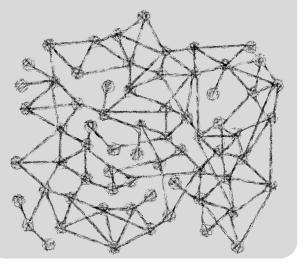
e presence of data

Data stored somewhere

Yes

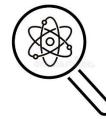
etch the data

How do we <u>exactly</u> use these sketches to benefit graph mining?

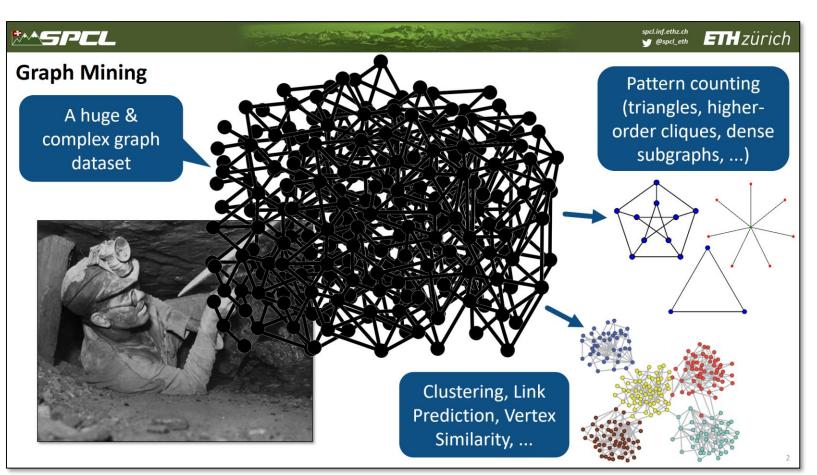


Contra and and

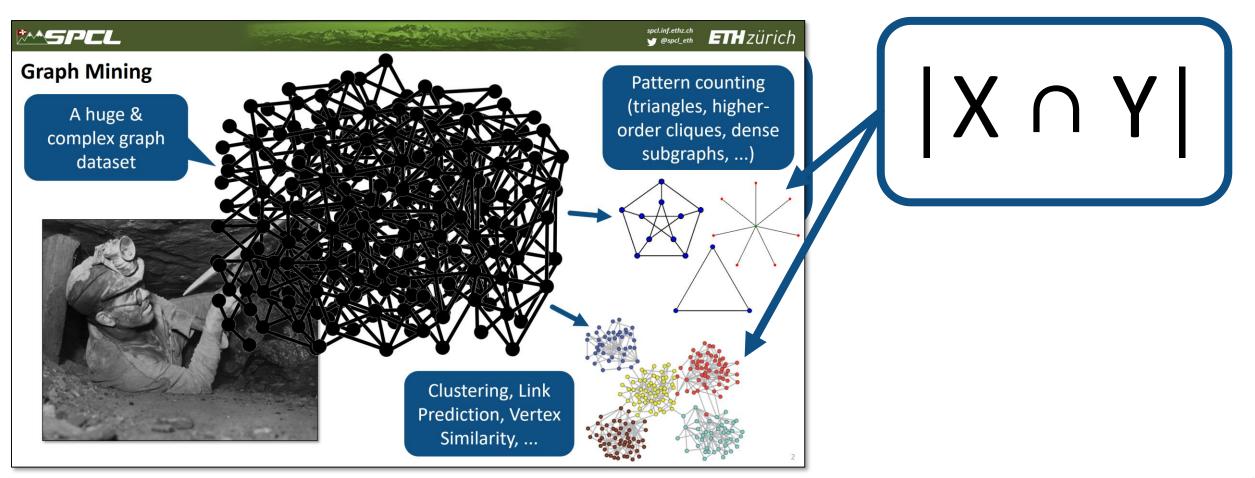
Carlo and and a

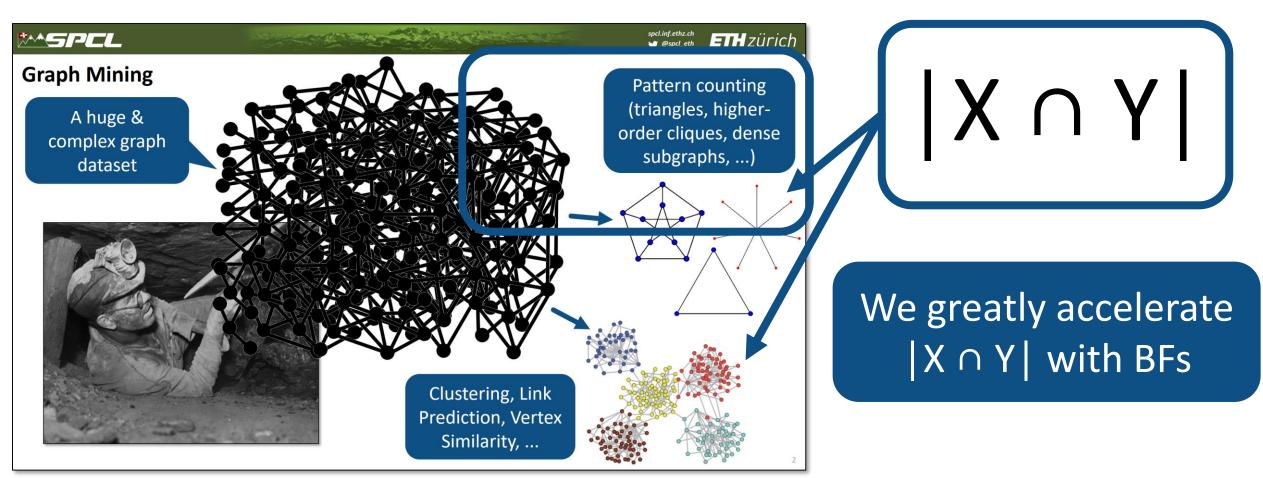


 $|X \cap Y|$



$|X \cap Y|$

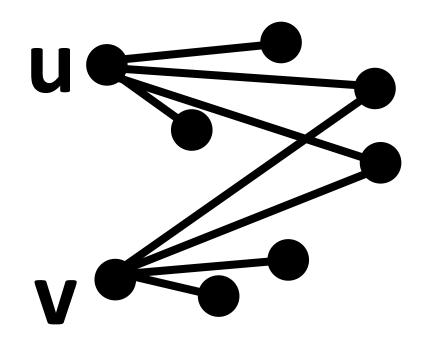




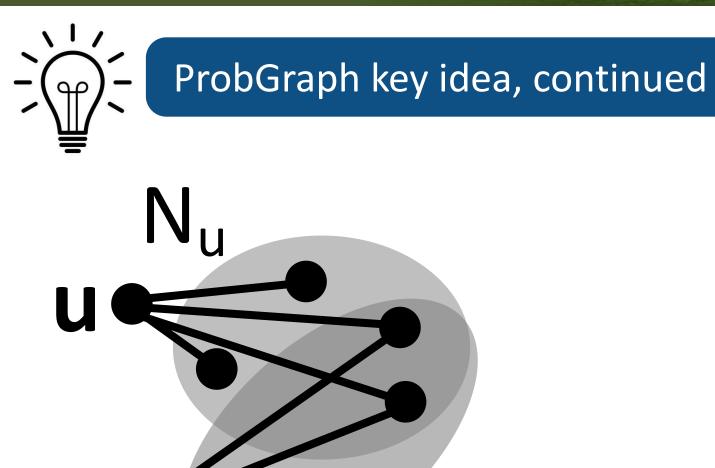
and the section was

ProbGraph key idea, continued

The second

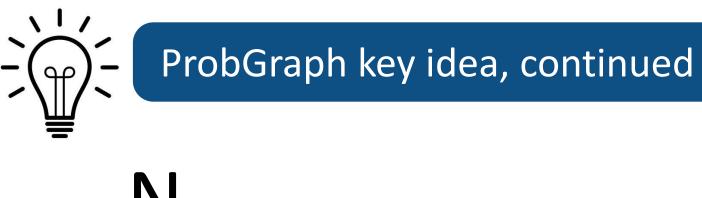


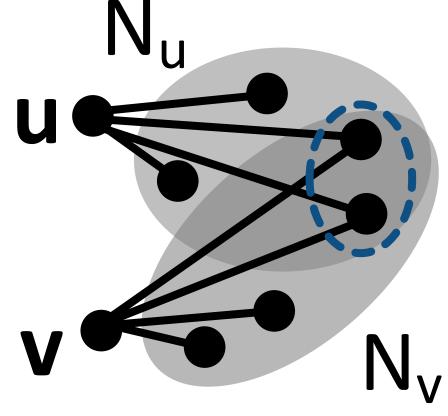
State and some



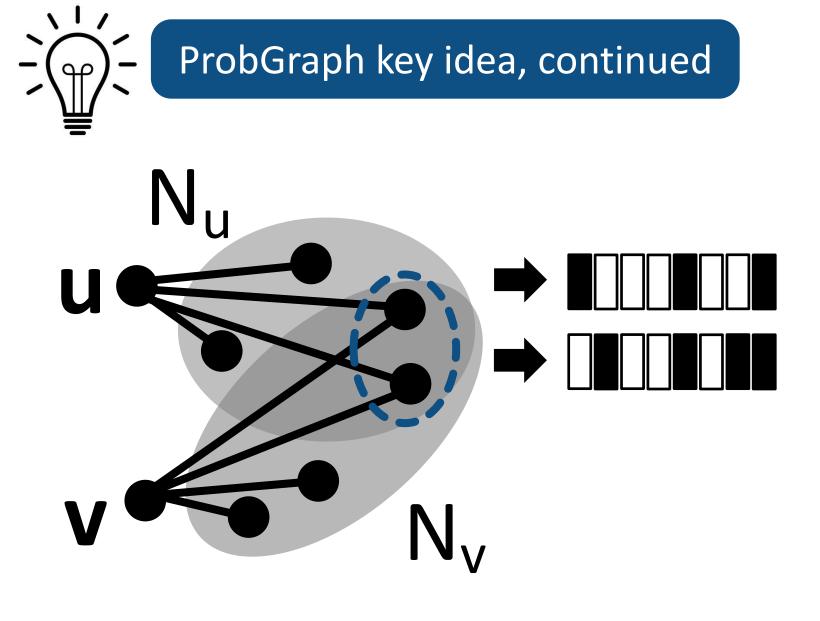
 N_v

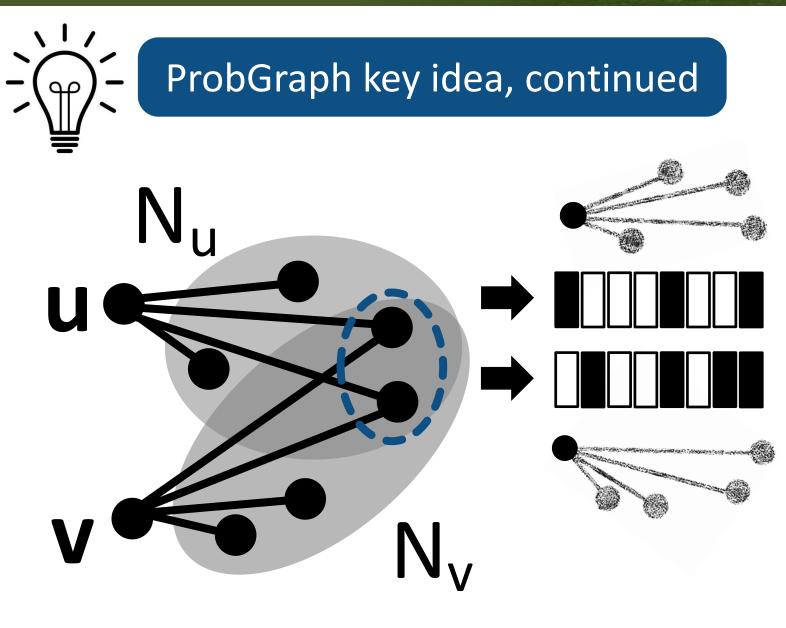
and the second

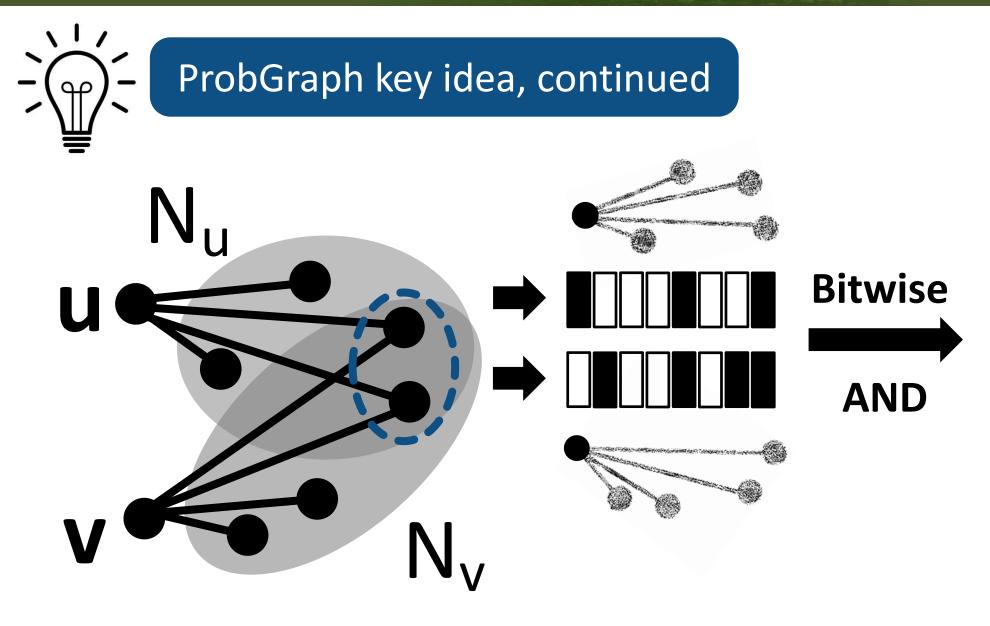




CT2

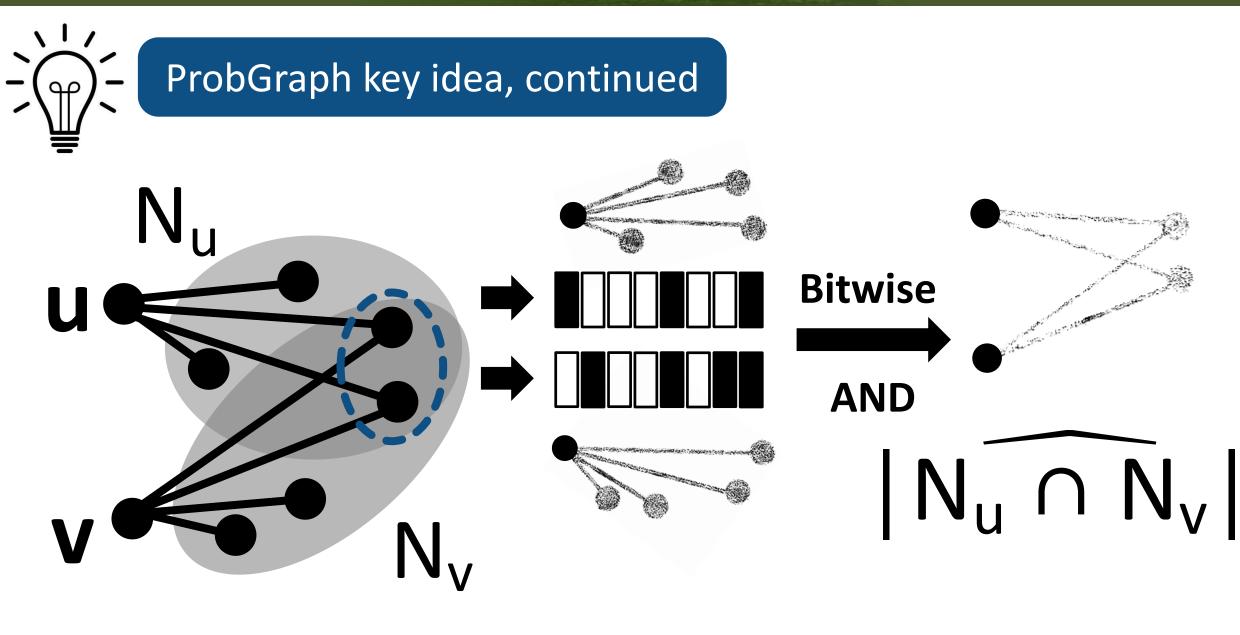




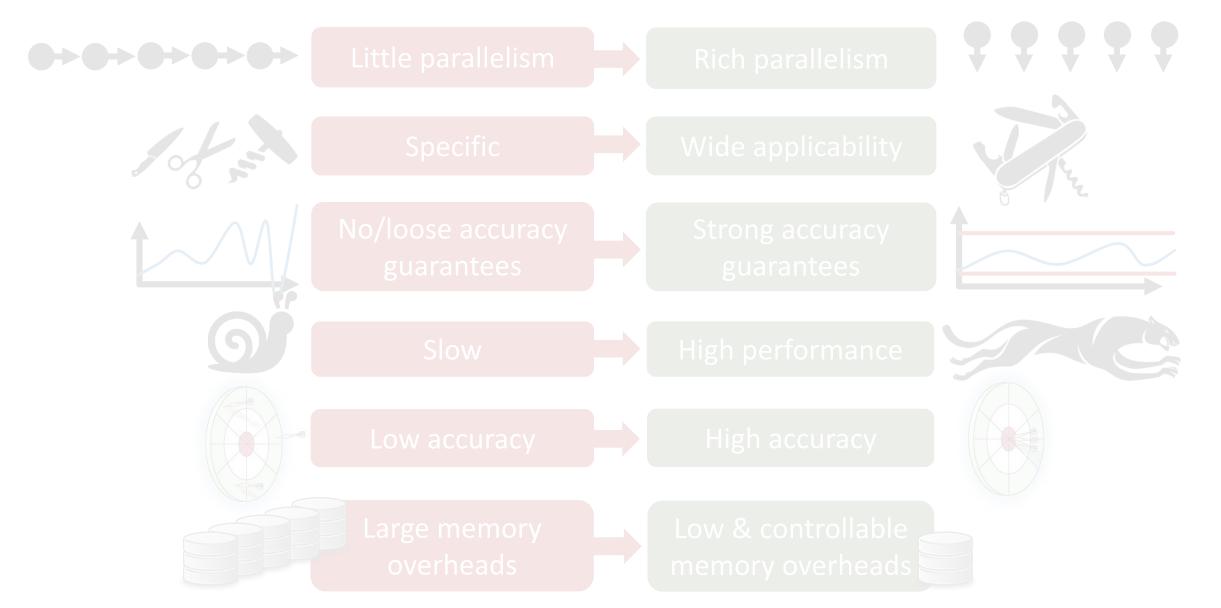


16

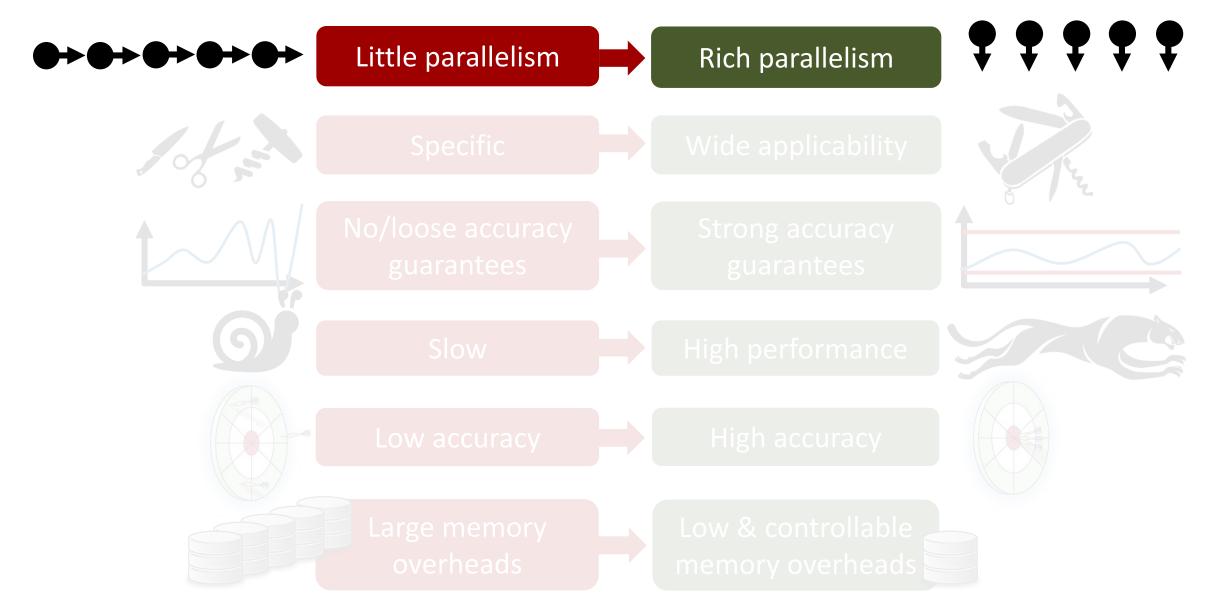
spcl.inf.ethz.ch



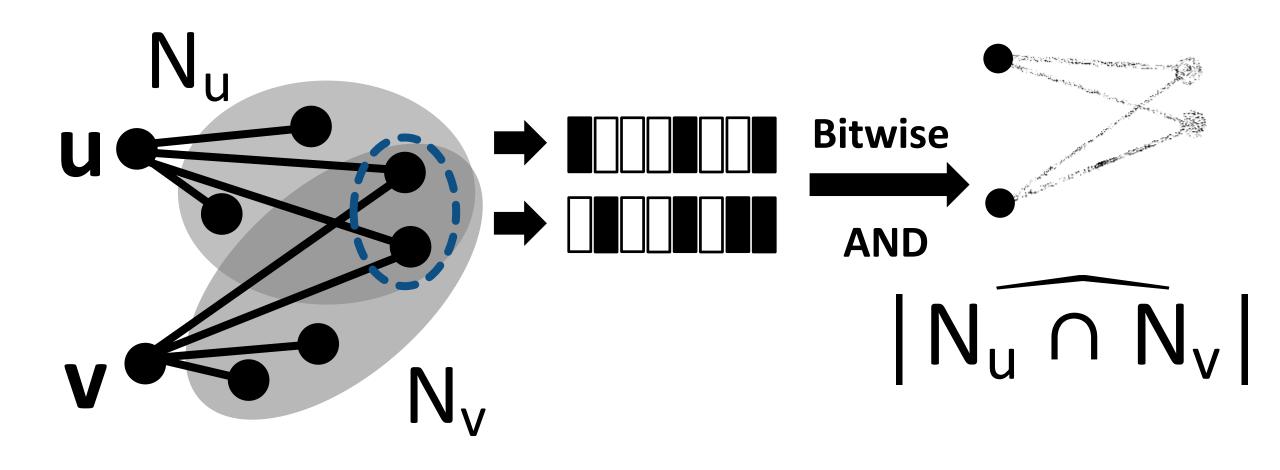
Approximate Graph Processing: Our Objectives



