

Pythia

A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning

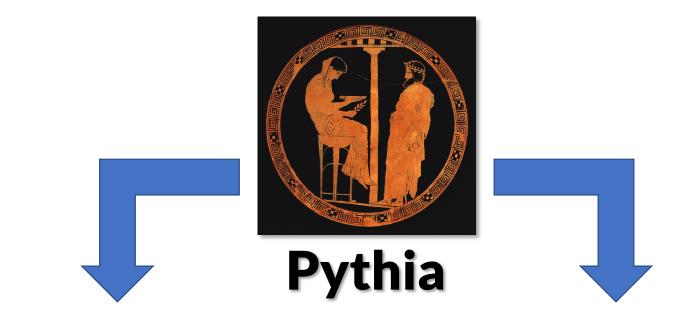
<u>Rahul Bera</u>, Konstantinos Kanellopoulos, Anant V. Nori, Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

https://github.com/CMU-SAFARI/Pythia

Mainly use one program context info. for prediction 2 Lack inherent system awareness

Lack in-silicon customizability

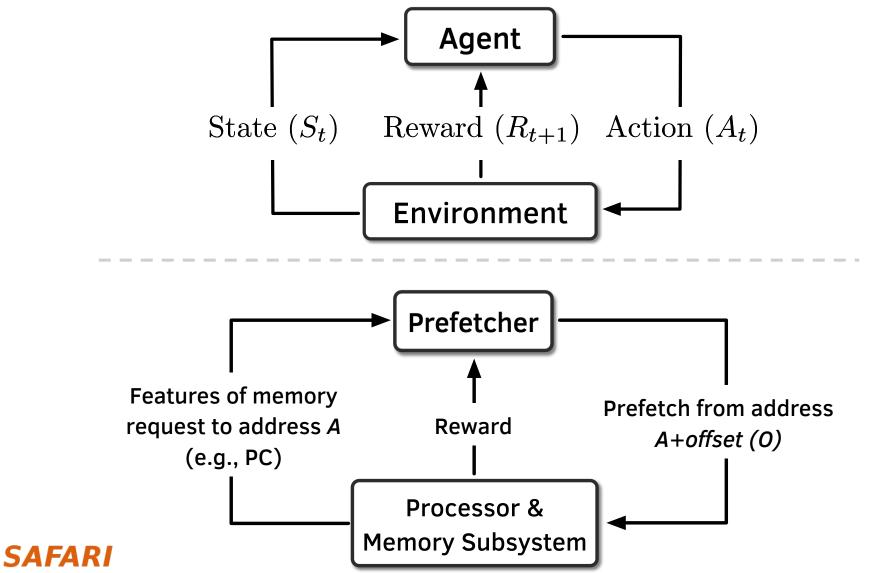
Why do prefetchers not perform well?



Autonomously learns to prefetch using multiple program context information and system-level feedback Can be customized in silicon to change program context information or prefetching objective on the fly

Brief Overview of Pythia

Pythia formulates prefetching as a reinforcement learning problem



What is State?

k-dimensional vector of features

 $S \equiv \{\phi_S^1, \phi_S^2, \dots, \phi_S^k\}$

• Feature = control-flow + data-flow

Control-flow examples

- PC
- Branch PC
- Last-3 PCs, ...

Data-flow examples

- Cacheline address
- Physical page number
- Delta between two cacheline addresses
- Last 4 deltas, ...

Features of memory request to address A (e.g., PC) Processor & Memory Subsystem

What is Action?

Given a demand access to address A the action is to select prefetch offset "O"

- Action-space: 127 actions in the range [-63, +63]
 - For a machine with 4KB page and 64B cacheline
- Upper and lower limits ensure prefetches do not cross physical page boundary
- A zero offset means no prefetch is generated
- We further **prune** action-space by design-space exploration

SAFARI

Prefetcher

Reward

Prefetch from addres

A+offset (0)

Features of memory

(e.g., PC)

What is Reward?

- Defines the **objective** of Pythia
- Encapsulates two metrics:

- Features of memory request to address A (e.g., PC) Processor & Memory Suosystem
- Prefetch usefulness (e.g., accurate, late, out-of-page, ...)
- System-level feedback (e.g., mem. b/w usage, cache pollution, energy, ...)
- We demonstrate Pythia with memory bandwidth usage as the system-level feedback in the paper

What is Reward?

Seven distinct reward levels

- Accurate and timely (R_{AT})
- Accurate but late (R_{AL})
- Loss of coverage (R_{CL})
- Inaccurate
 - With low memory b/w usage (R_{IN}-L)
 - With high memory b/w usage (R_{IN}-H)
- No-prefetch
 - With low memory b/w usage (R_{NP}-L)
 - With high memory b/w usage(R_{NP}-H)
- Values are set at design time via automatic designspace exploration

Can be customized further in silicon for higher performance
 SAFARI

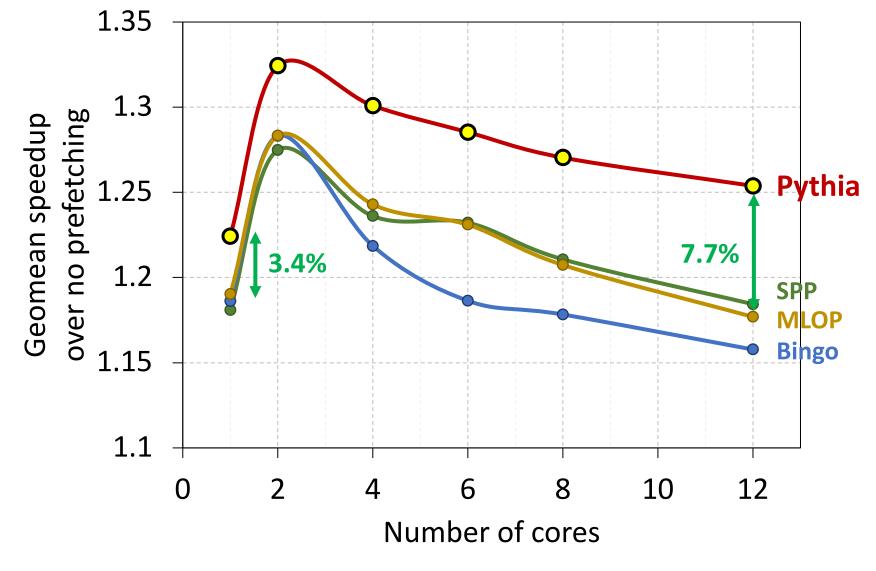
Simulation Methodology

- Champsim [3] trace-driven simulator
- **150** single-core memory-intensive workload traces
 - SPEC CPU2006 and CPU2017
 - PARSEC 2.1
 - Ligra
 - Cloudsuite
- Homogeneous and heterogeneous multi-core mixes