A DESCRIPTION OF THE PARTY OF T

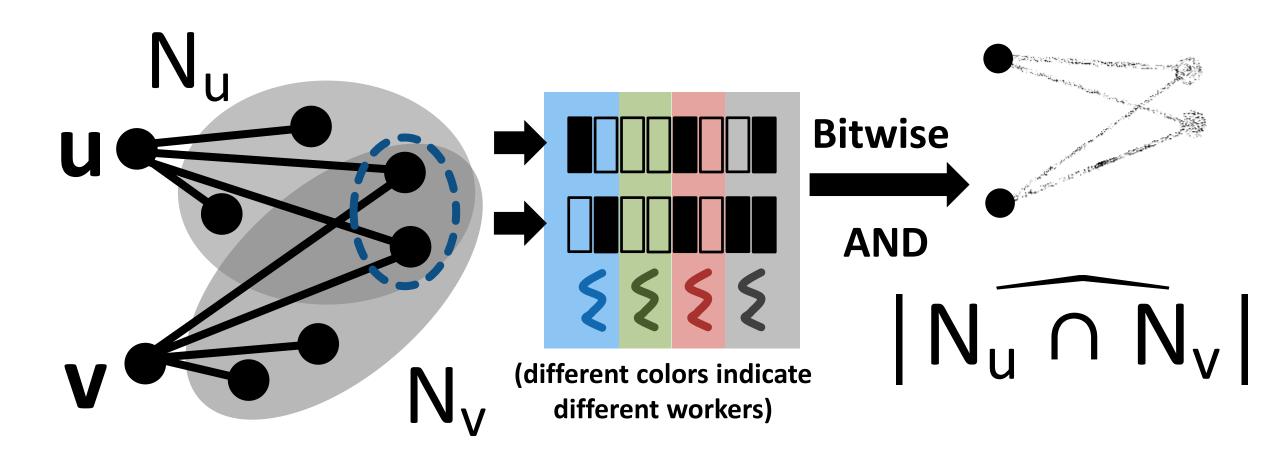


ProbGraph: Fast & Parallel Execution



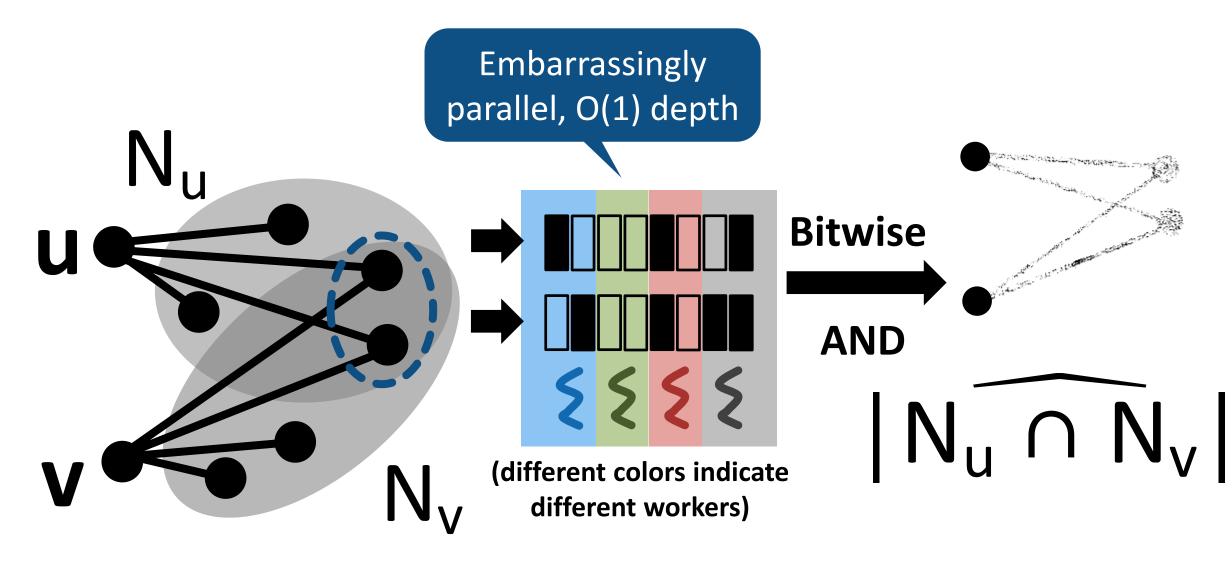
State and and

ProbGraph: Fast & Parallel Execution

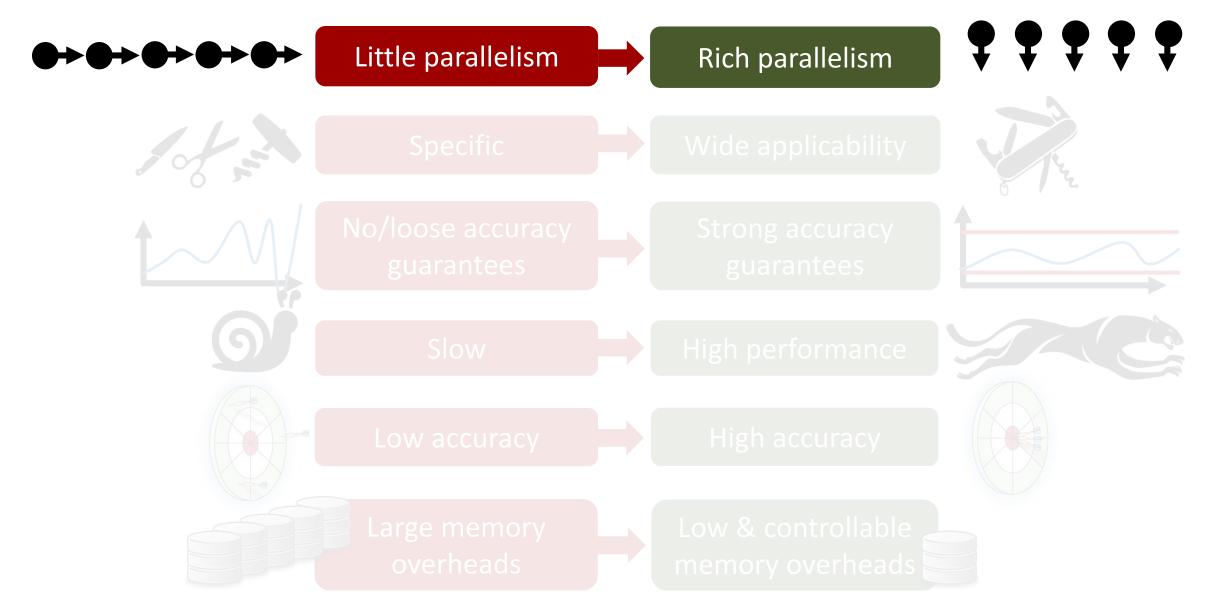


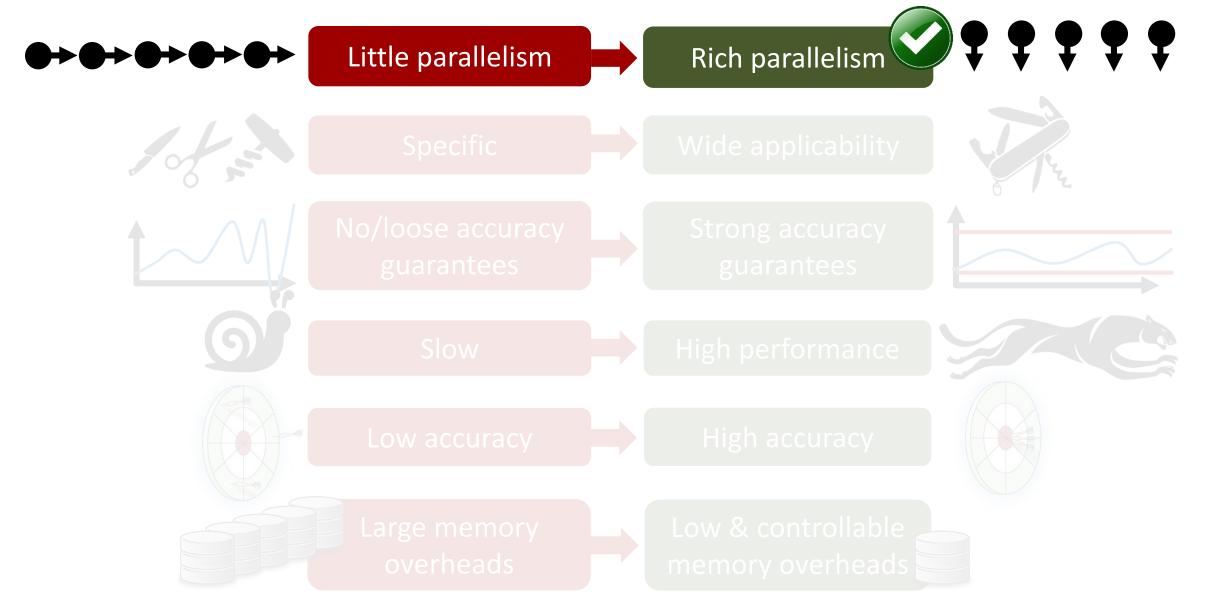
and and and

ProbGraph: Fast & Parallel Execution

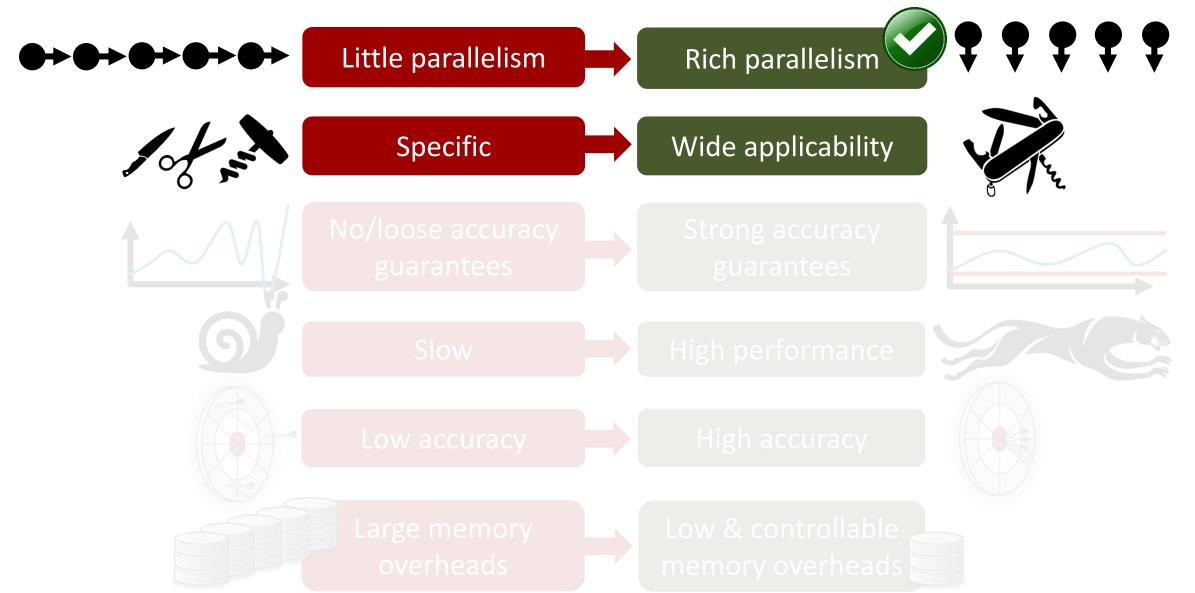


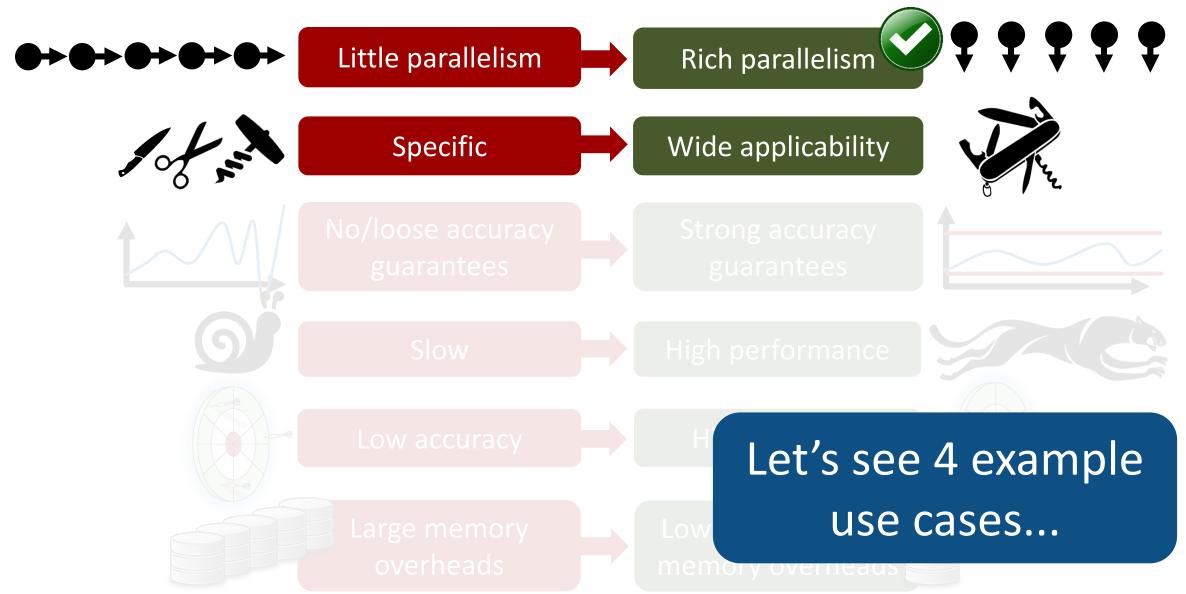
the section





Development and the second

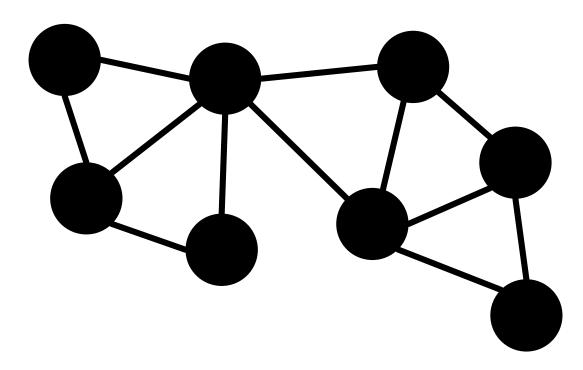




A CALL STREET

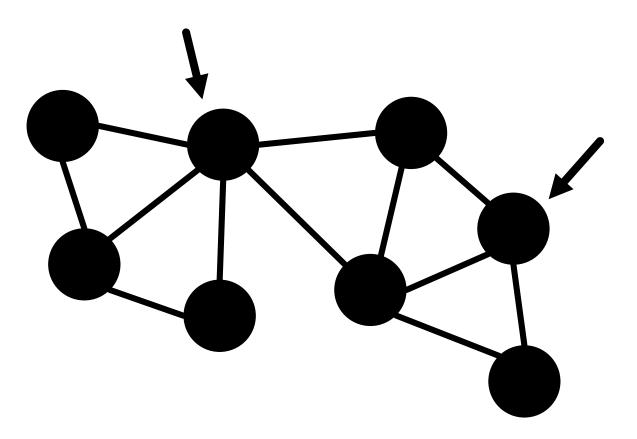


Which links will appear?



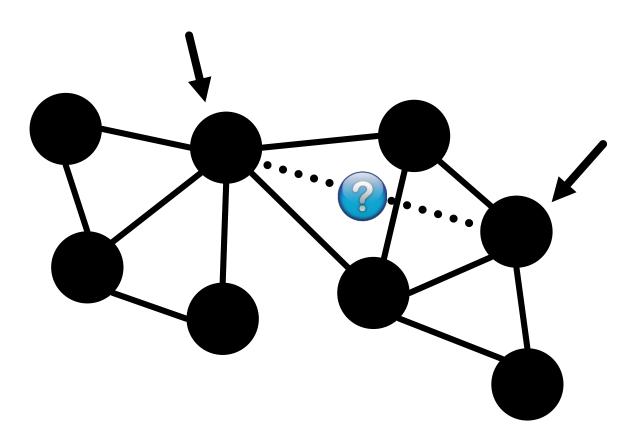
all the second

Which links will appear?



all the second

Which links will appear?

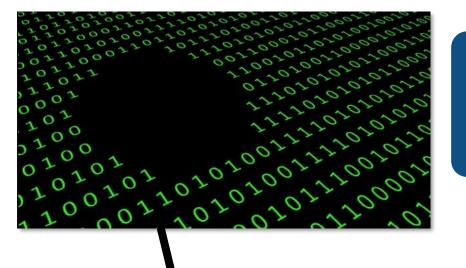


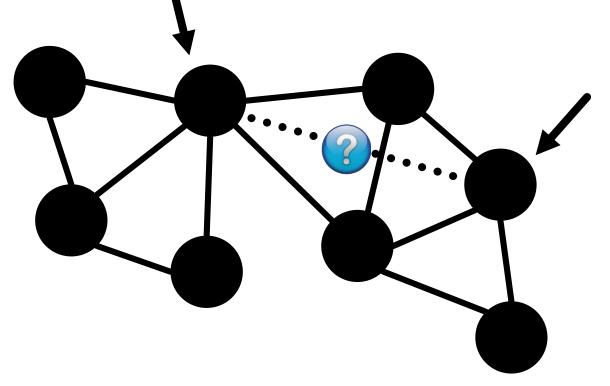
all the sectors

Which links will appear?

Which links

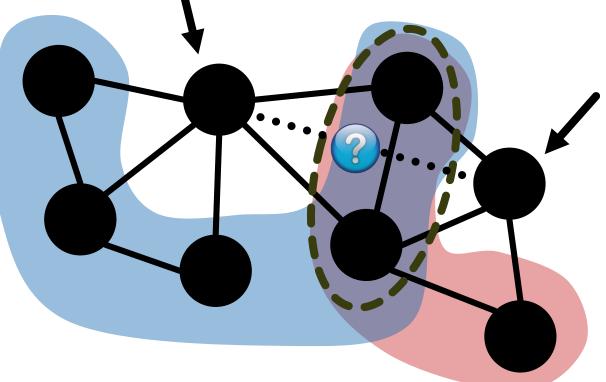
are missing?