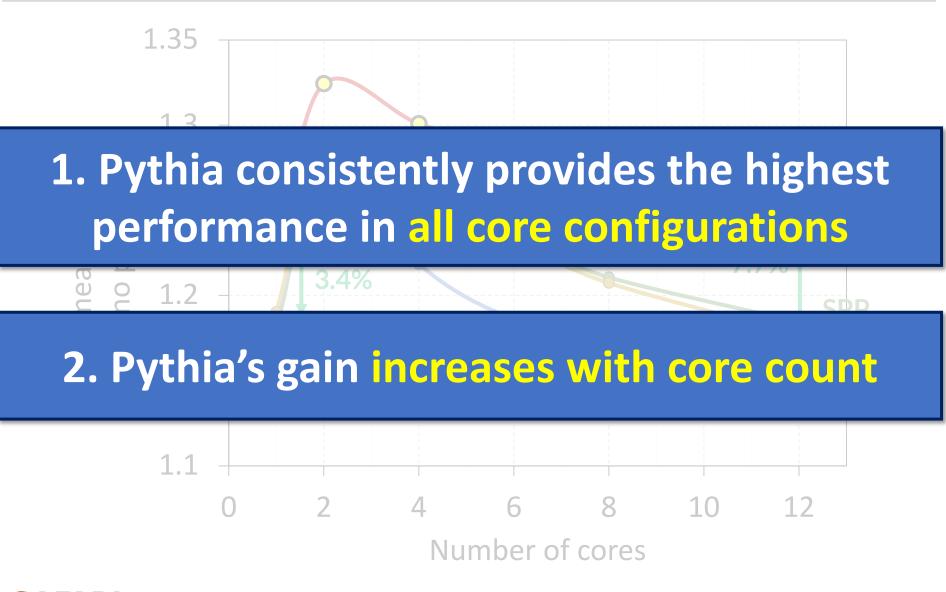
• Five state-of-the-art prefetchers

- SPP [Kim+, MICRO'16]
- Bingo [Bakhshalipour+, HPCA'19]
- MLOP [Shakerinava+, 3rd Prefetching Championship, 2019]
- SPP+DSPatch [Bera+, MICRO'19]
- SPP+PPF [Bhatia+, ISCA'20]

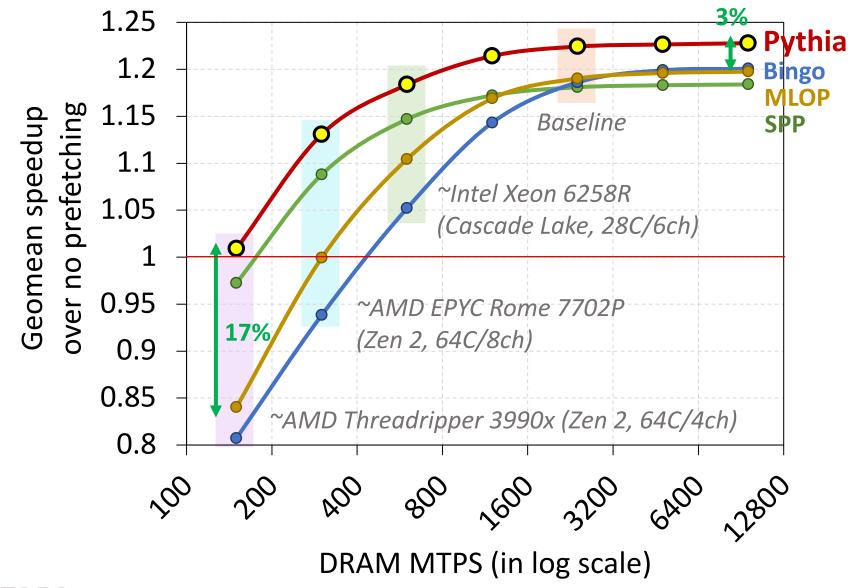
Performance with Varying Core Count



Performance with Varying Core Count

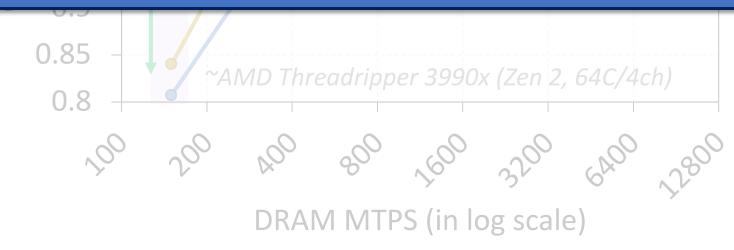


Performance with Varying DRAM Bandwidth



Performance with Varying DRAM Bandwidth

Pythia outperforms prior best prefetchers for a wide range of DRAM bandwidth configurations