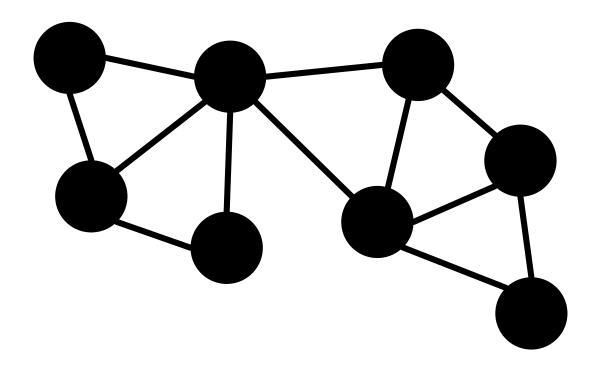


Which links will appear?



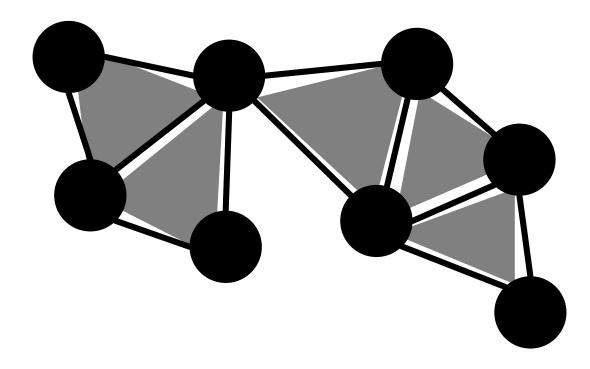


Use Case 2: Clique Counting



and and and and and

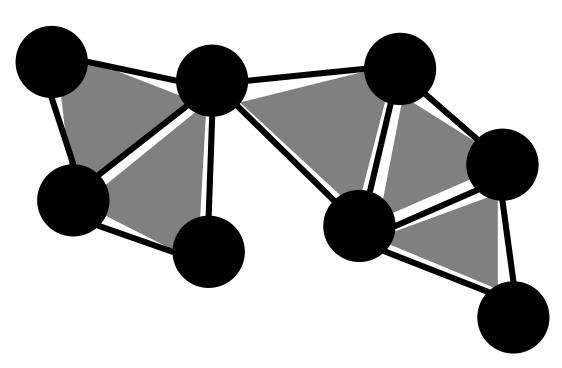
Use Case 2: Clique Counting



a later and a second

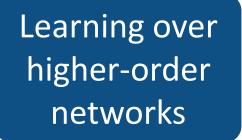
Use Case 2: Clique Counting

a start and and

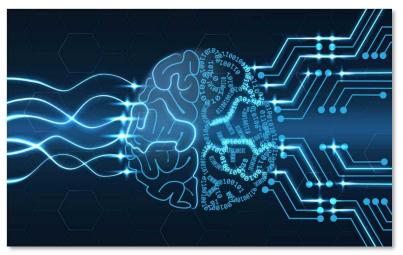


***SPCL

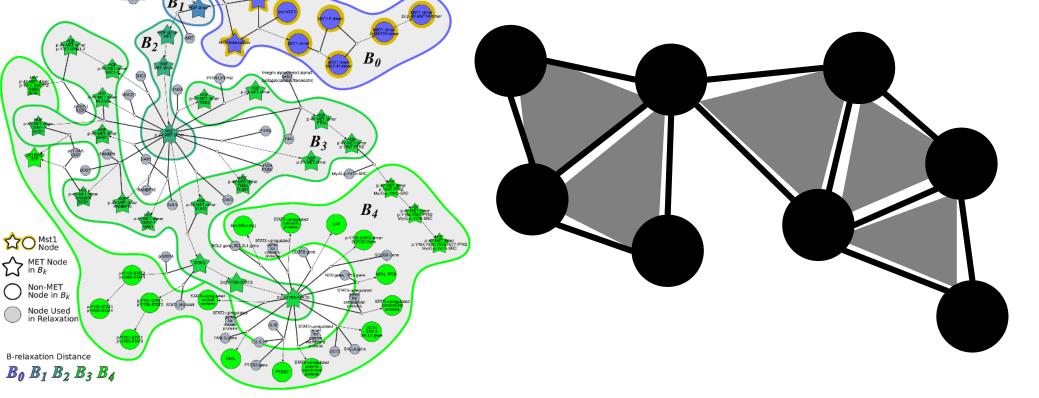
Use Case 2: Clique Counting



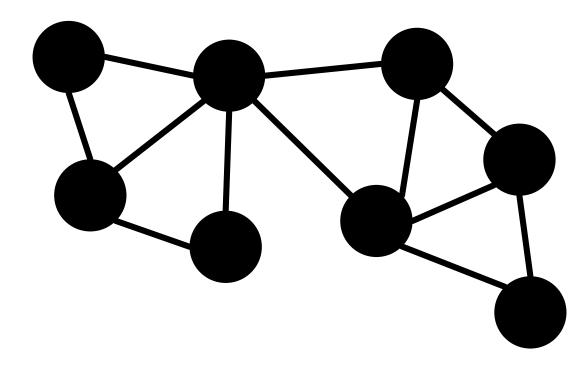
A REAL PROPERTY AND A REAL



• • •

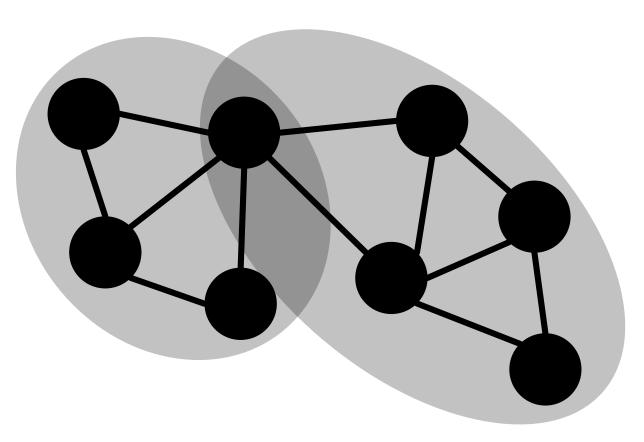


Use Case 3: Clustering



Station and the second

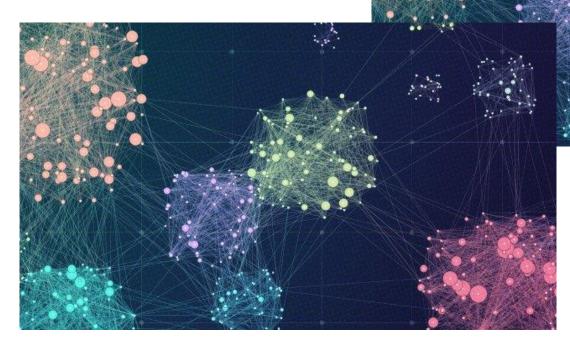
Use Case 3: Clustering

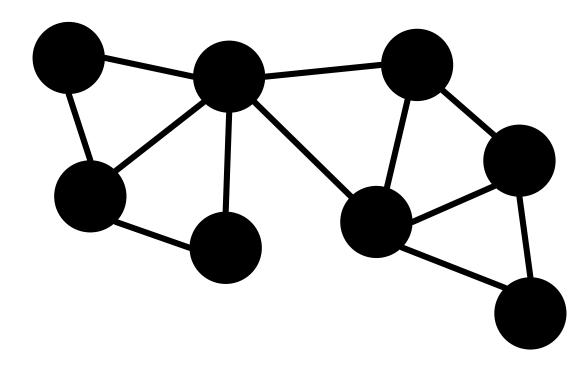


Use Case 3: Clustering

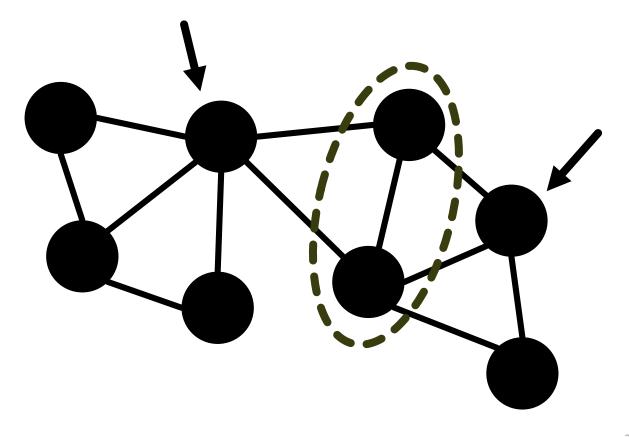
Structure of clusters?

Minibatch selection in Graph Neural Networks

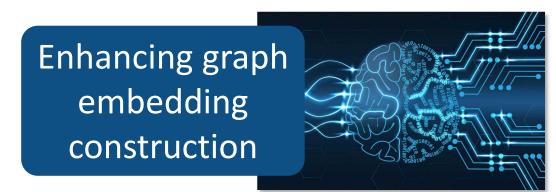


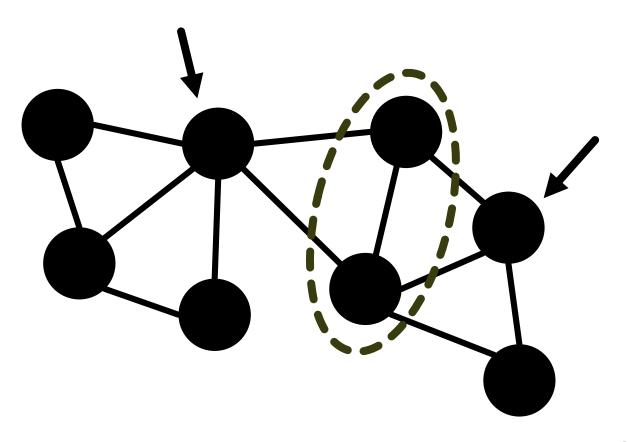


and the second second



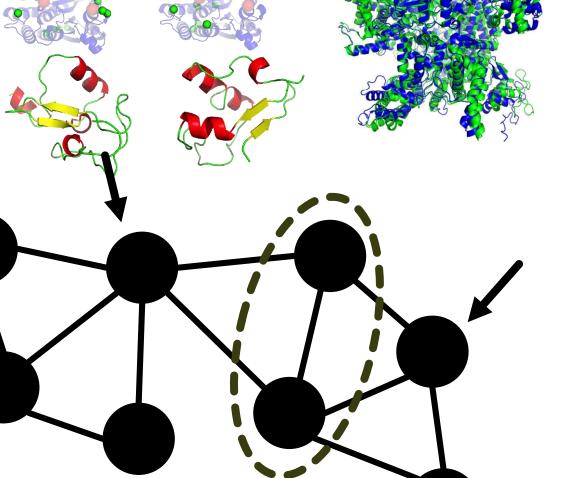
a start have



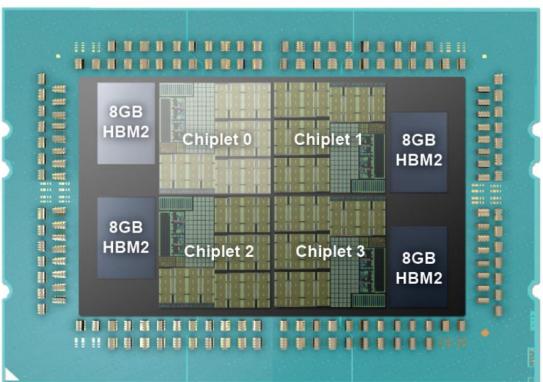


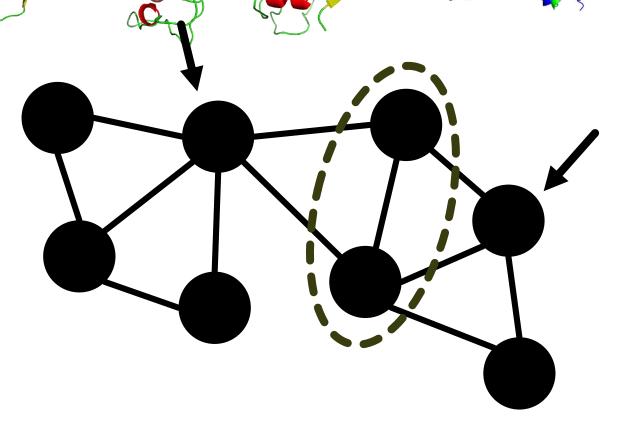
Store Level

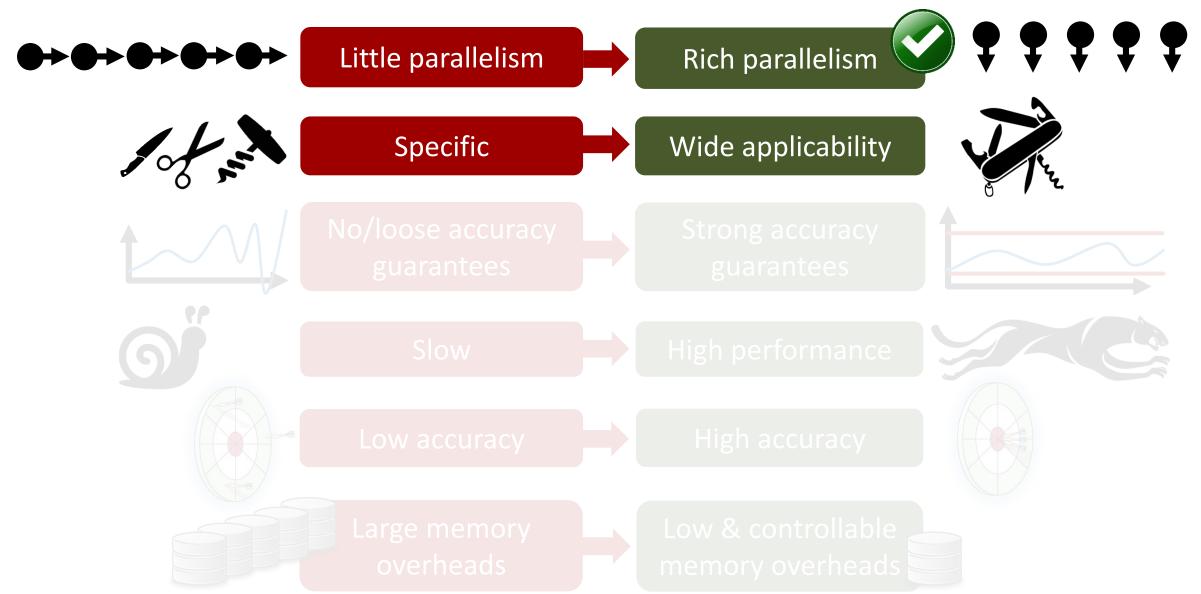
Enhancing graph embedding construction



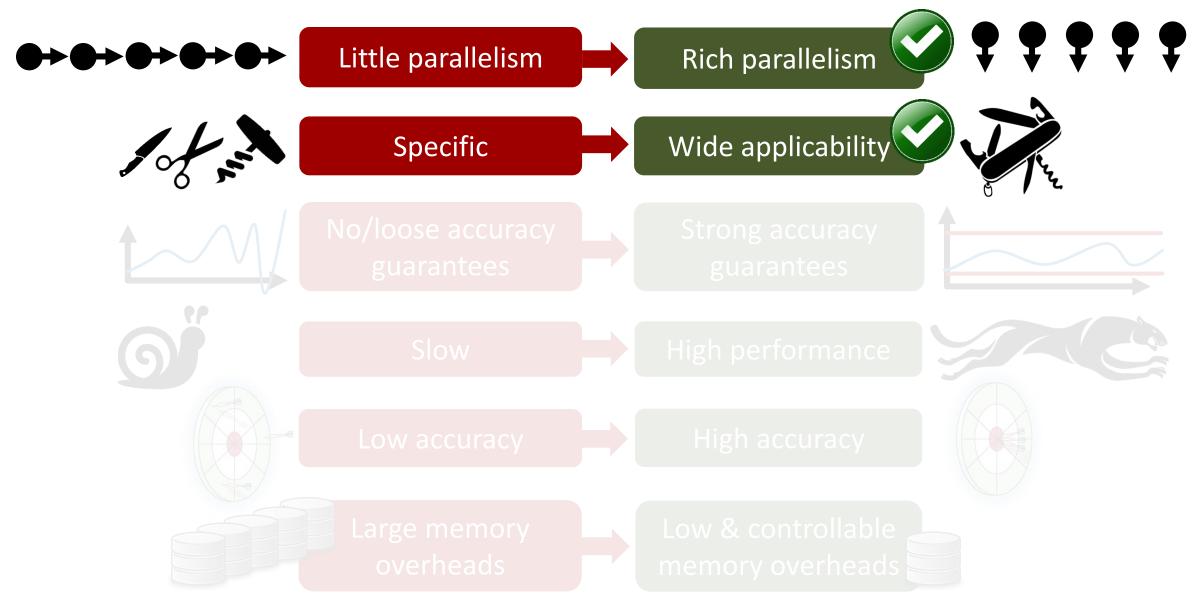
Enhancing graph embedding construction

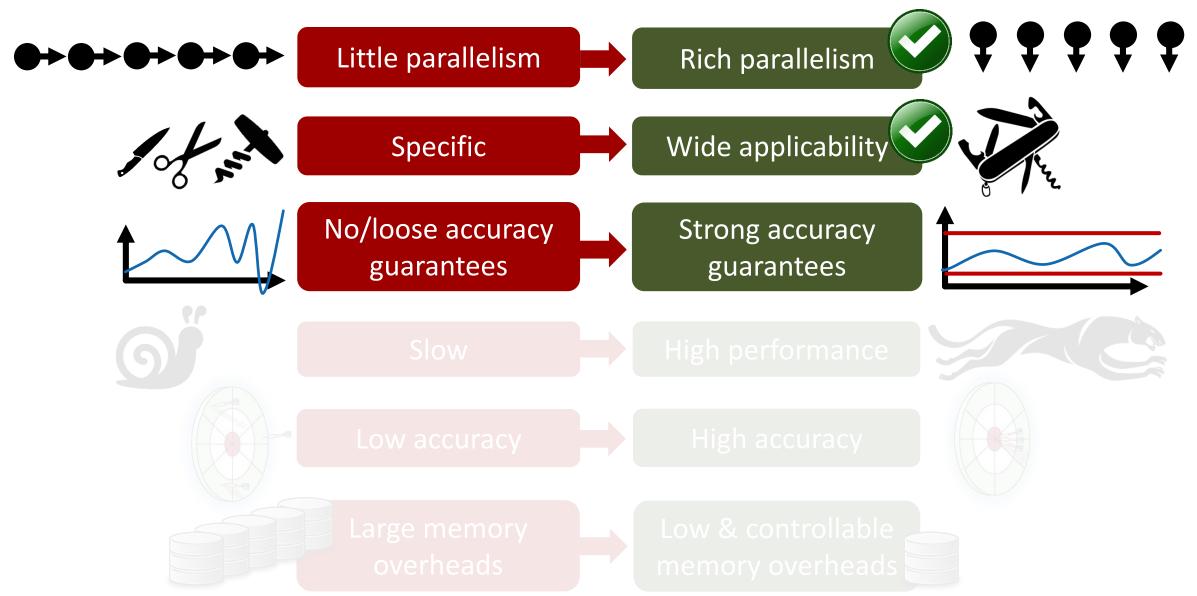






Constant and the second





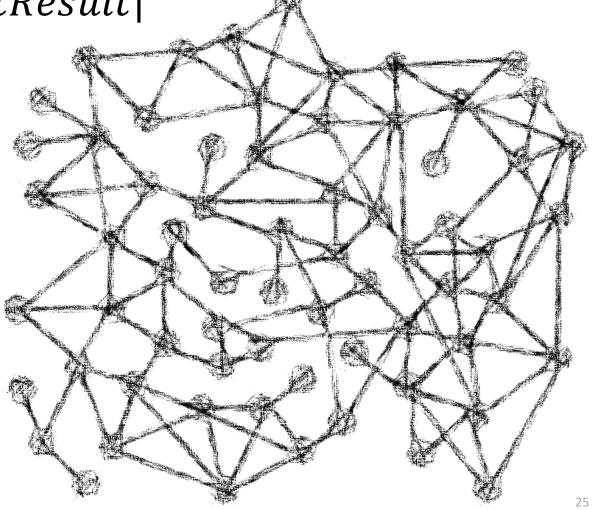
a share in the second

Marker & States

ProbGraph: Summary of Theoretical Results

ProbGraph: Summary of Theoretical Results

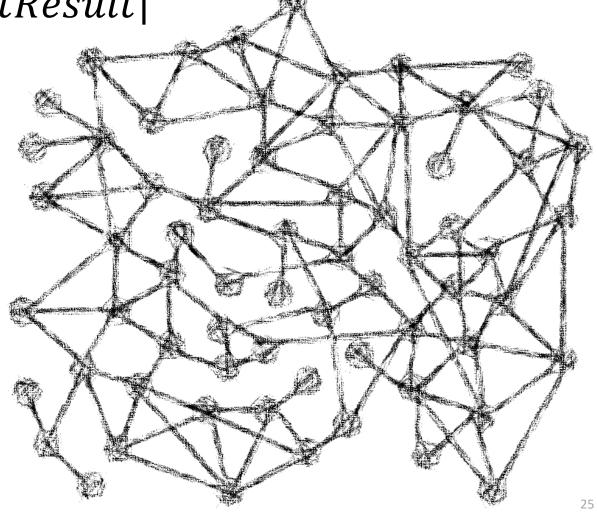
We want guarantees for |*ProbGraphEstimate - exactResult*|



ProbGraph: Summary of Theoretical Results

We want guarantees for |*ProbGraphEstimate – exactResult*|

We incorporate statistical theory of estimators



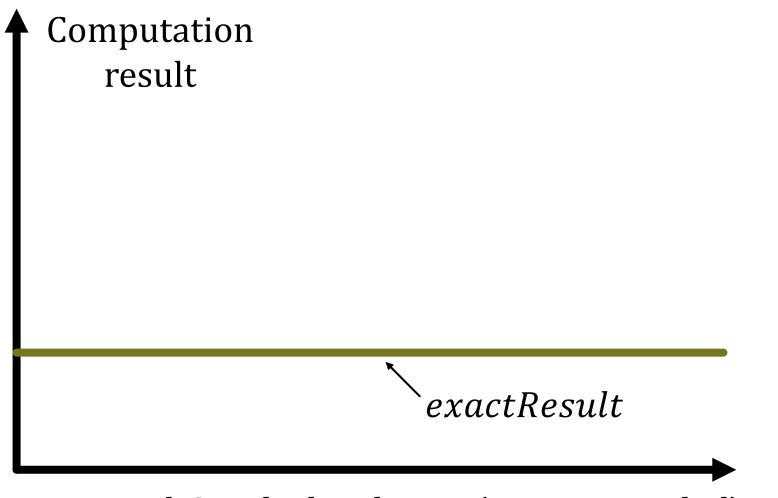
State of the state of the

ProbGraph is asymptotically unbiased

Computation result

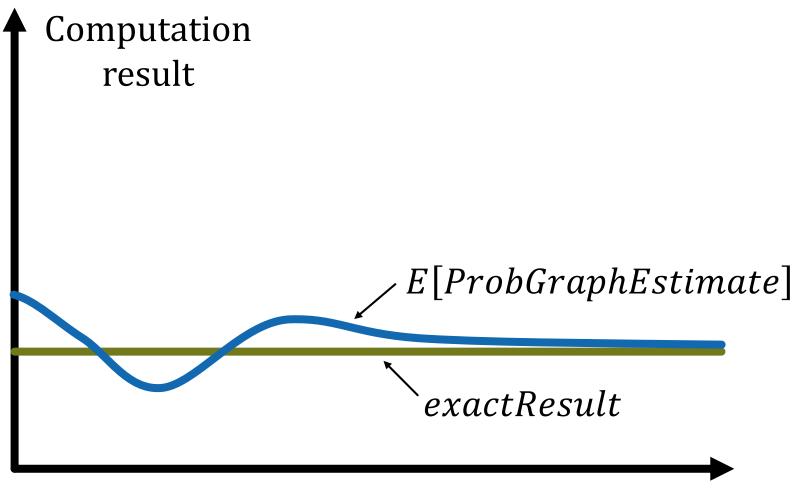
ProbGraph sketch size (storage needed)

The second second second

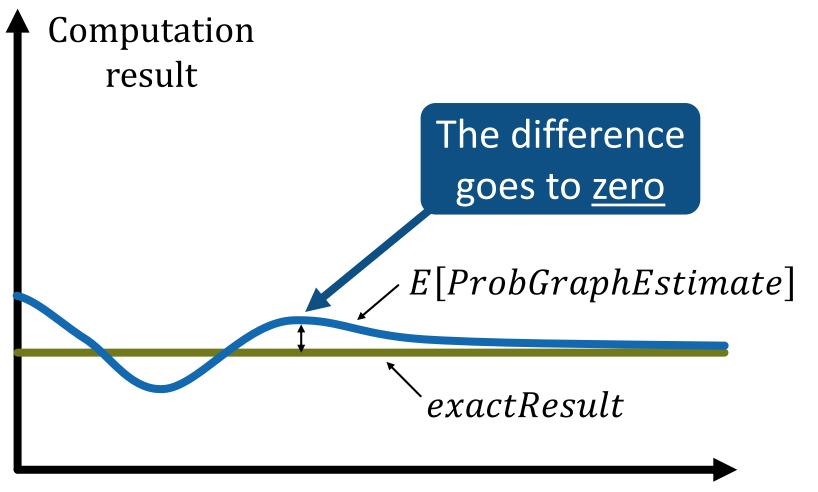


The sectors

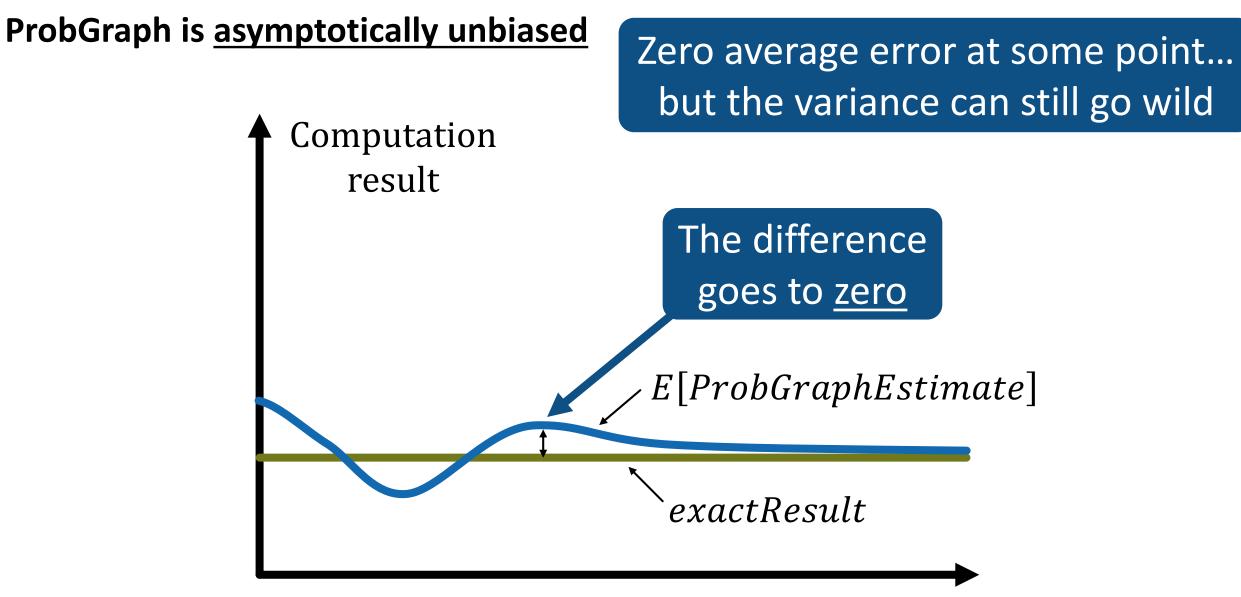
ProbGraph sketch size (storage needed)

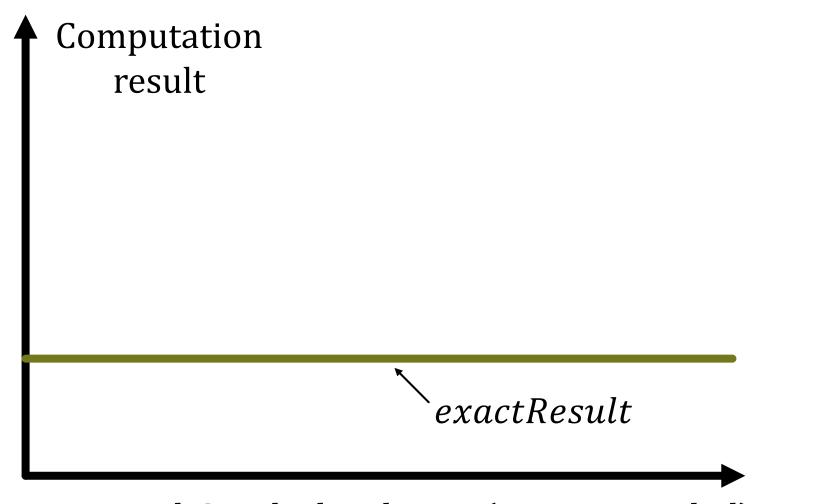


ProbGraph sketch size (storage needed)

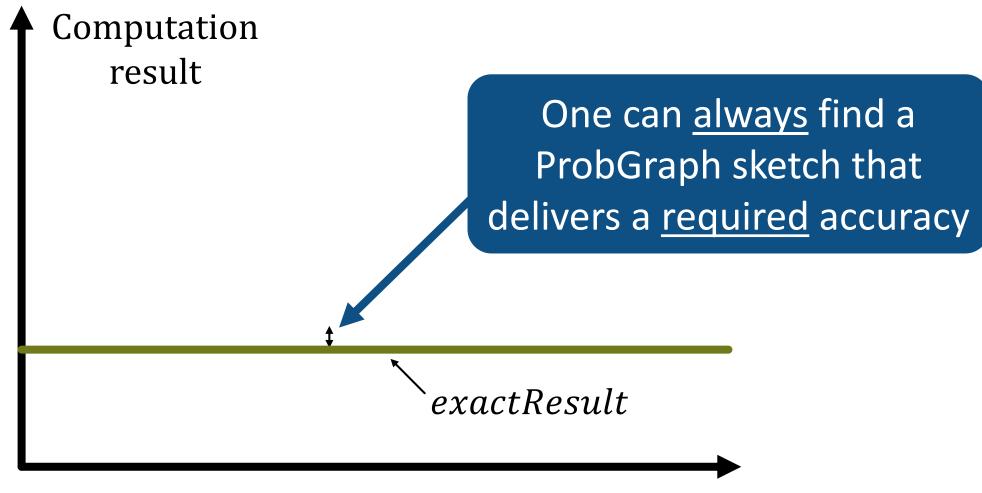


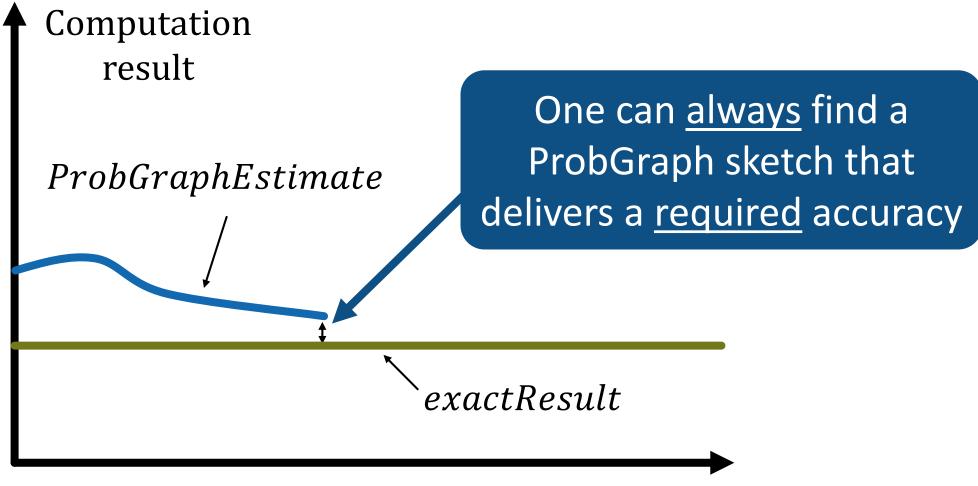
ProbGraph sketch size (storage needed)



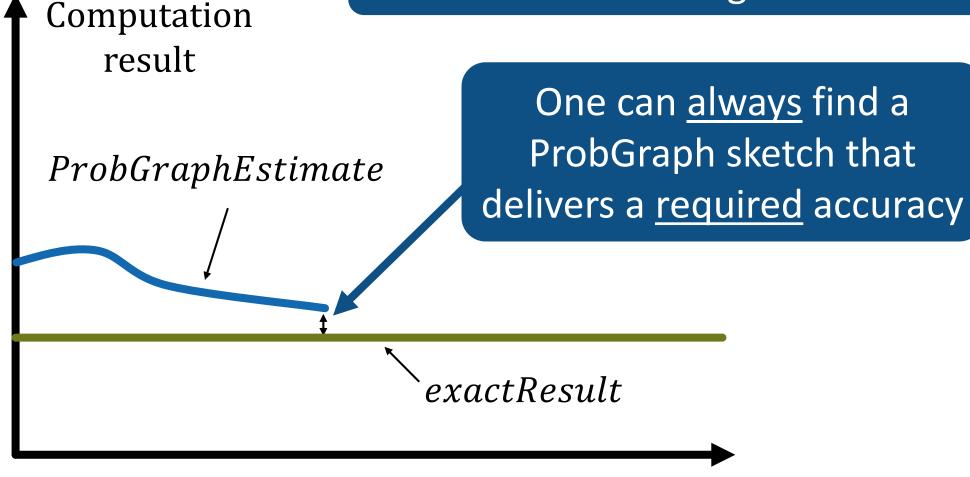


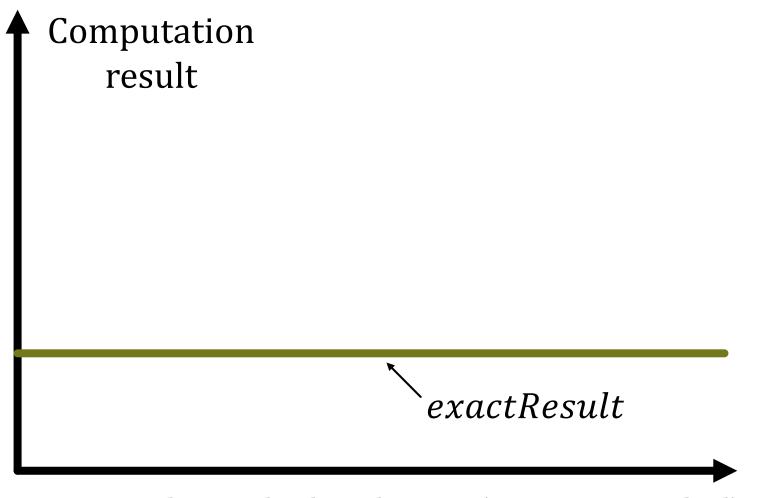
Contraction and





The variance also converges to zero with the increasing sketch size





The sectors

Computation result

[1] J. Tetek, "Approximate triangle counting via sampling and fast matrix ` multiplication", arXiv 2021.

[2] S. Assadi et al., "A simple sublinear-time algorithm for counting arbitrary subgraphs via edge sampling", arXiv 2018.

[3] T. Eden et al., "Approximately counting triangles in sublinear time", SIAM Journal on Computing, 2017.

[4] B. Bandyopadhyay et al., "Topological graph sketching for incremental and scalable analytics", CIKM, 2016.

[5] R. Pagh et al., "Colorful triangle counting and a MapReduce implementation", Information Processing Letters, 2012.

[6] O. Papapetrou et al., "Cardinality estimation and dynamic length adaptation for bloom filters", Distributed and Parallel Databases, 2010.

[7] C. E. Tsourakakis et al., "Doulion: counting triangles in massive graphs with a coin". ACM KDD. 2009.

[8] M. Besta et al., "Slim graph: Practical lossy graph compression for approximate graph processing, storage, and analytics". ACM/IEEE SC. 2019

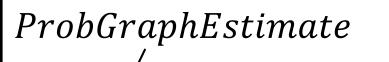
`exactResult

ProbGraph sketch size (storage needed)

[1-8]

Other estimators

Computation result



Other estimators

[1] J. Tetek, "Approximate triangle counting via sampling and fast matrix ` multiplication", arXiv 2021.

[2] S. Assadi et al., "A simple sublinear-time algorithm for counting arbitrary subgraphs via edge sampling", arXiv 2018.

[3] T. Eden et al., "Approximately counting triangles in sublinear time", SIAM Journal on Computing, 2017.

[4] B. Bandyopadhyay et al., "Topological graph sketching for incremental and scalable analytics", CIKM, 2016.

[5] R. Pagh et al., "Colorful triangle counting and a MapReduce implementation", Information Processing Letters, 2012.

[6] O. Papapetrou et al., "Cardinality estimation and dynamic length adaptation for bloom filters", Distributed and Parallel Databases, 2010.

[7] C. E. Tsourakakis et al., "Doulion: counting triangles in massive graphs with a coin". ACM KDD. 2009.

[8] M. Besta et al., "Slim graph: Practical lossy graph compression for approximate graph processing, storage, and analytics". ACM/IEEE SC. 2019

`exactResult

ProbGraph sketch size (storage needed)

[1-8]

Computation result

ProbGraphEstimate

Other estimators

[1] J. Tetek, "Approximate triangle counting via sampling and fast matrix ` multiplication", arXiv 2021.

[2] S. Assadi et al., "A simple sublinear-time algorithm for counting arbitrary subgraphs via edge sampling", arXiv 2018.

[3] T. Eden et al., "Approximately counting triangles in sublinear time", SIAM Journal on Computing, 2017.

[4] B. Bandyopadhyay et al., "Topological graph sketching for incremental and scalable analytics", CIKM, 2016.

[5] R. Pagh et al., "Colorful triangle counting and a MapReduce implementation", Information Processing Letters, 2012.

[6] O. Papapetrou et al., "Cardinality estimation and dynamic length adaptation for bloom filters", Distributed and Parallel Databases, 2010.

[7] C. E. Tsourakakis et al., "Doulion: counting triangles in massive graphs with a coin". ACM KDD. 2009.

[8] M. Besta et al., "Slim graph: Practical lossy graph compression for approximate graph processing, storage, and analytics". ACM/IEEE SC. 2019

<u>No other consistent estimator</u> has lower MSE / variance `exactResult

ProbGraph sketch size (storage needed)

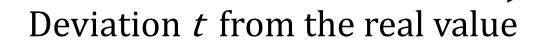
[1-8]

The state of the second s

ProbGraph has strong concentration bounds

at the second second

P(|ProbGraphEstimate



P(|ProbGraphEstimate

This probability decreases This probability decreases <u>exponentially</u> fast

Deviation *t* from the real value

P(|ProbGraphEstimate

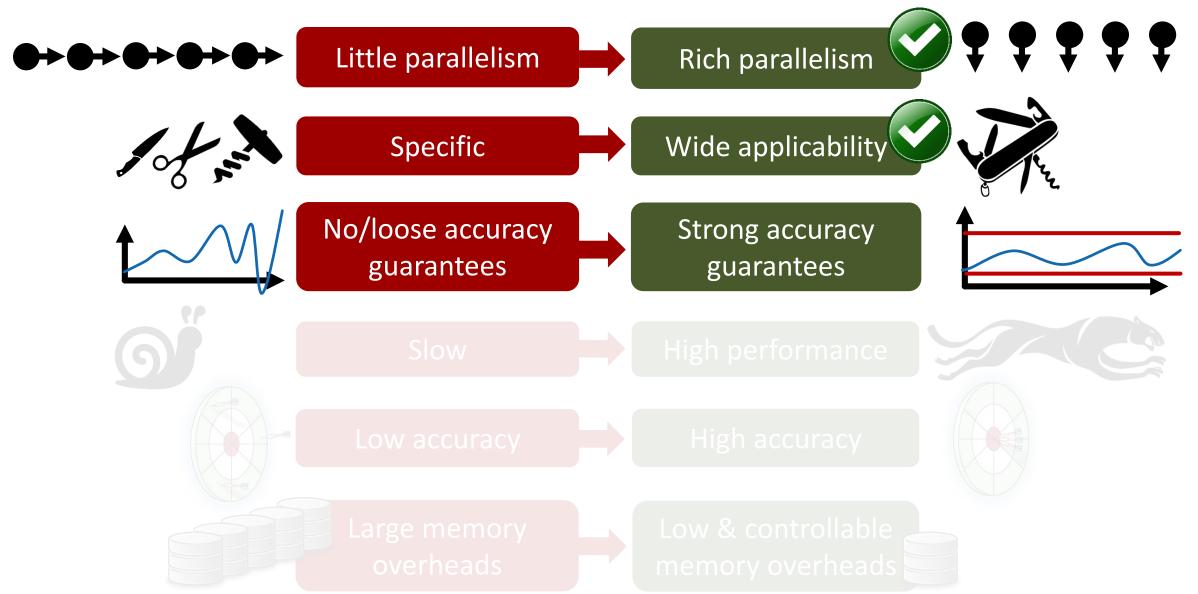
ProbGraph is unlikely to deviate much from the true values