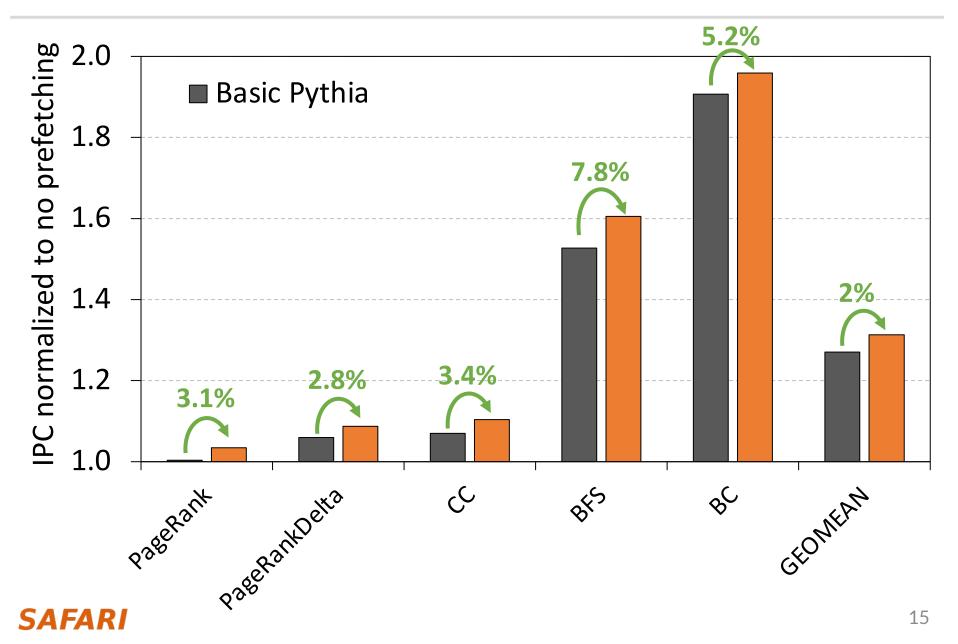
Performance Improvement via Customization

Reward value customization

• Strict Pythia configuration

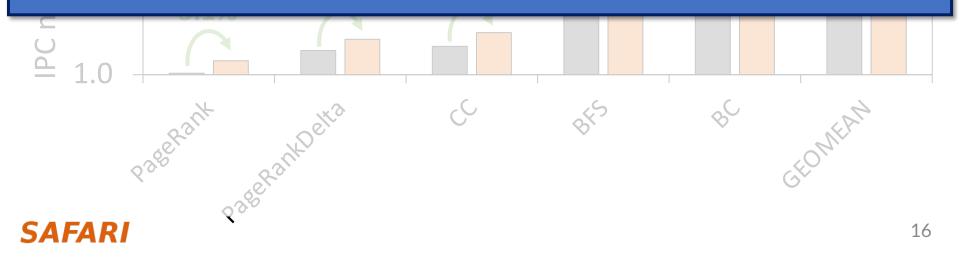
- Increasing the rewards for no prefetching
- **Decreasing** the rewards for **inaccurate prefetching**
- Strict Pythia is more conservative in generating prefetch requests than the basic Pythia
- Evaluate on all Ligra graph processing workloads

Performance Improvement via Customization



Performance Improvement via Customization

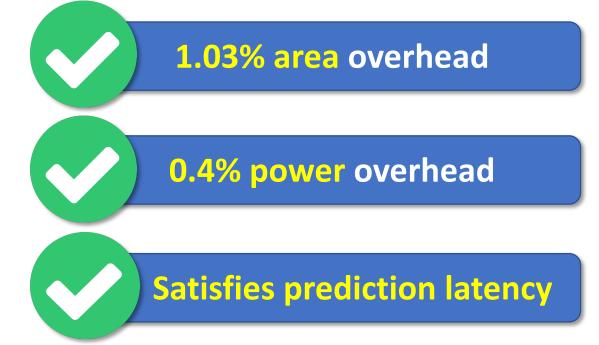
Pythia can extract even higher performance via customization without changing hardware



Pythia's Overhead

• 25.5 KB of total metadata storage per core

- Only simple tables
- We also model functionally-accurate Pythia with full complexity in Chisel [4] HDL



of a desktop-class 4-core Skylake processor (Xeon D2132IT, 60W)

More in the Paper

- Performance comparison with **unseen traces**
 - Pythia provides equally high performance benefits
- Comparison against multi-level prefetchers
 - Pythia outperforms prior best multi-level prefetchers
- Understanding Pythia's learning with a case study
 - We reason towards the correctness of Pythia's decision
- Performance sensitivity towards different features and hyperparameter values
- Detailed single-core and four-core performance

More in the Paper

Performance comparison with unseen traces
 Pythia provides equally high performance benefits

Comparison against multi-level prefetchers

Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning

Rahul Bera¹ Konstantinos Kanellopoulos¹ Anant V. Nori² Taha Shahroodi^{3,1} Sreenivas Subramoney² Onur Mutlu¹ ¹ETH Zürich ²Processor Architecture Research Labs, Intel Labs ³TU Delft

 Performance sensitivity towards unterent features and hyperparameter values

Detailed single-core and four-core performance

Pythia is Open Source

https://github.com/CMU-SAFARI/Pythia

- MICRO'21 artifact evaluated
- Champsim source code + Chisel modeling code
- All traces used for evaluation

CMU-SAFARI / Pythia Public		 Unwat 	tch - 3 \swarrow Star 9 \heartsuit Fork 2
<> Code ⊙ Issues îî Pull reques	sts 🕑 Actions 🔟 Projects 🖽 Wiki 🕕 Security 🗠	Insights 🔯 Se	ttings
🐉 master 👻 🤔 1 branch 📀 5 tags	Go to file Add fi	ile - Code -	About 8
👘 rahulbera Github pages documentatio	on 🗸 diefc65 7 hours ago	3 40 commits	A customizable hardware prefetching framework using online reinforcemen
branch	Initial commit for MICRO'21 artifact evaluation	2 months ago	learning as described in the MICRO 2021 paper by Bera and
Config	Initial commit for MICRO'21 artifact evaluation	2 months ago	Kanellopoulos et al.
docs	Github pages documentation	7 hours ago	
experiments	Added chart visualization in Excel template	2 months ago	machine-learning
inc inc	Updated README	8 days ago	reinforcement-learning computer-architecture prefetcher
prefetcher	Initial commit for MICRO'21 artifact evaluation	2 months ago	microarchitecture cache-replacement
replacement	Initial commit for MICRO'21 artifact evaluation	2 months ago	branch-predictor champsim-simulator
scripts	Added md5 checksum for all artifact traces to verify download	2 months ago	champsim-tracer
src src	Initial commit for MICRO'21 artifact evaluation	2 months ago	🛱 Readme
tracer	Initial commit for MICRO'21 artifact evaluation	2 months ago	Ճ₫ View license
🗅 .gitignore	Initial commit for MICRO'21 artifact evaluation	2 months ago	Ç∄ Cite this repository →
CITATION.cff	Added citation file	8 days ago	
	Updated LICENSE	2 months ago	Releases 5
LICENSE.champsim	Initial commit for MICRO'21 artifact evaluation	2 months ago	V1.3 Latest

Pythia

A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning

<u>Rahul Bera</u>, Konstantinos Kanellopoulos, Anant V. Nori, Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

https://github.com/CMU-SAFARI/Pythia

Discussion

• FAQs

- Why RL?
- What about large page?
- What's the prefetch degree?
- <u>Can customization happen during</u> workload execution?
- Can runtime mixing create problem?