This probability decreasesexponentially fastases

ехропениану нази

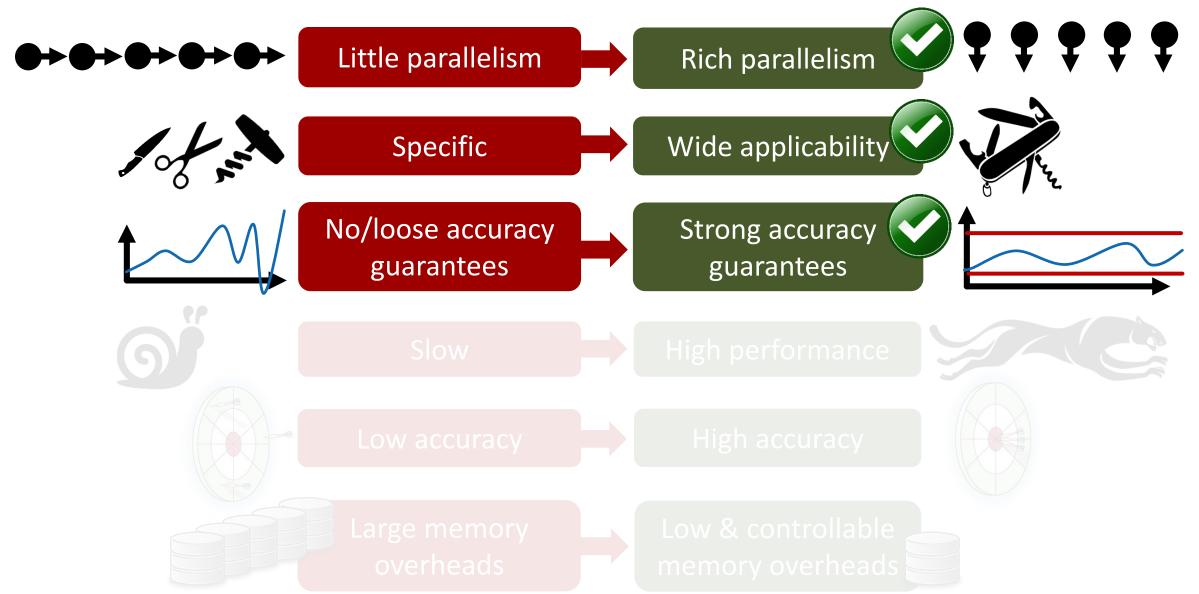
Deviation *t* from the real value

Approximate Graph Processing: Our Objectives



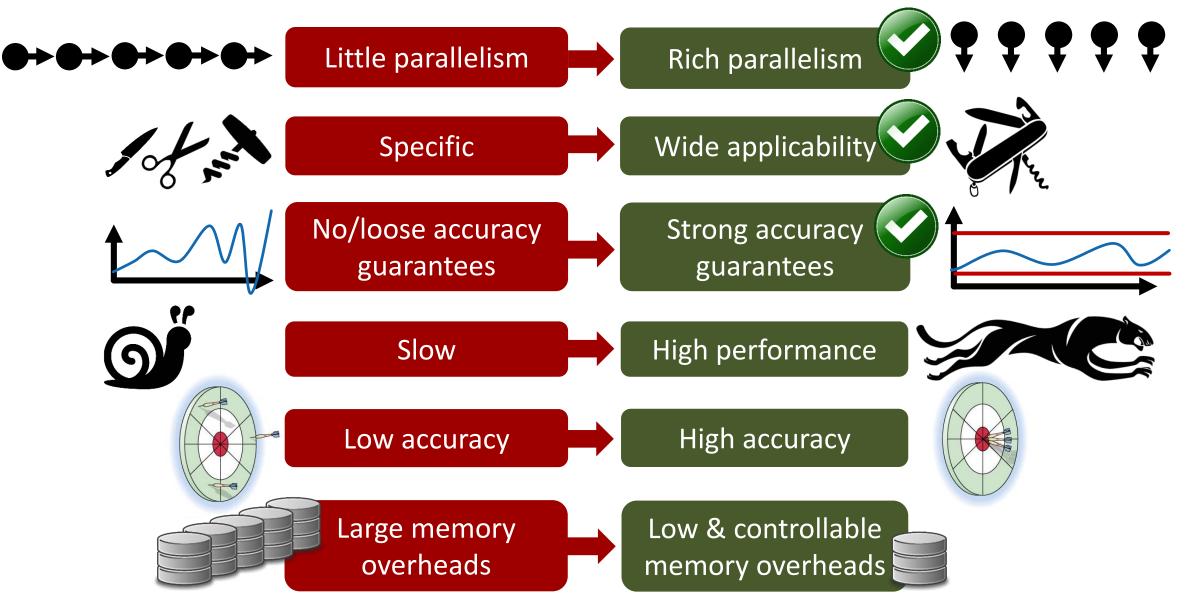
Mall Charles The

Approximate Graph Processing: Our Objectives



Della de la come tra

Approximate Graph Processing: Our Objectives



-

C3

CRAY

Evaluation: Used Machines & Objectives

CRAY

CRAY

CSCS

-

C3

CRAY

Evaluation: Used Machines & Objectives

CSCS Cray Piz Daint, 64 GB per compute node

CRAY

CRAY

CSCS

-

C3

CRAY

Evaluation: Used Machines & Objectives

(j)

Dell PowerEdge R910 server

CSCS Cray Piz Daint, 64 GB per compute node

CRAY

CRAY

CSCS

spcl.inf.ethz.ch

Evaluation: Used Machines & Objectives

Goal: One design with... <u>large</u> speedups + <u>small & controlled</u> accuracy loss + <u>small & controlled</u> memory requirements

Ø

Dell PowerEdge R910 server

CSCS Cray Piz Daint, 64 GB per compute node

and the second and

Considered Graph Datasets

the second second

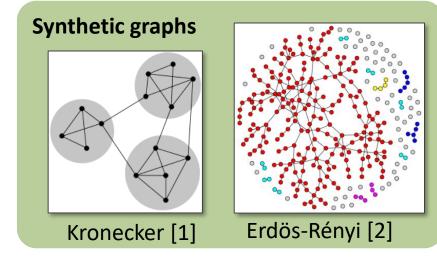
Considered Graph Datasets

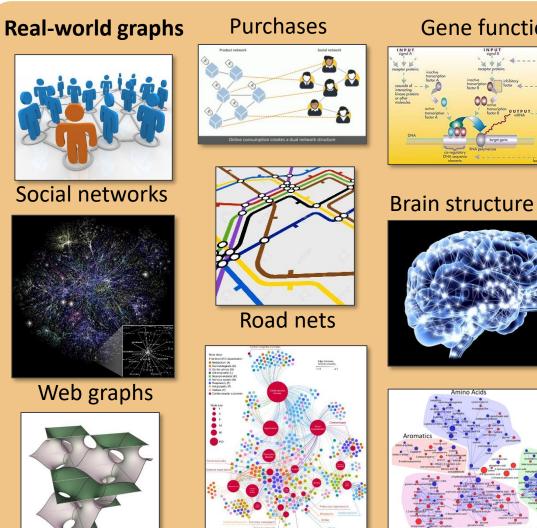
67 graph datasets, 15 areas, 5 major graph dataset repositories

spcl.inf.ethz.ch **ETH** zürich 🥑 @spcl_eth

Considered Graph Datasets

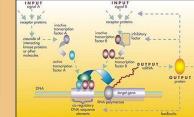
67 graph datasets, 15 areas, 5 major graph dataset repositories





Medicine

Gene functions



Chemistry

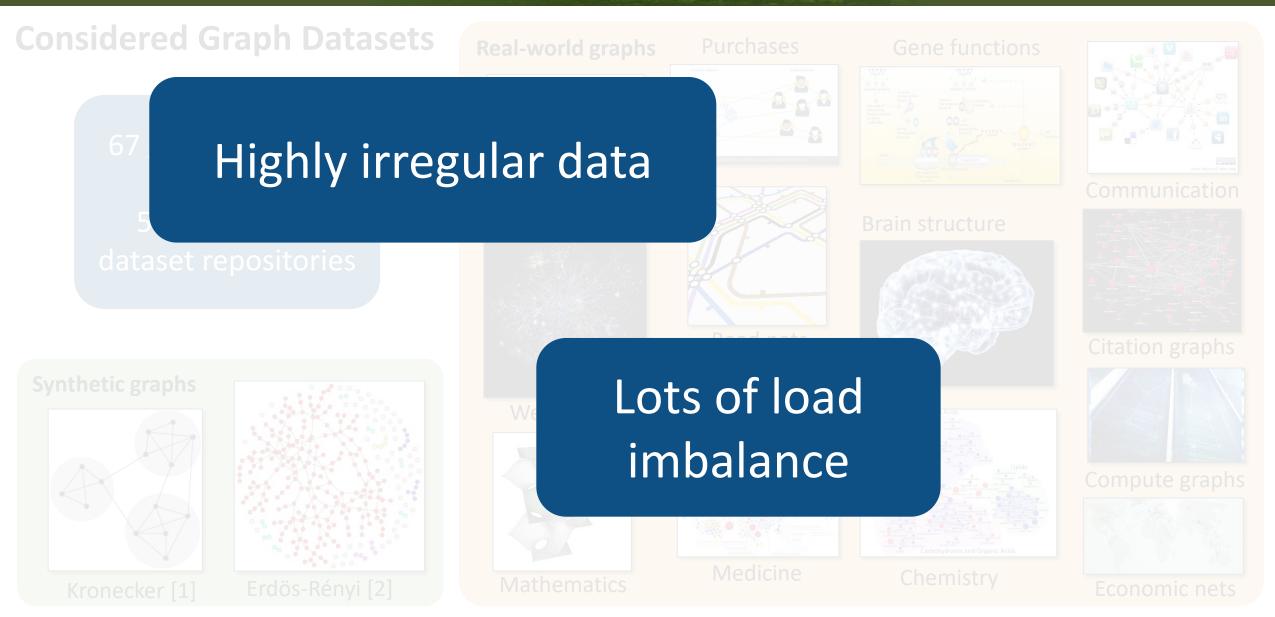
Communication

Citation graphs

Compute graphs

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010. [2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.

Mathematics



a light and and any the

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.[2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.

The Contraction of the

Triangle Counting

Cores/threads: 32 Max memory overhead: 20%

Triangle Counting

Cores/threads: 32 Max memory overhead: 20%

H		 		
Η				
H				-
Η				
Η				
Н				
Н				
H				

and the state of the

Triangle Counting

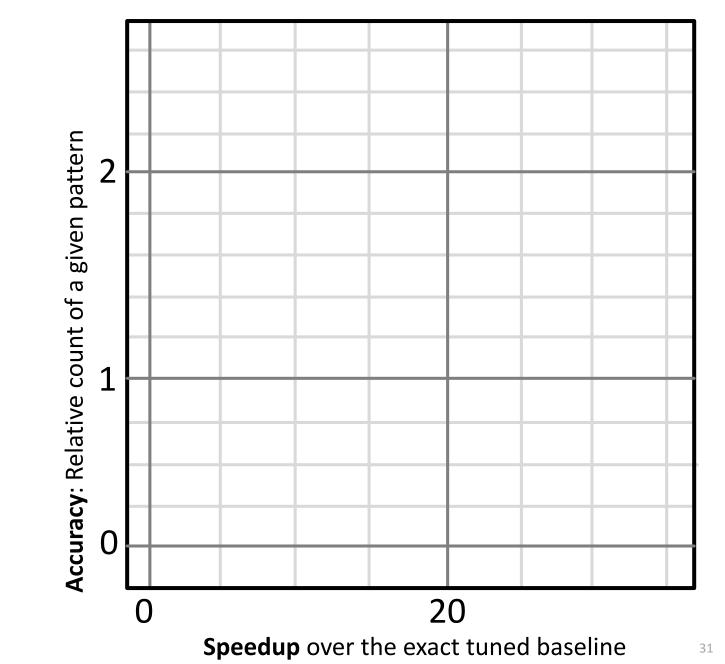
Cores/threads: 32 Max memory overhead: 20%

							_		
_							_		
							_		
0 20									
Speedup over the exact tuned baseline									

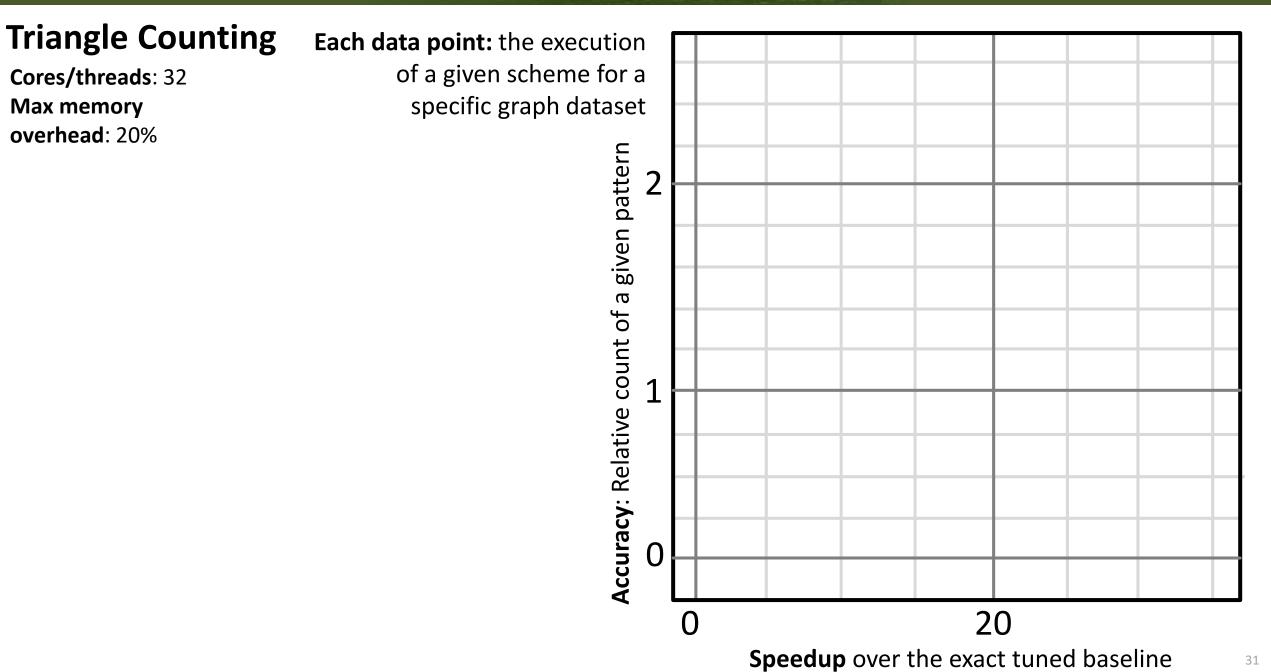
Charles and

Triangle Counting

Cores/threads: 32 Max memory overhead: 20%

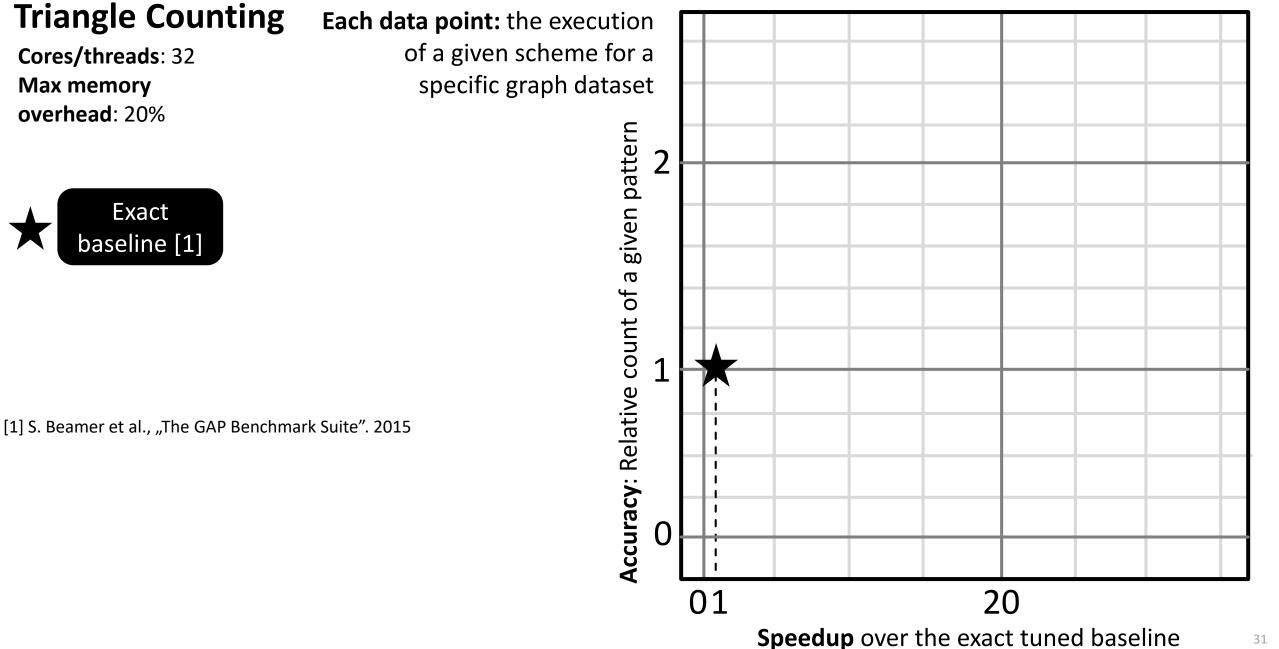


spcl.inf.ethz.ch



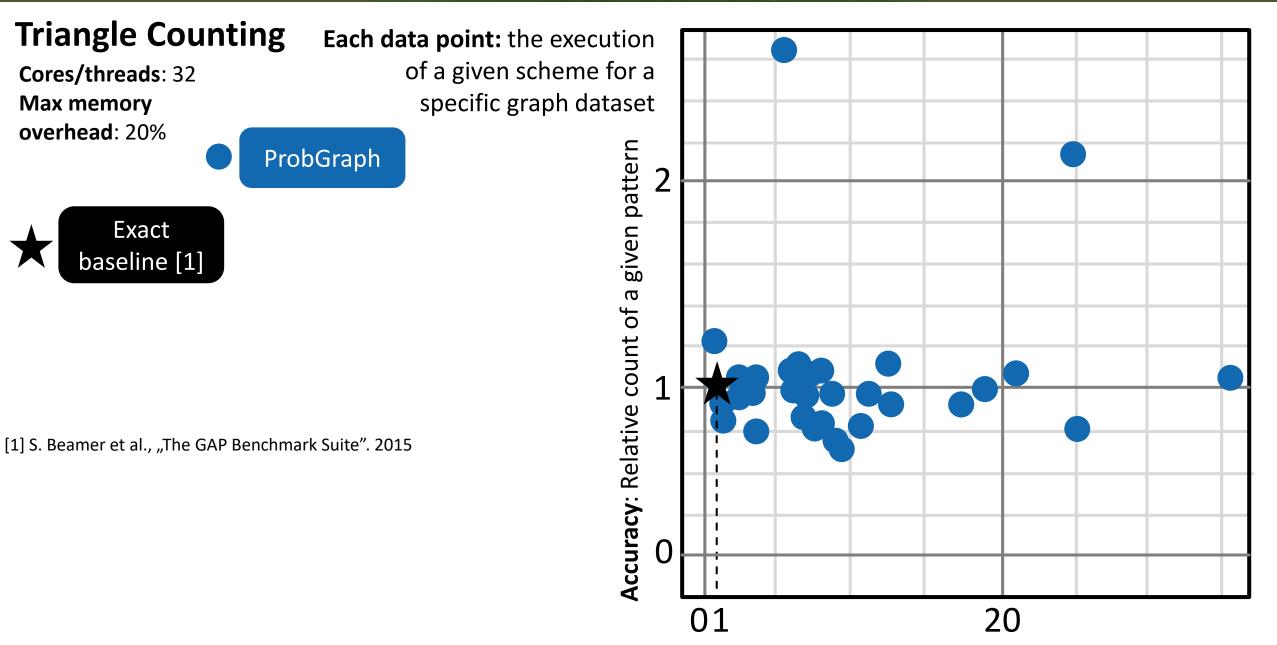
A STATISTICS AND A STATISTICS

SPEL



Start Bally in Product Start Start Start

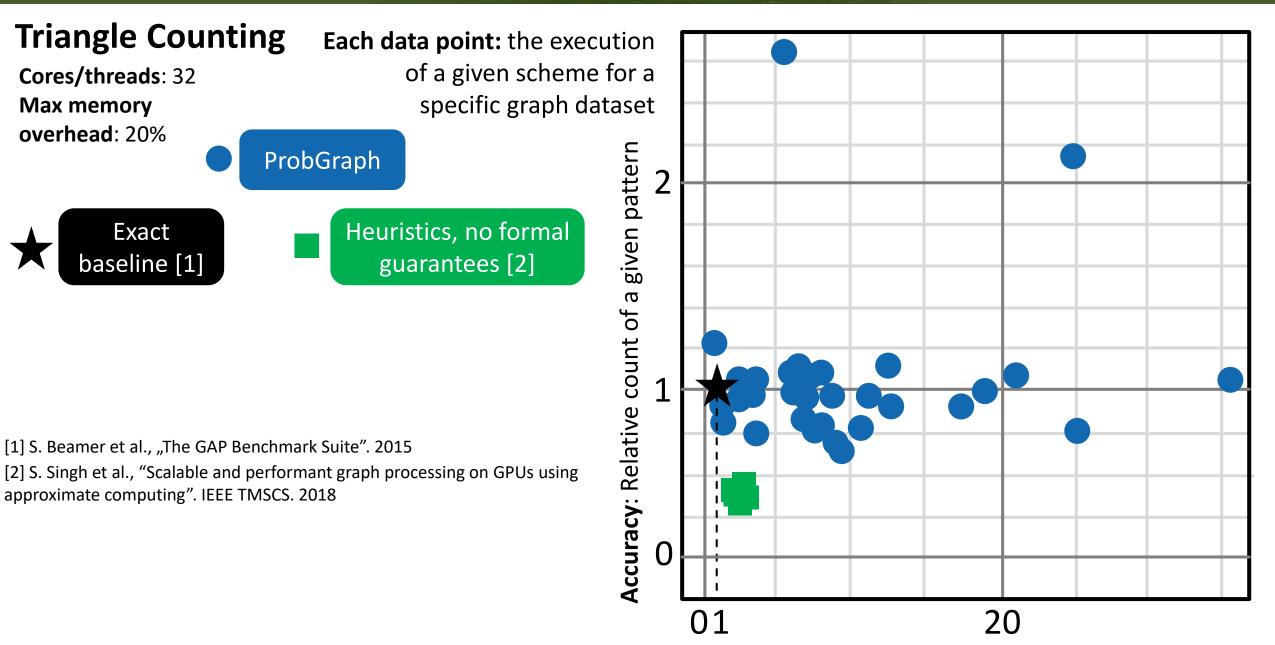
spcl.inf.ethz.ch



The state of the second states of the

Speedup over the exact tuned baseline 31

spcl.inf.ethz.ch

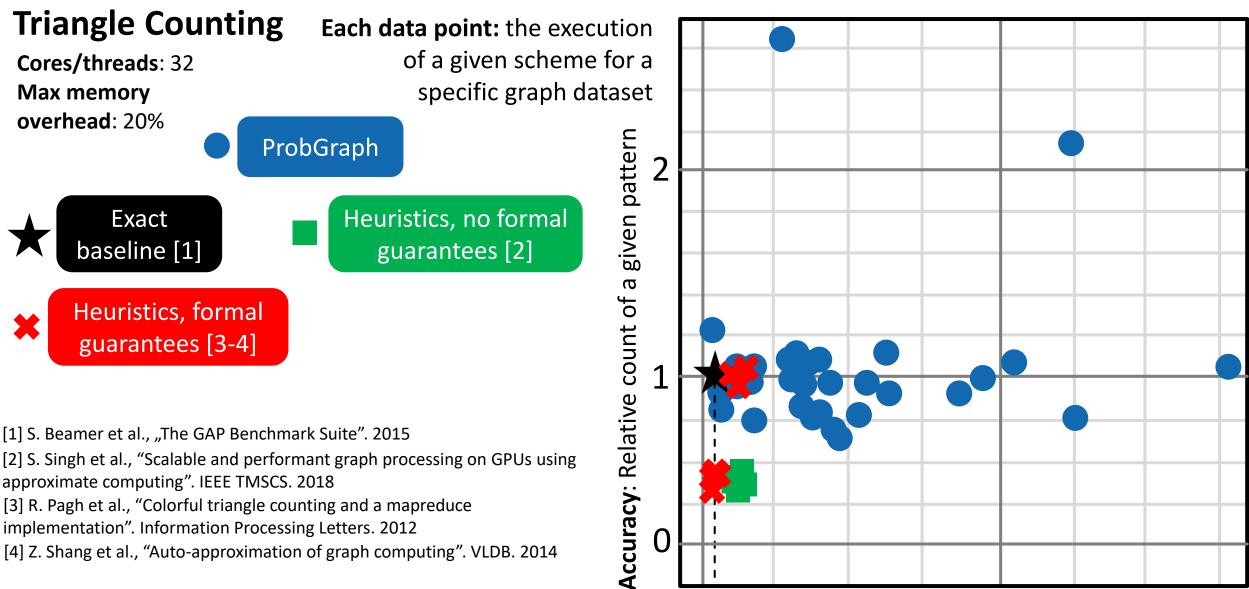


The second second

Speedup over the exact tuned baseline

***SPEL

spcl.inf.ethz.ch ETHzürich 🅤 @spcl_eth



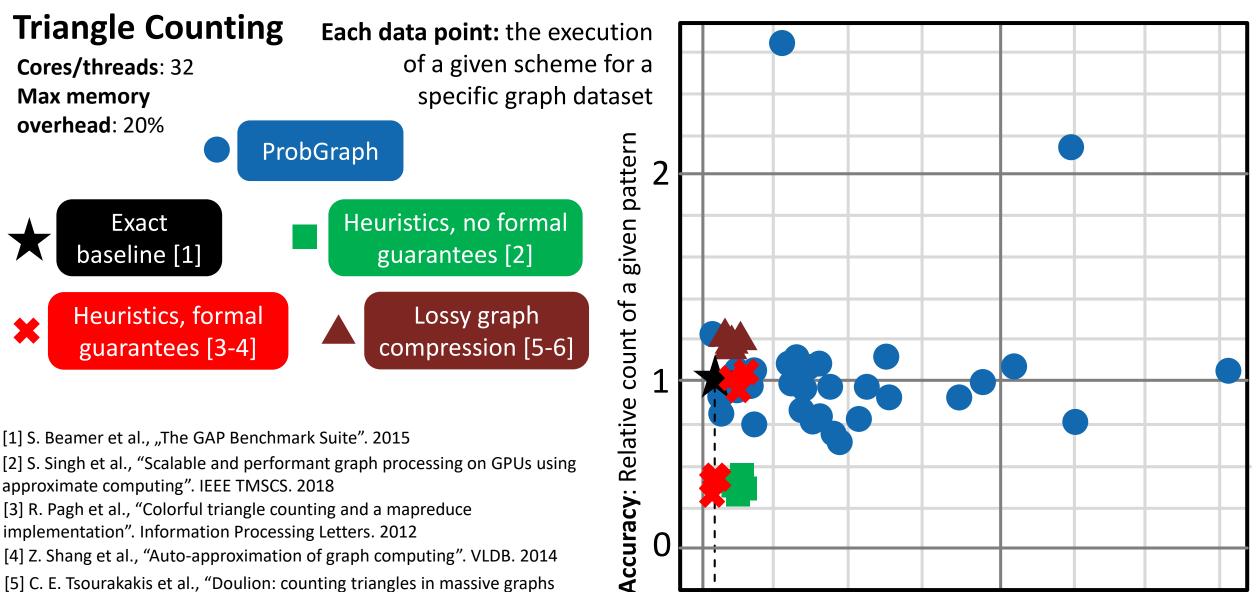
01

[4] Z. Shang et al., "Auto-approximation of graph computing". VLDB. 2014

Speedup over the exact tuned baseline

***SPEL

spcl.inf.ethz.ch ETHzürich 🅤 @spcl_eth



01

The second second

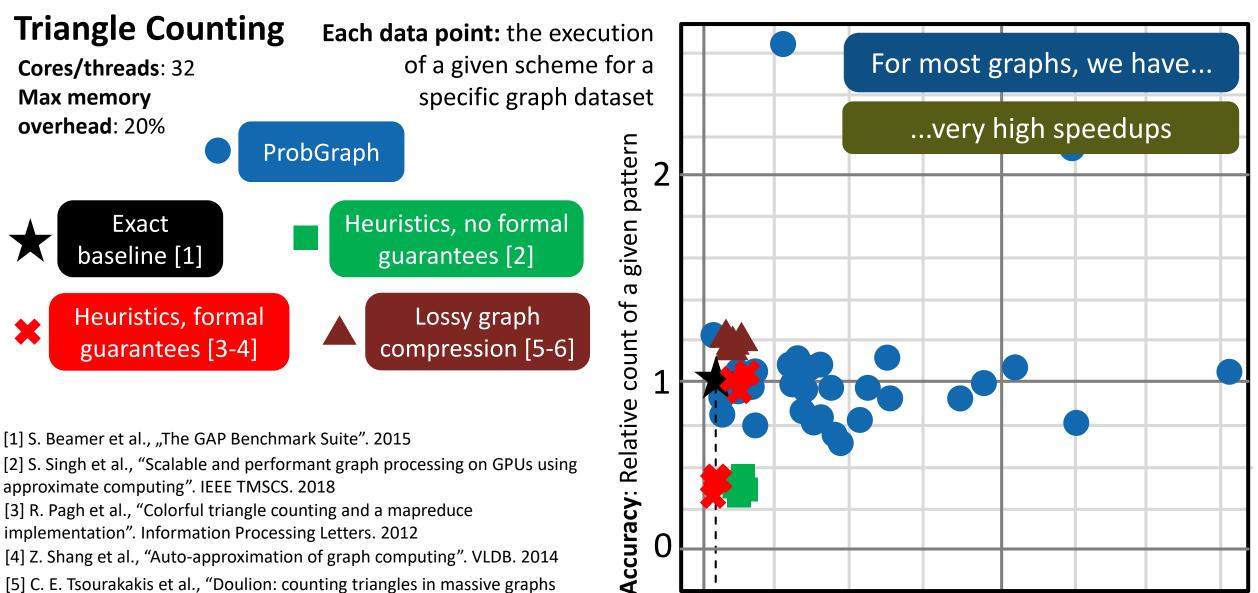
- [3] R. Pagh et al., "Colorful triangle counting and a mapreduce implementation". Information Processing Letters. 2012
- [4] Z. Shang et al., "Auto-approximation of graph computing". VLDB. 2014
- [5] C. E. Tsourakakis et al., "Doulion: counting triangles in massive graphs with a coin". ACM KDD. 2009.
- [6] M. Besta et al., "Slim graph: Practical lossy graph compression for approximate graph processing, storage, and analytics". ACM/IEEE SC. 2019

Speedup over the exact tuned baseline

20

** SPEL

spcl.inf.ethz.ch ETHzürich 🅤 @spcl_eth



01

The second second

implementation". Information Processing Letters. 2012

[4] Z. Shang et al., "Auto-approximation of graph computing". VLDB. 2014

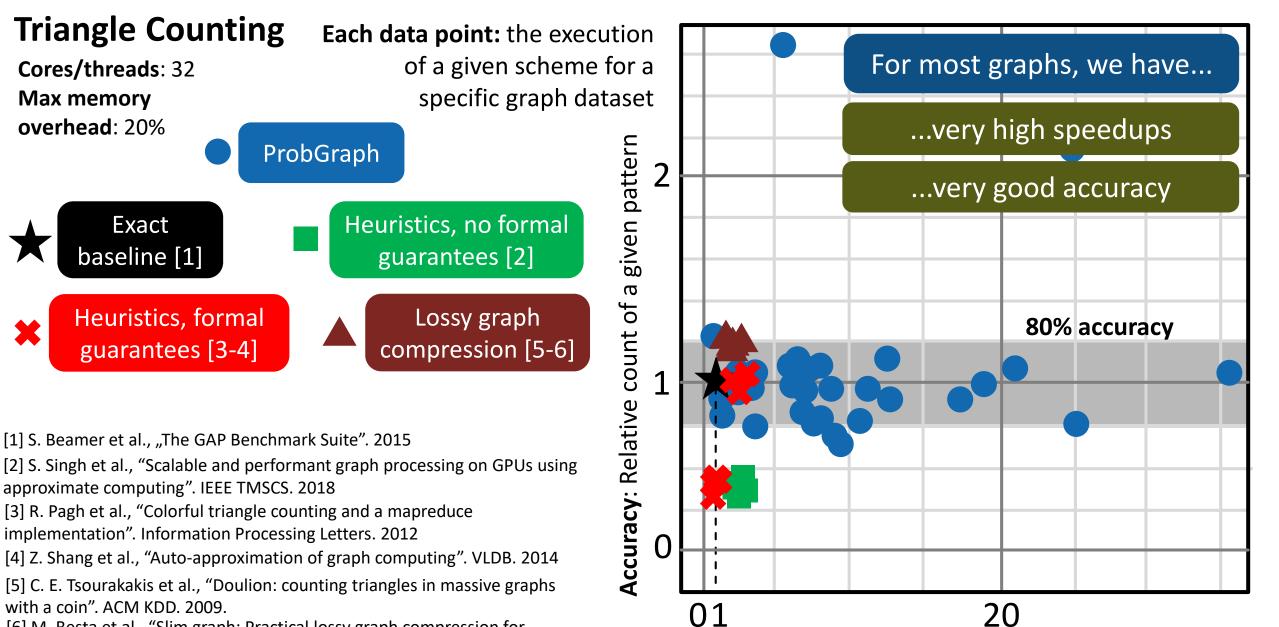
[5] C. E. Tsourakakis et al., "Doulion: counting triangles in massive graphs with a coin". ACM KDD. 2009.

[6] M. Besta et al., "Slim graph: Practical lossy graph compression for approximate graph processing, storage, and analytics". ACM/IEEE SC. 2019

Speedup over the exact tuned baseline

20

spcl.inf.ethz.ch

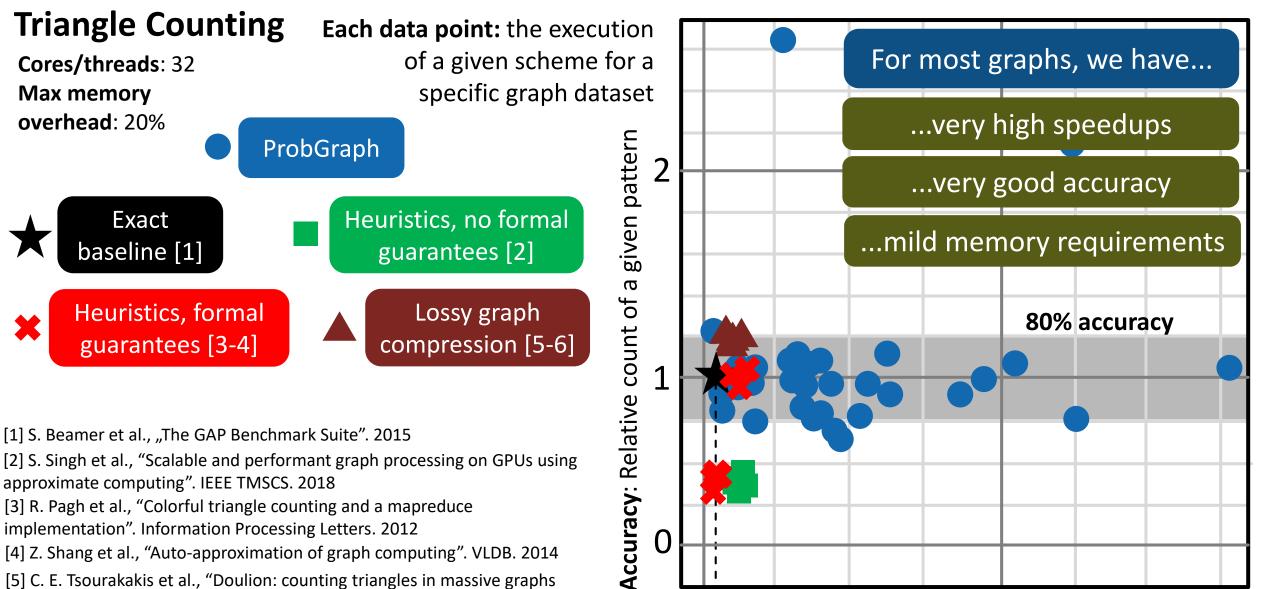


The second second

[6] M. Besta et al., "Slim graph: Practical lossy graph compression for approximate graph processing, storage, and analytics". ACM/IEEE SC. 2019

Speedup over the exact tuned baseline

spcl.inf.ethz.ch



01

The second and

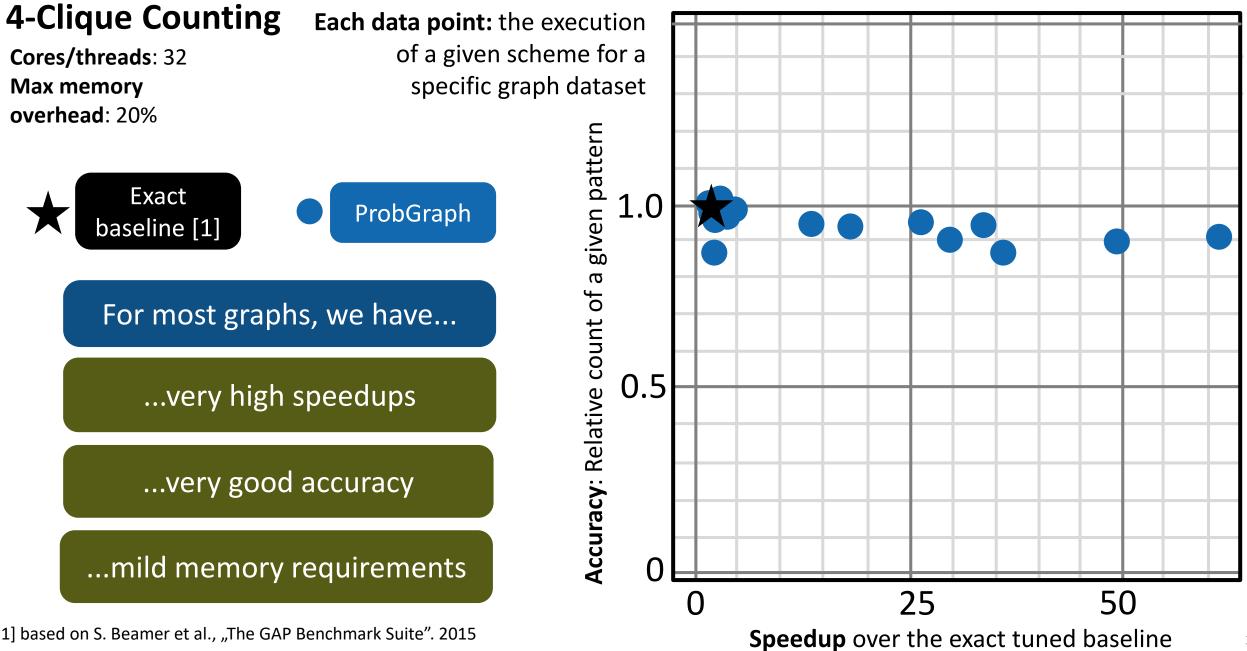
[5] C. E. Tsourakakis et al., "Doulion: counting triangles in massive graphs with a coin". ACM KDD. 2009.