Simulation and Methodology

- Basic Pythia configuration
- System parameters
- Configuration of prefetchers
- Evaluated workloads
- Feature selection

Detailed Design

- <u>Reward structure</u>
- Design overview
- **QVStore Organization**

• More Results

- <u>Comparison against other adaptive</u> <u>prefetchers</u>
- Comparison against Context prefetcher
- Feature combination sensitivity
- <u>Hyperparameter sensitivity</u>
- Comparison with multi-level prefetchers
- Performance in unseen workloads
- Single-core s-curve
- Four-core s-curve
- Detailed performance analysis
- Benefit of bandwidth awareness
- Case study
- Customizing rewards
- Customizing features

Why RL? Why Not Supervised Learning?

- Determining the **benefits of prefetching** (i.e., whether a decision was good for performance or not) is **not easy**
 - Depends on a complex set of metrics
 - Coverage, accuracy, timeliness
 - Effects on system: b/w usage, pollution, cross-application interference, ...
 - Dynamically-changing environmental conditions change the benefit
 - Delayed feedback due to long latency (might not receive feedback at all for inaccurate prefetches!)
- Differs from classification tasks (e.g., branch prediction)
 - Performance strongly correlates mainly to accuracy
 - Does not depend on environment
 - Bounded feedback delay

What About Large Pages?

- Pythia's framework can be easily extended to incorporate additional prefetch actions (i.e., possible prefetch offsets for the page size)
- To decrease the storage overhead
 - Prune action space via automatic design-space exploration
 - Hash action values to retrieve Q-values

What is the Prefetch Degree? Is It Managed by the RL Agent?

- Pythia employs a simple degree selector, separate from the RL agent
 - If the agent has selected the same prefetch action (O) multiple times in a row, Pythia increases the degree (A+2O, A+3O, ...)
 - At most degree 4
- Future works on managing degree by the RL agent

Can the Customization Be Done While the Workload is Running?

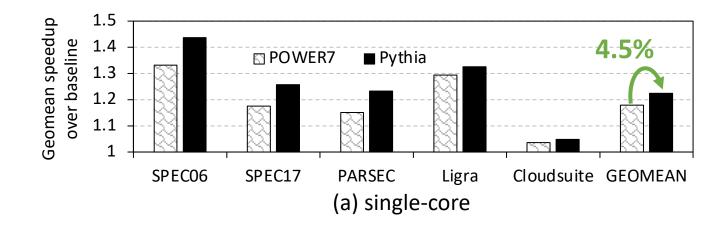
- Certainly.
- Pythia, being an **online learning** technique, will autonomously adapt (and optimize) its policy to use the new program features or the modified reward values

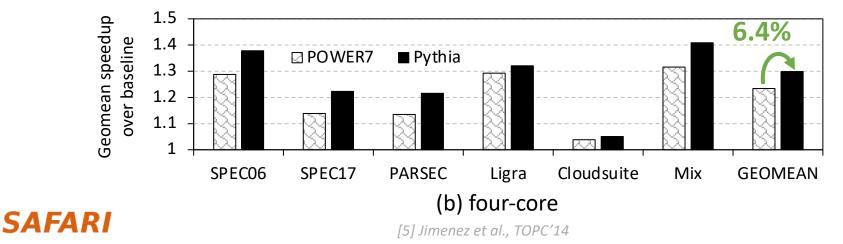
Can Runtime Workload Mix Create an Issue?

- We implement the bandwidth usage feedback using a counter in the memory controller. Thus Pythia already has a global view of the memory bandwidth usage that incorporates all workloads running on a multi-core system
- We evaluate a diverse set (300 of each category) of fourcore, eight-core, twelve-core random workload mixes
- Based on our evaluation, we observe that Pythia dynamically adapts itself to varying workload demands

How does Pythia Compare Against Other Adaptive Prefetching Solutions?

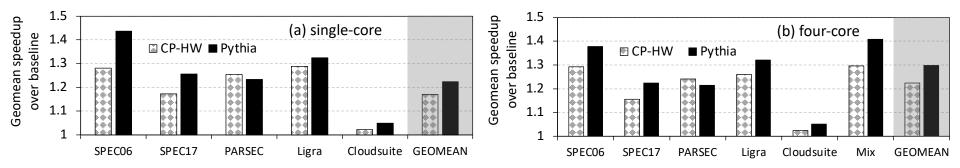
- We compare Pythia against IBM POWER7^[5] prefetcher
 - Adaptively selects prefetcher degree/configuration by monitoring program IPC





How Does Pythia Compare Against the Context Prefetcher?

- Pythia widely differs from the Context Prefetcher (CP)^[6] in all three aspects: state, action, and reward. The key differences are:
 - CP does not consider system-level feedback
 - CP models the agent as a contextual bandit which takes myopic prefetch decisions as compared to Pythia
 - CP requires compiler support to extract software-level features



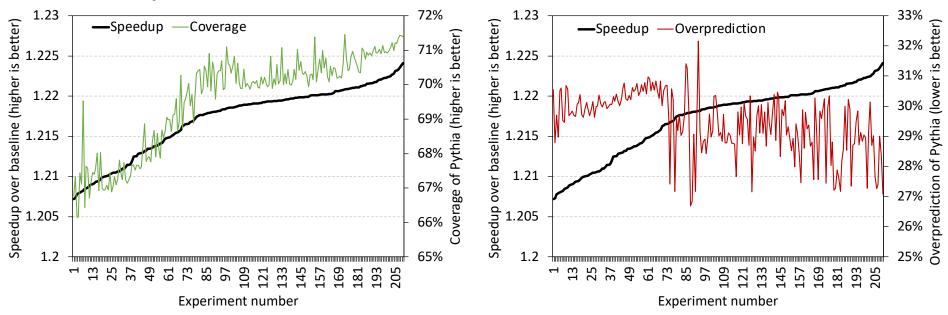
Pythia outperforms CP-HW by 5.3% in single-core and 7.6% in four-core system

SAFARI

[6] Leeor et al., ISCA'15

How Pythia's Performance Changes With Various State Definitions You Have Swept?

• In total we evaluate state defined as any-one, any-two, and any-three combinations of 32 features



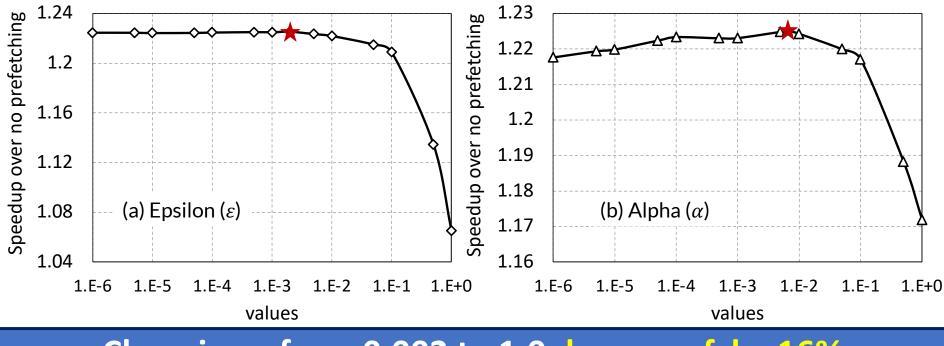
Performance gain ranges from 20.7% to 22.4%

Coverage ranges from 66.2% to 71.5%

Overprediction ranges from 26.7% to 32.2%

Is Pythia Sensitive to Hyperparameter?

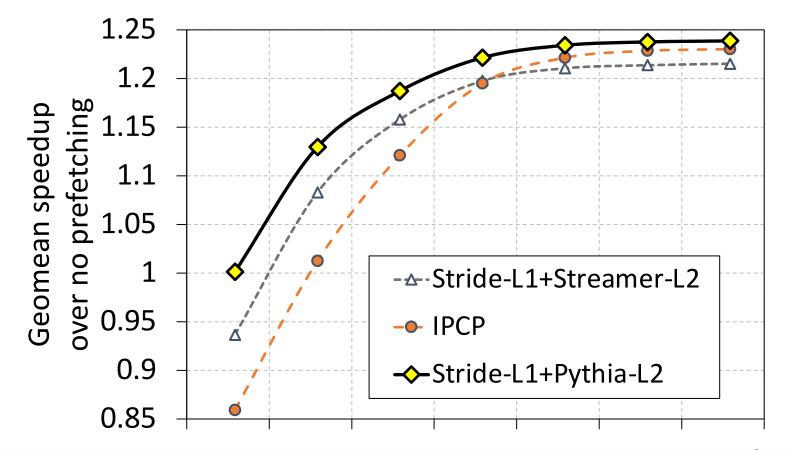
 Not setting hyperparameters can significantly impact the overall performance improvement



Changing ε from 0.002 to 1.0 drops perf. by 16%

Changing α from 0.0065 to 1.0 drops perf. by 5.4%

How Does Pythia Compare Against Commercial Multi-level Prefetchers?



Pythia outperforms IPCP [7] by 14.2% on average in 150-MTPS

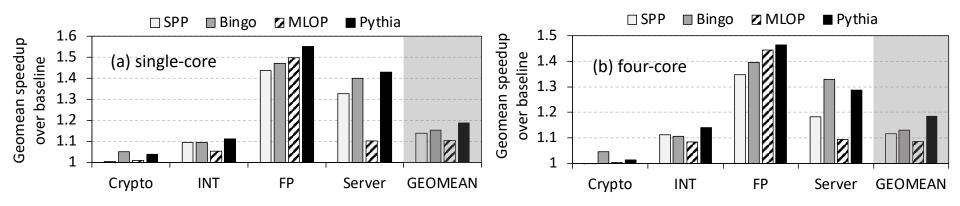
DRAM MTPS (in log scale)

SAFARI

[6] Prakalapati et al., ISCA'20

Does Pythia Perform Equally Well for Unseen Workloads also?

- Evaluated with 500 traces from value prediction championship
 - No prefetcher has been trained on these traces



Pythia outperforms MLOP and Bingo by 8.3% and 3.5% in single-core

And 9.7% and 5.4% in four-core

Basic Pythia Configuration

Table 2: Basic Pythia configuration derived from our automated design-space exploration

Features	PC+Delta,Sequence of last-4 deltas	
Prefetch Action List	{-6,-3,-1,0,1,3,4,5,10,11,12,16,22,23,30,32}	
Reward Level Values	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Hyperparameters	ers $\alpha = 0.0065, \gamma = 0.556, \epsilon = 0.002$	

System Parameters

Table 5: Simulated system parameters

Core	1-12 cores, 4-wide OoO, 256-entry ROB, 72/56-entry LQ/SQ		
Branch Pred.	Perceptron-based [69], 20-cycle misprediction penalty		
L1/L2	Private, 32KB/256KB, 64B line, 8 way, LRU, 16/32 MSHRs, 4-		
Caches	cycle/14-cycle round-trip latency		
LLC	2MB/core, 64B line, 16 way, SHiP [133], 64 MSHRs per LLC Bank,		
	34-cycle round-trip latency		
Main Memory	 1C: Single channel, 1 rank/channel; 4C: Dual channel, 2 ranks/channel; 8C: Quad channel, 2 ranks/channel; 8 banks/rank, 2400 MTPS, 64b data-bus/channel, 2KB row buffer-/bank, tRCD=15ns, tRP=15ns, tCAS=12.5ns 		