[6] M. Besta et al., "Slim graph: Practical lossy graph compression for approximate graph processing, storage, and analytics". ACM/IEEE SC. 2019

31

*** SPEL

spcl.inf.ethz.ch ETHzürich 🕤 @spcl eth

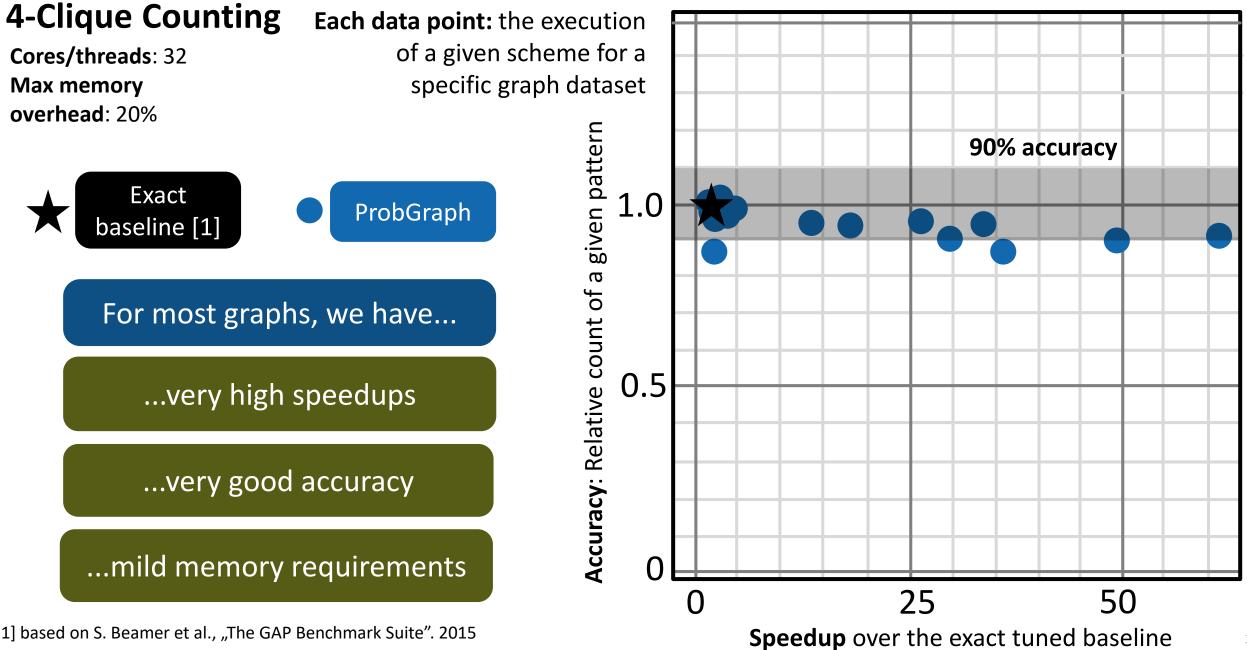


The Real Property and the second second

[1] based on S. Beamer et al., "The GAP Benchmark Suite". 2015

*** SPEL

spcl.inf.ethz.ch ETHzürich 🕤 @spcl eth

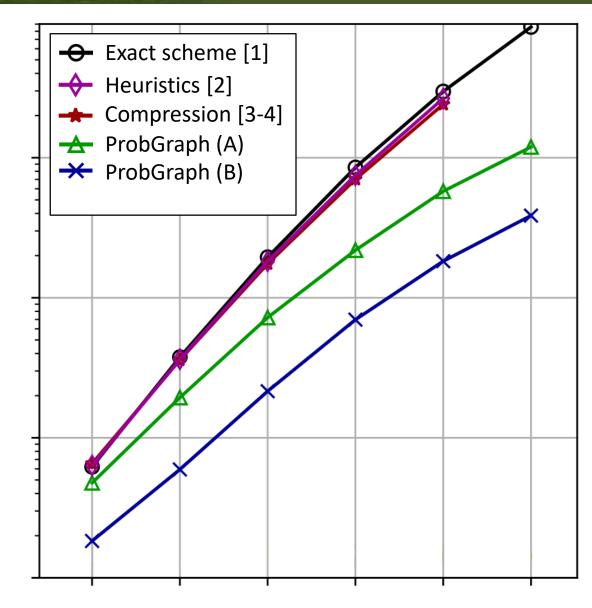


A LINE AND AND AND A

[1] based on S. Beamer et al., "The GAP Benchmark Suite". 2015

Clustering (Scaling)

Max memory overhead: 20%

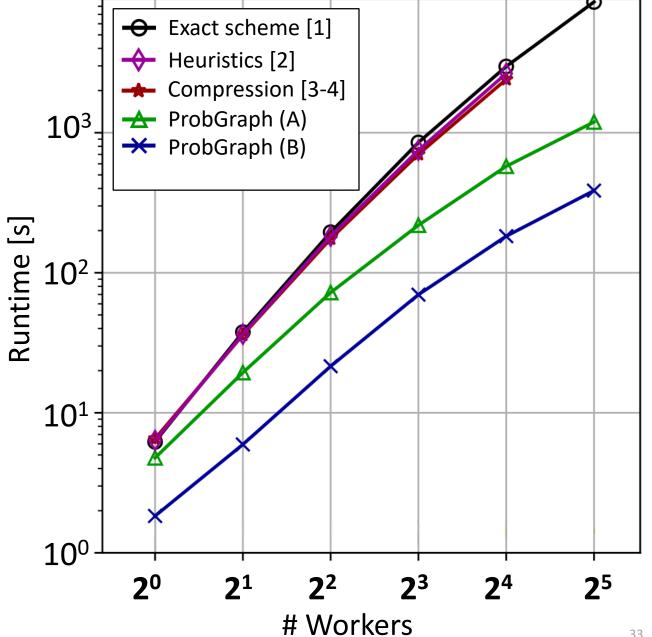


[1] S. Beamer et al., "The GAP Benchmark Suite". 2015
[2] R. Pagh et al., "Colorful triangle counting and a mapreduce implementation". Information Processing Letters. 2012
[3] C. E. Tsourakakis et al., "Doulion: counting triangles in massive graphs with a coin". ACM KDD. 2009.

[4] M. Besta et al., "Slim graph: Practical lossy graph compression for approximate graph processing, storage, and analytics". ACM/IEEE SC. 2019

Clustering (Scaling)

Max memory overhead: 20%



[1] S. Beamer et al., "The GAP Benchmark Suite". 2015

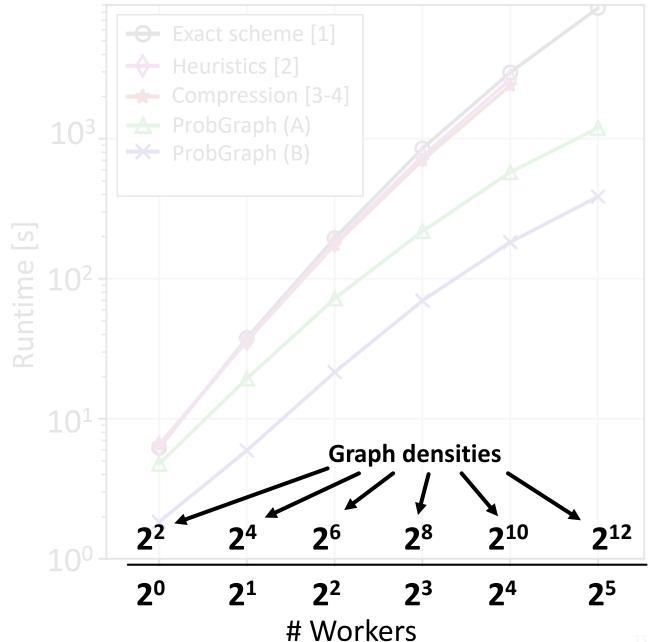
[2] R. Pagh et al., "Colorful triangle counting and a mapreduce

implementation". Information Processing Letters. 2012

[3] C. E. Tsourakakis et al., "Doulion: counting triangles in massive graphs with a coin". ACM KDD. 2009.

[4] M. Besta et al., "Slim graph: Practical lossy graph compression for approximate graph processing, storage, and analytics". ACM/IEEE SC. 2019

Clustering (Scaling)

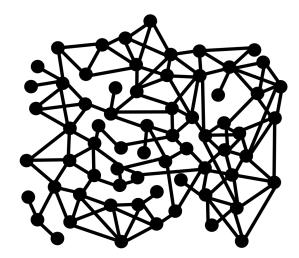


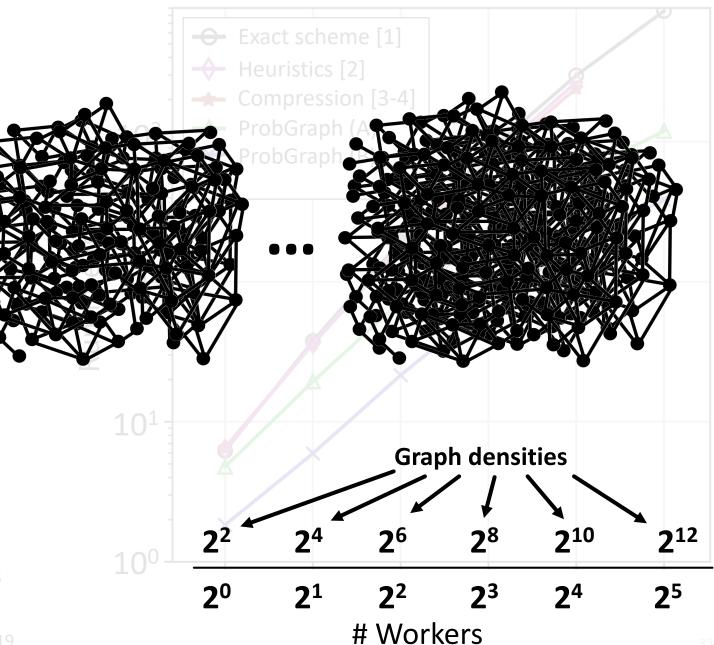
The Render of the Party of the

***SPEL

Clustering (Scaling)

Max memory overhead: 20%





The sector of the sector

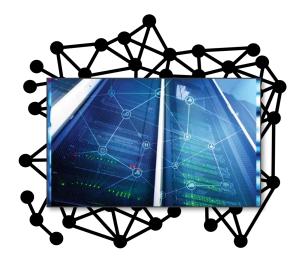
[2] R. Pagh et al., "Colorful triangle counting and a mapreduce implementation". Information Processing Letters. 2012
[3] C. E. Tsourakakis et al., "Doulion: counting triangles in mass

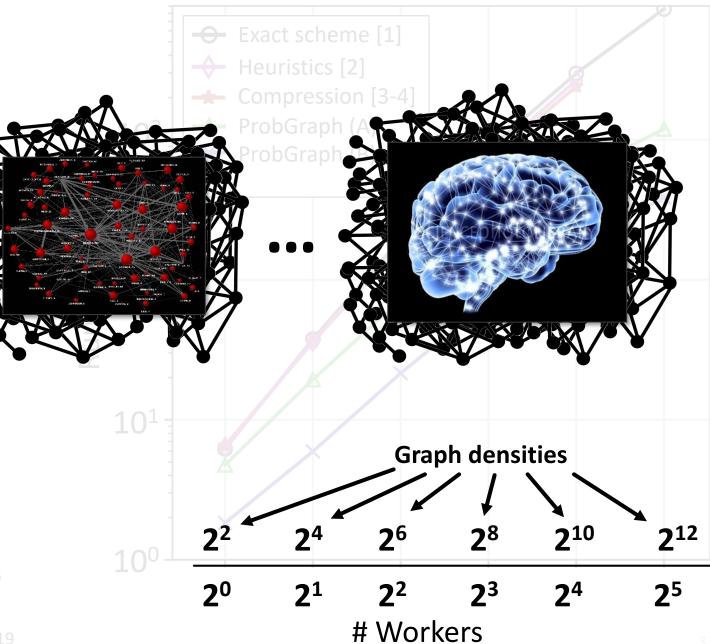
[4] M. Besta et al., "Slim graph: Practical lossy graph compression for approximate graph processing, storage, and analytics". ACM/IEEE SC. 2019

***SPEL

Clustering (Scaling)

Max memory overhead: 20%





all the second second

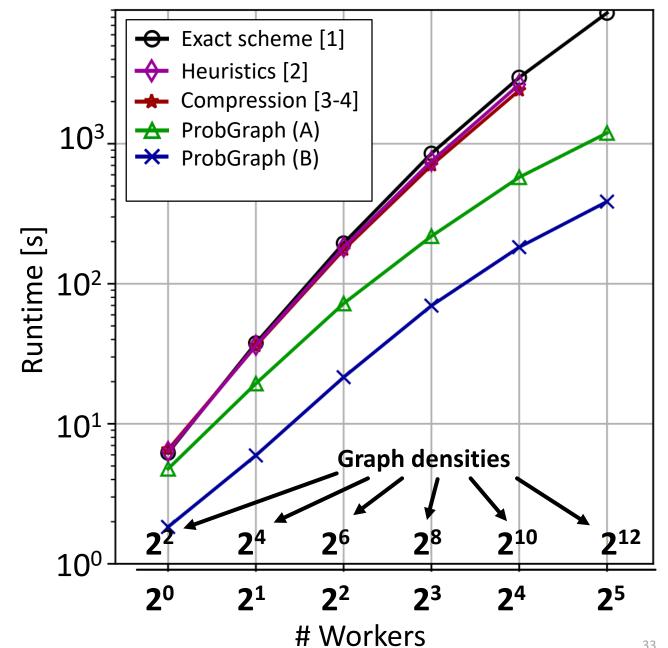
 [2] S. Beamer et al., "The GAP Benchmark Suite 12015
 [2] R. Pagh et al., "Colorful triangle counting and a mapreduc implementation". Information Processing Letters. 2012
 [2] C. F. Taguradadia et al., "Daulian source triangles in response to the second secon

[3] C. E. Tsourakakis et al., "Doulion: counting triangles in massive graphs with a coin". ACM KDD. 2009.

[4] M. Besta et al., "Slim graph: Practical lossy graph compression for approximate graph processing, storage, and analytics". ACM/IEEE SC. 2019

Clustering (Scaling)

Max memory overhead: 20%



[1] S. Beamer et al., "The GAP Benchmark Suite". 2015

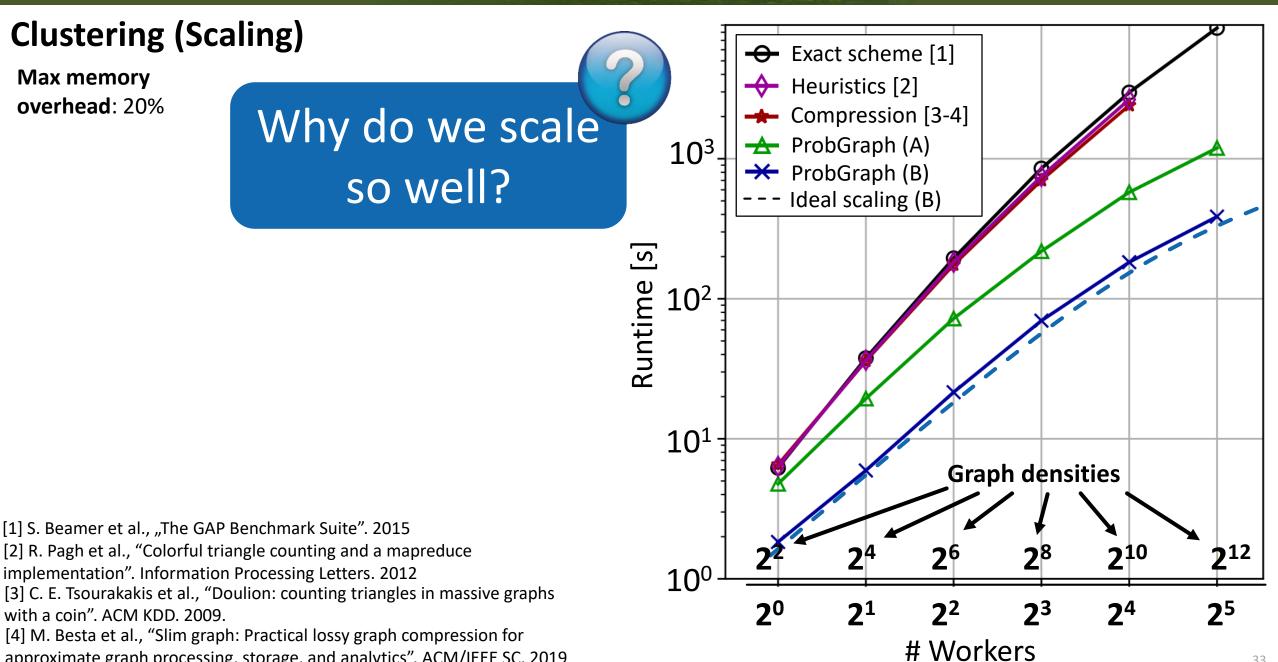
[2] R. Pagh et al., "Colorful triangle counting and a mapreduce

implementation". Information Processing Letters. 2012

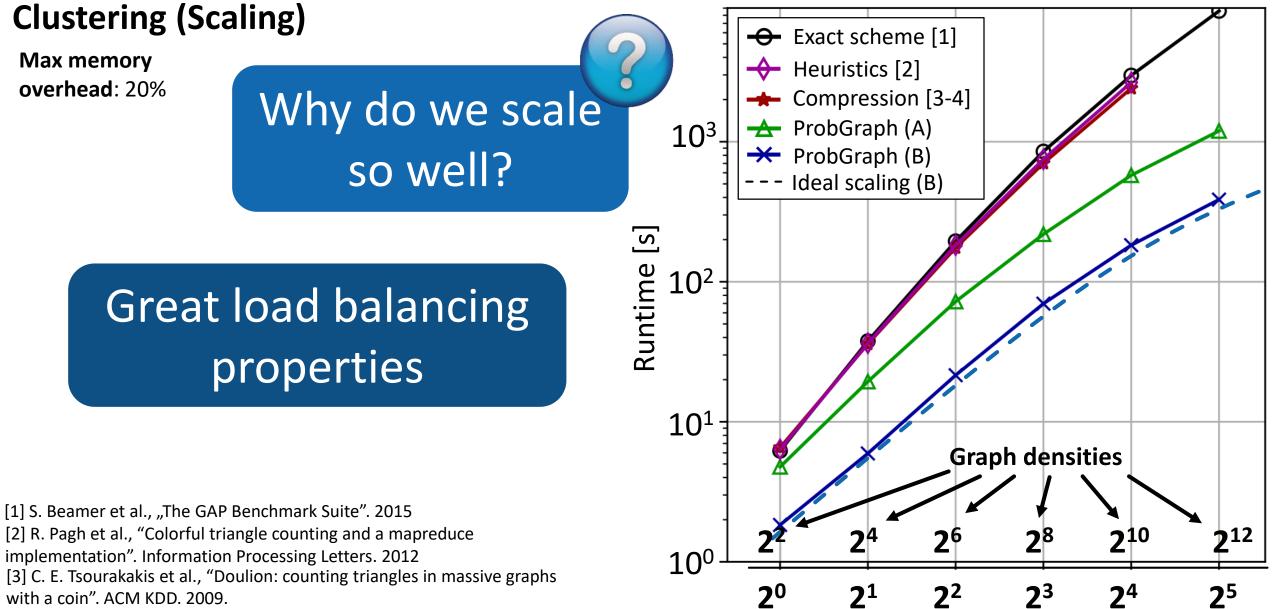
[3] C. E. Tsourakakis et al., "Doulion: counting triangles in massive graphs with a coin". ACM KDD. 2009.