Configuration of Prefetchers

Table 7: Configuration of evaluated prefetchers

SPP [78]	256-entry ST, 512-entry 4-way PT, 8-entry GHR	6.2 KB
Bingo [27]	2KB region, 64/128/4K-entry FT/AT/PHT	46 KB
MLOP [111]	128-entry AMT, 500-update, 16-degree	8 KB
DSPatch [30]	Same configuration as in [30]	3.6 KB
PPF [32]	Same configuration as in [32]	39.3 KB
Pythia	2 features, 2 vaults, 3 planes, 16 actions	25.5 KB

Evaluated Workloads

Table 6: Workloads used for evaluation

Suite	# Workloads	# Traces	Example Workloads
SPEC06	16	28	gcc, mcf, cactusADM, lbm,
SPEC17	12	18	gcc, mcf, pop2, fotonik3d,
PARSEC	5	11	canneal, facesim, raytrace,
Ligra	13	40	BFS, PageRank, Bellman-ford,
Cloudsuite	4	53	cassandra, cloud9, nutch,

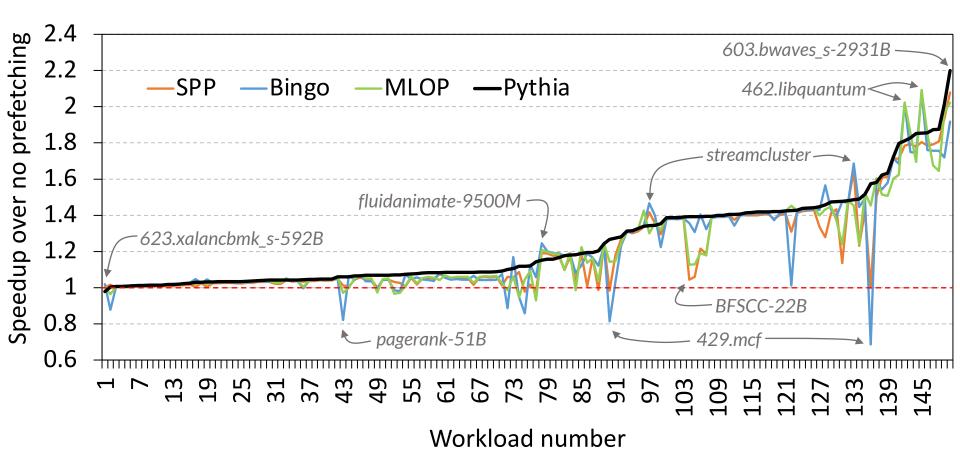
List of Evaluated Features

Table 3: List of program control-flow and data-flow components used to derive the list of features for exploration

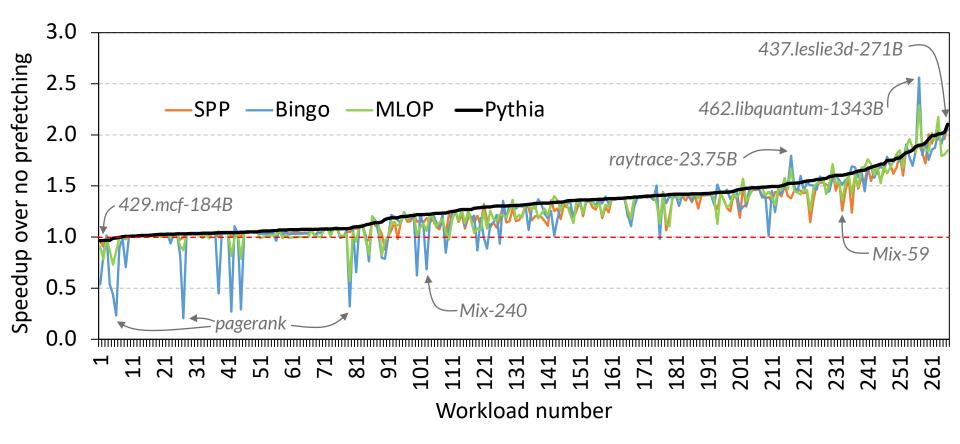
Control-flow Component	Data-flow Component
 PC of load request PC-path (XOR-ed last-3 PCs) PC XOR-ed branch-PC None 	 Load cacheline address Page number Page offset Load address delta Sequence of last-4 offsets Sequence of last-4 deltas Offset XOR-ed with delta None

MORE RESULTS

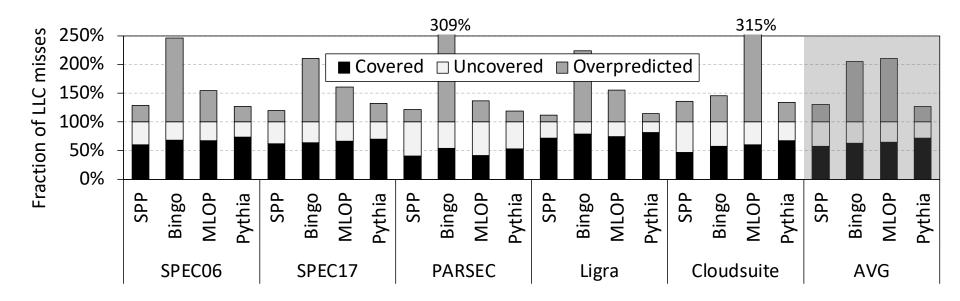
Performance S-curve: Single-core



Performance S-curve: Four-core

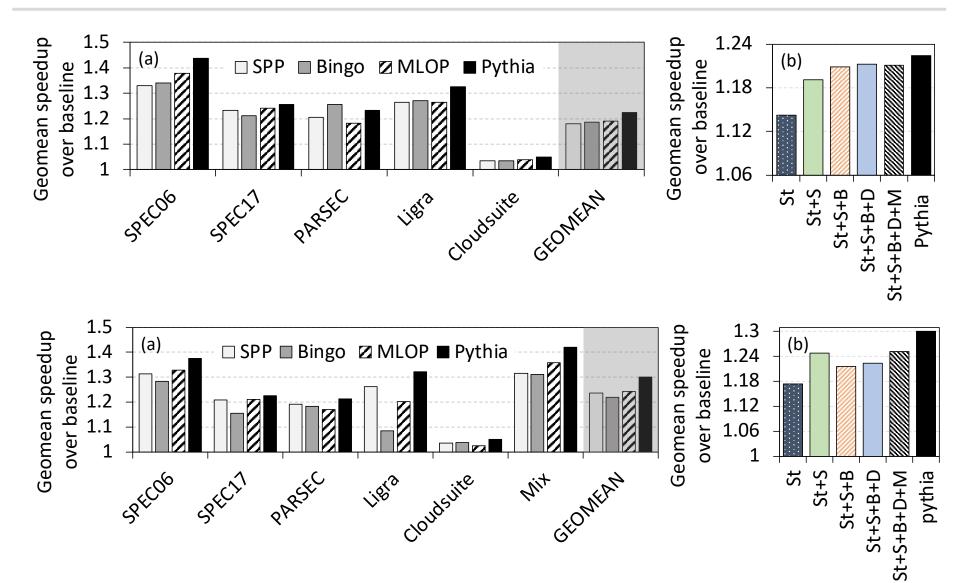


Single-core Coverage & Overprediction



43

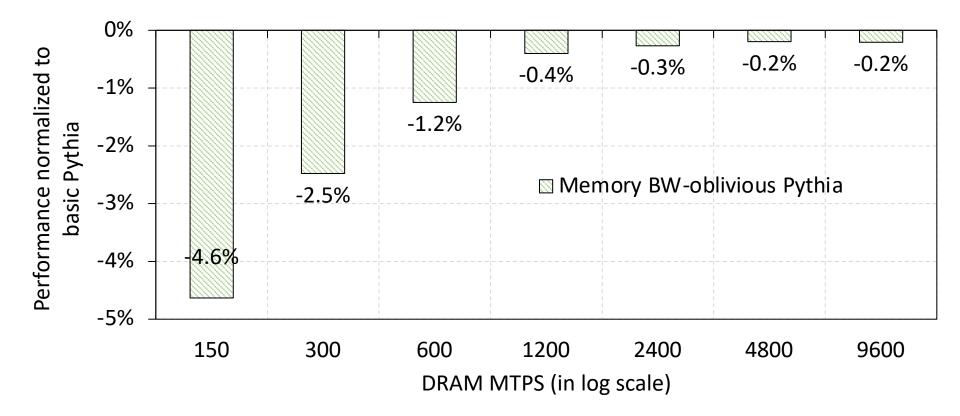
Detailed Performance



SAFARI

a 44

Benefit of Bandwidth Awareness



Case Study

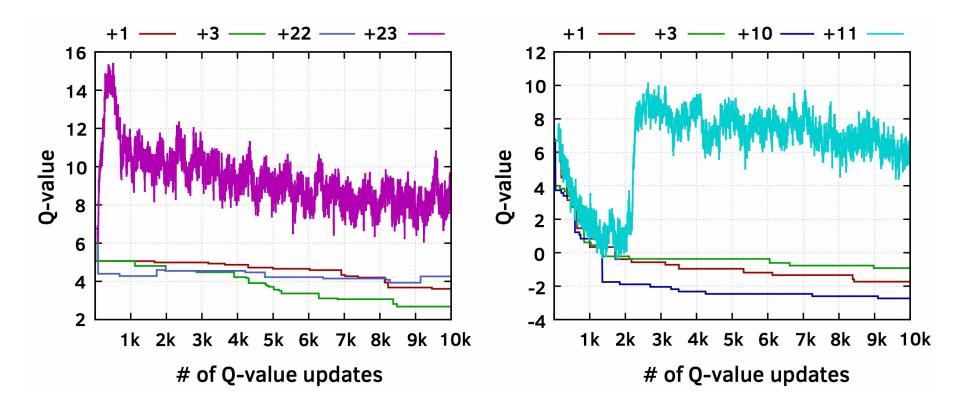


Figure 13: Q-value curves of PC+Delta feature values (a) 0x436a81+0 and (b) 0x4377c5+0 in 459.GemsFDTD-1320B.

Customizing Rewards

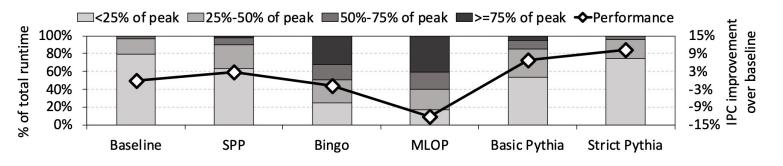


Figure 14: Performance and main memory bandwidth usage of prefetchers in Ligra-CC.

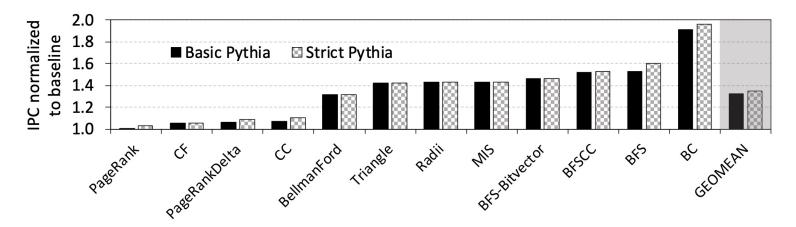


Figure 15: Performance of the basic and strict Pythia configurations on the Ligra workload suite.

Customizing Features

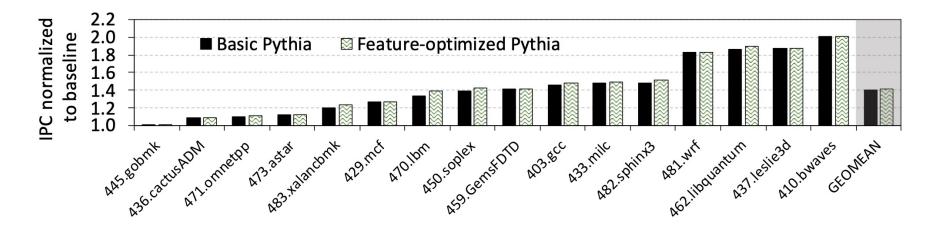


Figure 16: Performance of the basic and feature-optimized Pythia on the SPEC CPU2006 suite.