[4] M. Besta et al., "Slim graph: Practical lossy graph compression for approximate graph processing, storage, and analytics". ACM/IEEE SC. 2019

approximate graph processing, storage, and analytics". ACM/IEEE SC. 2019

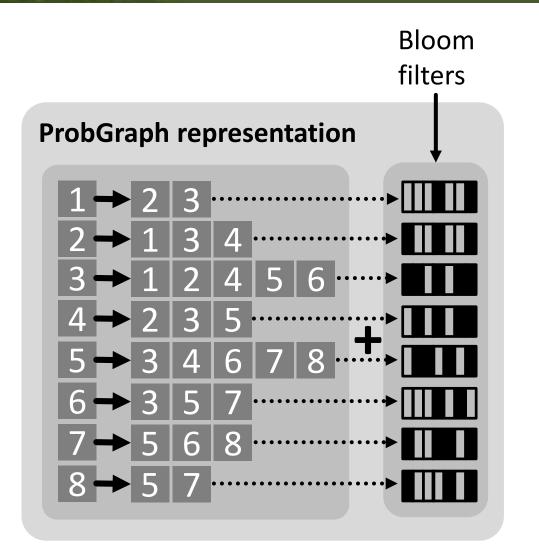


spcl.inf.ethz.ch



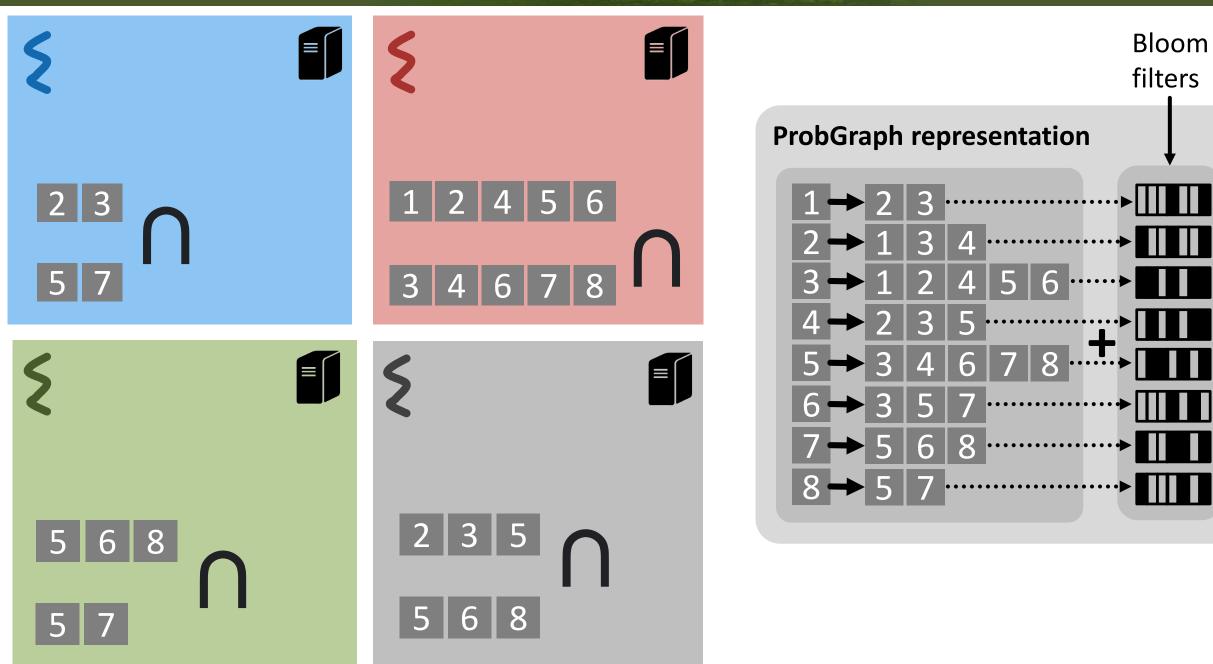
[4] M. Besta et al., "Slim graph: Practical lossy graph compression for approximate graph processing, storage, and analytics". ACM/IEEE SC. 2019

Workers

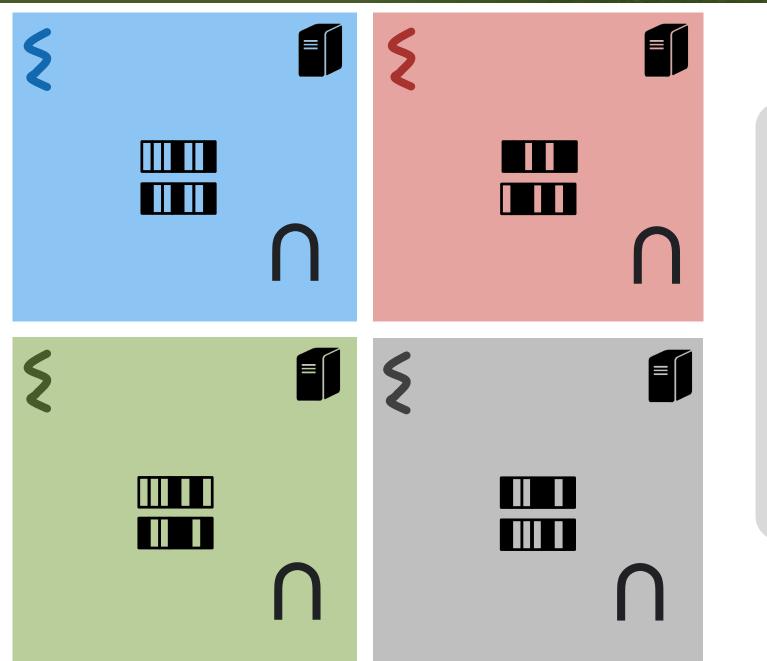


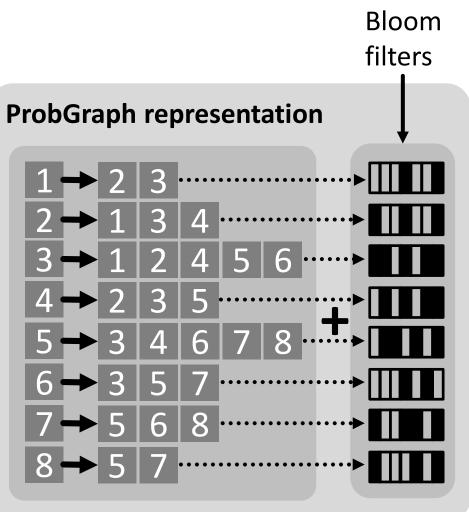
Contraction and

spcl.inf.ethz.ch



spcl.inf.ethz.ch

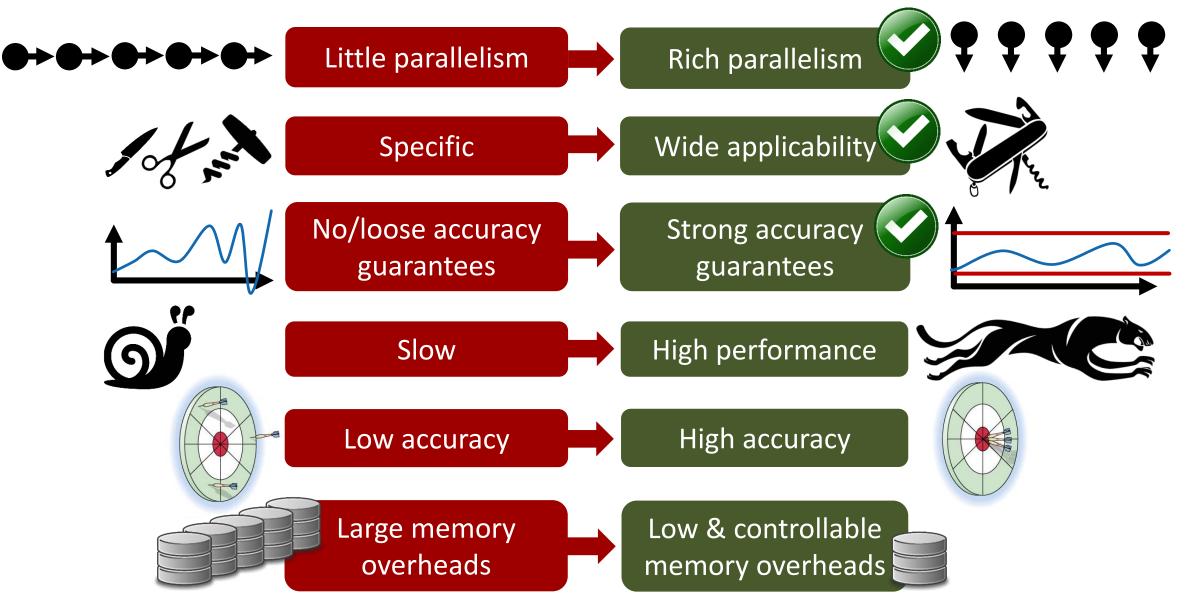




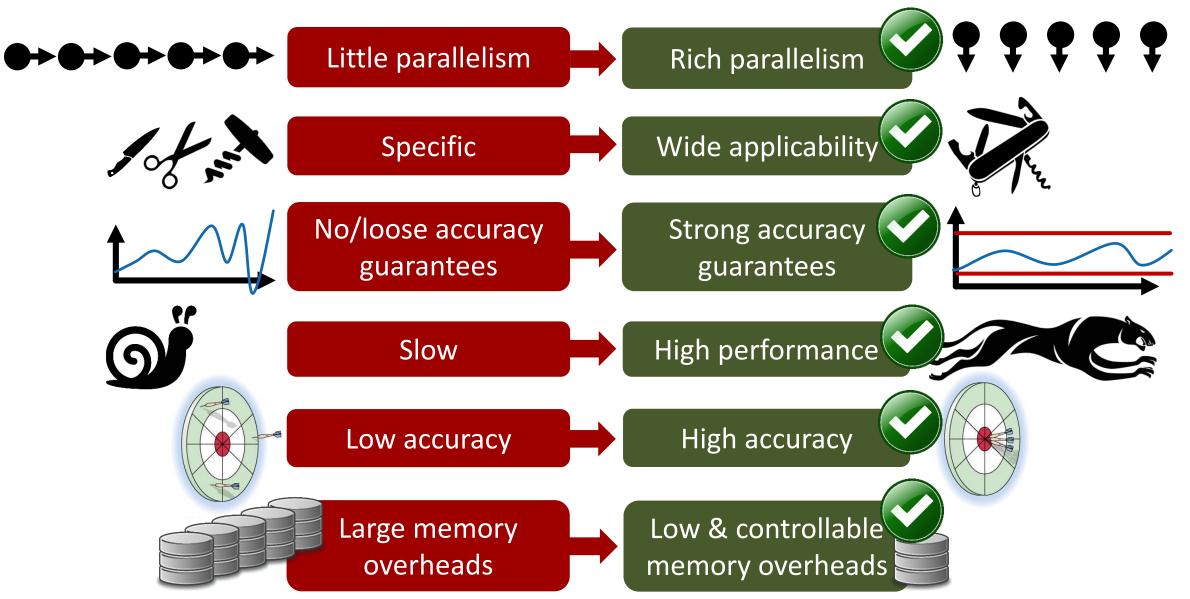
And Party States States

... Many more data & a lot of strong theory results! $\left| P\left(\left| TC - \widehat{TC}_{1H} \right| \ge t \right) \le 2 \exp\left(-\frac{10 \ \kappa \ v}{\left(\sum_{v \in V} d(v)^2 \right)^2} \right) \right|$ Result Where Clas (work (depth) $E[(\widehat{|X|} - |X|)^2]$ (8) $\widehat{|X|}_{S}$ Eq. (1) BF $O(bd_n)$ $O(\log(bd_v))$ $X \cap Y$ **Theorem A.6.** Let $Y_1 =$ $O(kd_v)$ $O(\log d_v)$ $=E[(\widehat{|X|} - |X|)^2 |\mathcal{E}]P(\mathcal{E}) + E[(\widehat{|X|} - |X|)^2 |\neg \mathcal{E}]P(\neg \mathcal{E})$ (9)and assume we partition $\mathcal{X}_1, \cdots, \mathcal{X}_{\chi}$ such that estin independent. Then for any $|X \cap Y|$ PG (BF) PG (MH) $\leq (1+\varepsilon)E[(\widehat{|X|}-\kappa)^2|\mathcal{E}] + \frac{1+\varepsilon}{\varepsilon}E[(\kappa-|X|)^2|\mathcal{E}] + O(B_X^2\log^2 B_X) \cdot \exp(-B_X^{\Omega(1)})$ (10) $\left(\frac{ndB_X}{W}\right)$ $S = \sum_{i=1}^{n} C_i \frac{J}{1+J}$ O(ndk)Result $\operatorname{og}\left(\frac{B_X}{W}\right)$ $\leq \frac{(1+\varepsilon)B_X^2}{\iota^2} E[(\log(B_{X,0}/B_X) - \log(1-1/B_X)^{b|X|})^2 |\mathcal{E}] + O((\kappa - |X|)^2) + \exp(-B_X^{\Omega(1)})$ $O(\log k)$ $\widehat{|X|}_{S} \bigstar$ $P(|Y_1 - S| > t), P(|Y_k - S| > t)$ (11) $\frac{nd^2 \overset{`}{B}_X}{W}$ $\widehat{|X \cap Y|}_{AN}$ $O(nd^2k)$ $|\widehat{X} \cap \widehat{Y}|_{I}$ $\leq \frac{(1+\varepsilon)B_X^2}{^{12}}E[(\log(B_{X,0}/B_X) - \log(1-1/B_X)^{b|X|})^2|\mathcal{E}] + O(|X|/B_X)$ $\log d \log \left(\frac{B_X}{W} \right)$ $O\left(\log^2 k\right)$ (12) $|\widehat{X} \cap \widehat{Y}|_{h,l}$ $|\widehat{X \cap Y}|_{1H} \bigstar$ Eq. (7) 1-Hash $\leq \frac{(1+\varepsilon)^2 B_X^2}{L^2} e^{2b|X|/B_X} E[(B_{X,0}/B_X - (1-1/B_X)^{b|X|})^2 |\mathcal{E}] + O(|X|/B_X)$ (13)Constr. Memory (30)Reference time used $\leq \frac{(1+\varepsilon)^2 B_X^2}{L^2} e^{2b|X|/(B_X-1)} \cdot E[(B_{X,0}/B_X - (1-1/B_X)^{b|X|})^2]/P[\mathcal{E}] + O(|X|/B_X)$ (14)Doulion [46] $O(m) \quad O(pm)$ O(pm) $|X|_i[E(\widehat{|X|}_j) - |X|_j]$ (31) Colorful [47] O(m)Sketching [48] O(km) O(kn) $= \left((1+\varepsilon)^2 + o(1) \right) \frac{B_X^2}{k^2} e^{2b|X|/(B_X-1)} \cdot E[(B_{X,0}/B_X - (1-1/B_X)^{b|X|})^2] + O(|X|/B_X)$ O(n+m)ASAP [49] (15)**H** GAP [50] $O(m)\dagger O(m')\dagger$ 🗳 Slim Gr. [51] $O(m) \quad O(pm)$ dif $|X|_i] \left| \left| [E(\widehat{|X|}_j) - |X|_j] \right|$ $= \left((1+\varepsilon)^2 + o(1) \right) \frac{e^{2b|X|/(B_X-1)}}{h^2} Var[B_{X,0}] + O(|X|/B_X)$ $O\left(\frac{n}{TC^{1/3}}\right)$ Relative Eden et al. [52] (16)O(1)Assadi et al. [53] n/a (32) $\left(\frac{m^{1.41}}{TC^{0.82}}\right)$ $\leq \left((1+\varepsilon)^2 + o(1) \right) e^{2b|X|/(B_X-1)} \cdot \left(e^{-\frac{b|X|}{B_X}} \frac{B_X}{b^2} - \frac{B_X}{b^2} - \frac{|X|}{b} \right) + O(|X|/B_X)$ Tětek [54] n/a (17)(35) $[]_j) - |X|_j]^2$ \widehat{TC}_{AND} (BF) O(bm) O(n+m) $\bigcup \widehat{TC}_{kH}$ (MH) O(km) O(n+m) $\leq \left((1+\varepsilon)^2 + o(1) \right) \left(e^{|X|b/(B_X-1)} \frac{B_X}{b^2} - B_X/b^2 - |X|/b \right) + O(|X|/B_X)$ (33) \widehat{TC}_{1H} (MH) O(km) O(n+m)(36) (18) $\left(\frac{2\Delta}{b}\right)$ (34) $\leq \left((1+\varepsilon)^2 + o(1) \right) \left(e^{|X|b/(B_X-1)} \frac{B_X}{b^2} - B_X/b^2 - |X|/b \right)$ (37) CSR (merge) (19)Work: $O(d_u + d_v)$ $\frac{2\Delta}{h}$ $P\left(\left|TC-\widetilde{T}\right|\right)$ (38) **Depth:** $O(\log(d_u + d$ $(v)^3$ Number of Threads 36

Approximate Graph Processing: Our Objectives

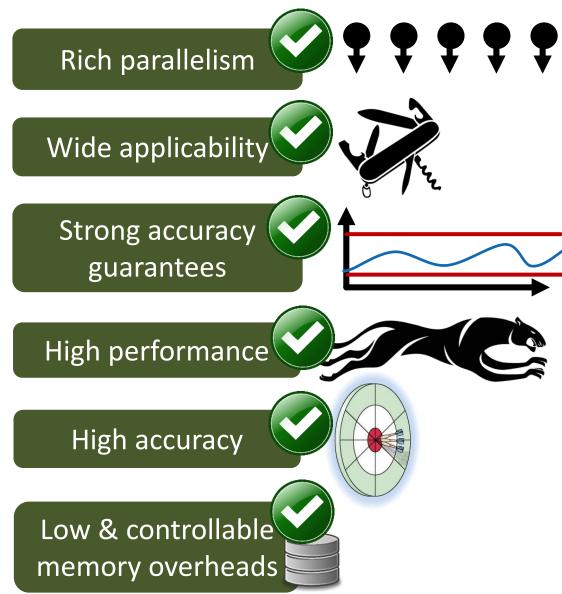


Approximate Graph Processing: Our Objectives



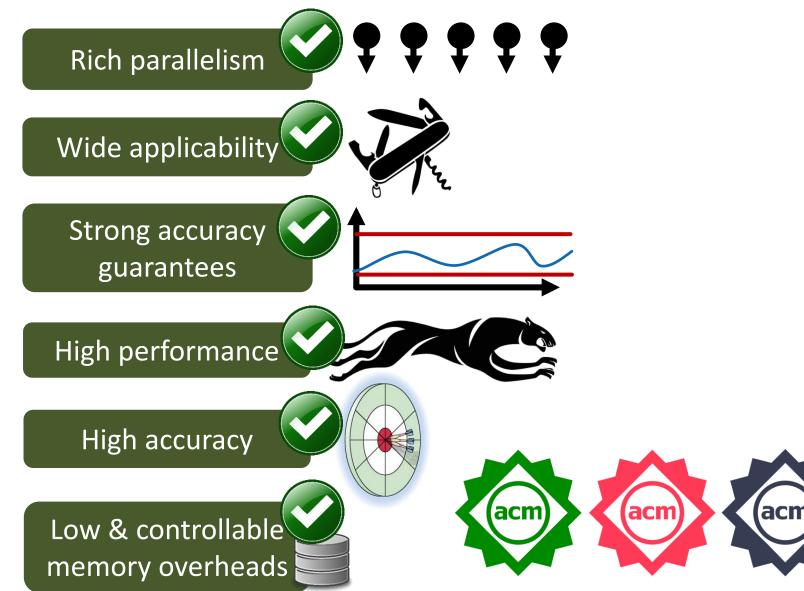
<u>Conclusion</u>: ProbGraph Enables Approximate Graph Mining with...

the second



Conclusion: ProbGraph Enables Approximate Graph Mining with...

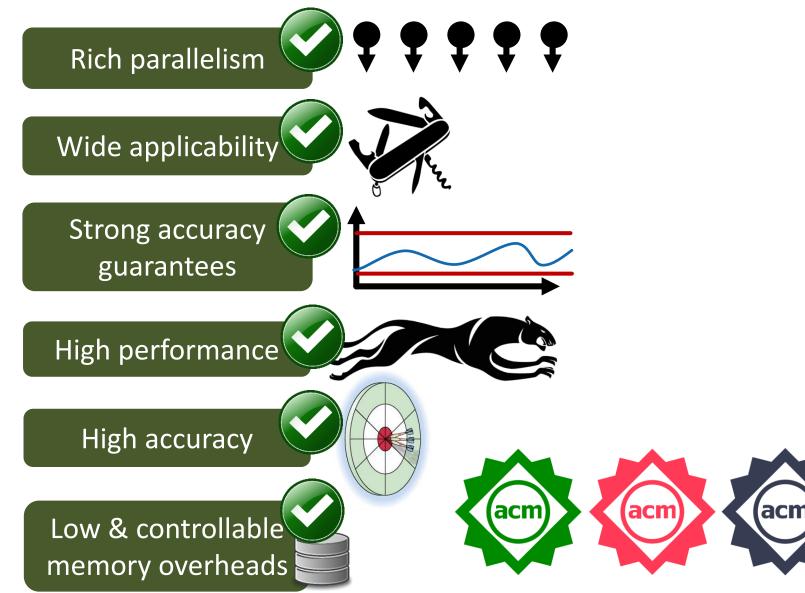
The sector of the



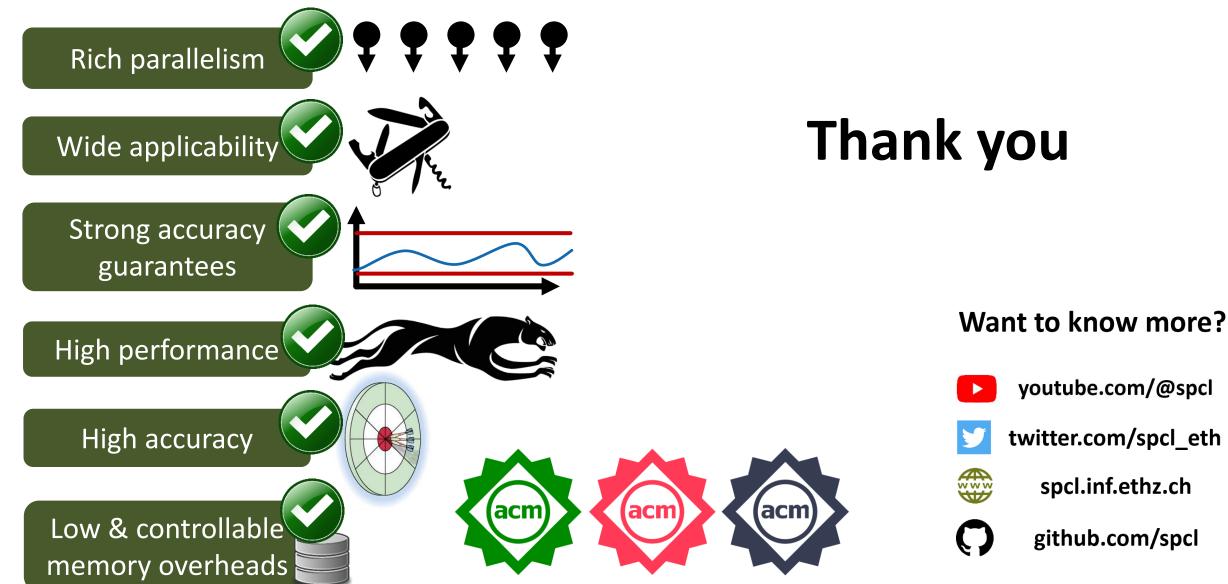
<u>Conclusion</u>: ProbGraph Enables Approximate Graph Mining with...

The second

Thank you



<u>Conclusion</u>: ProbGraph Enables Approximate Graph Mining with...



the second second

Conclusion: ProbGraph Enables Approximate Graph Mining with...