BACKUP

Executive Summary

- Background: Prefetchers predict addresses of future memory requests by associating memory access patterns with program context (called feature)
- **Problem**: Three key shortcomings of prior prefetchers:
 - Predict mainly using a single program feature
 - Lack inherent system awareness (e.g., memory bandwidth usage)
 - Lack in-silicon customizability
- **Goal**: Design a prefetching framework that:
 - Learns from multiple features and inherent system-level feedback
 - Can be customized in silicon to use different features and/or prefetching objectives
- Contribution: Pythia, which formulates prefetching as reinforcement learning problem
 - Takes adaptive prefetch decisions using multiple features and system-level feedback
 - Can be **customized in silicon** for target workloads via simple configuration registers
 - Proposes a realistic and practical implementation of RL algorithm in hardware
- Key Results:

SAFARI

- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher (in 1-core config.) by **3.4%**, **7.7%** and **17%** in 1/4/bw-constrained cores
- Up to 7.8% more performance over basic Pythia across Ligra workloads via simple customization

https://github.com/CMU-SAFARI/Pythia

Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

Prefetching Basics

- Predicts addresses of long-latency memory requests and fetches data before the program demands it
- Associates access patterns from past memory requests with program context information

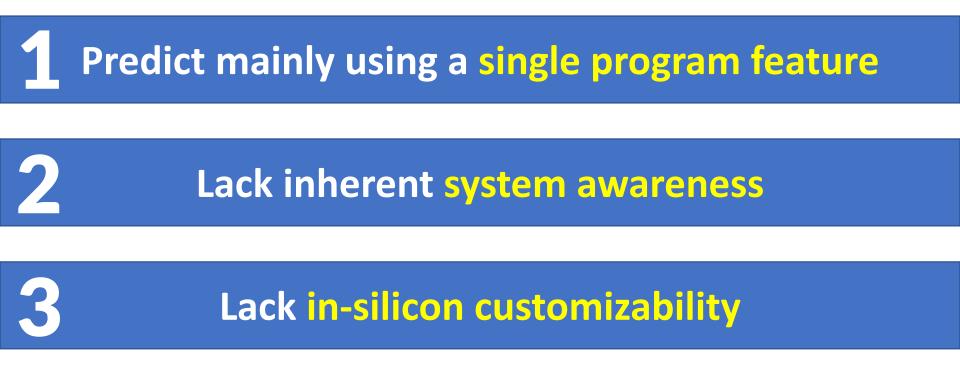
Program Feature → Access Pattern

• Example program features

- Program counter (PC)
- Page number
- Page offset
- Cacheline delta
- ...
- Or a combination of these attributes

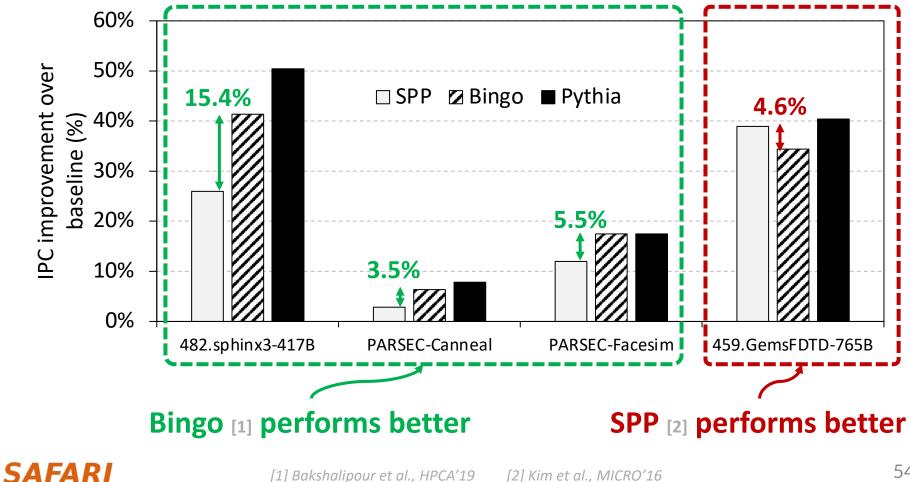
Key Shortcomings in Prior Prefetchers

 We observe three key shortcomings that significantly limit performance benefits of prior prefetchers



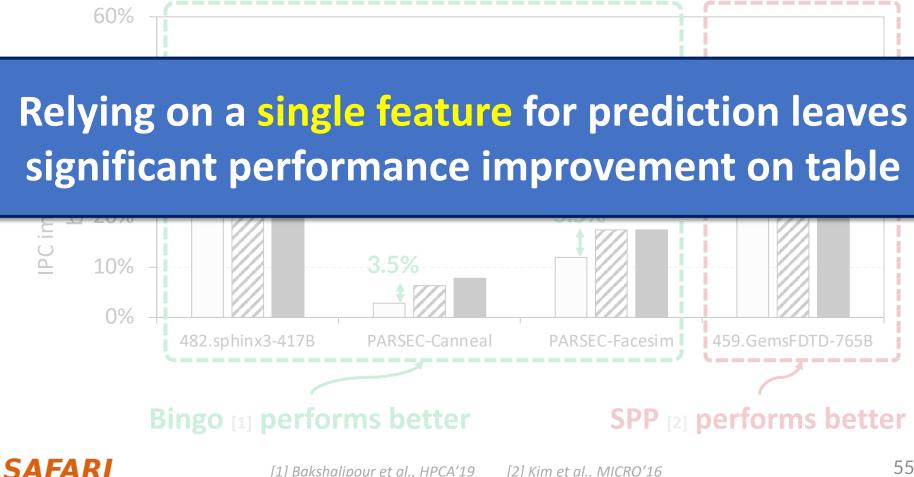
(1) Single-Feature Prefetch Prediction

 Provides good performance gains mainly on workloads where the feature-to-pattern correlation exists



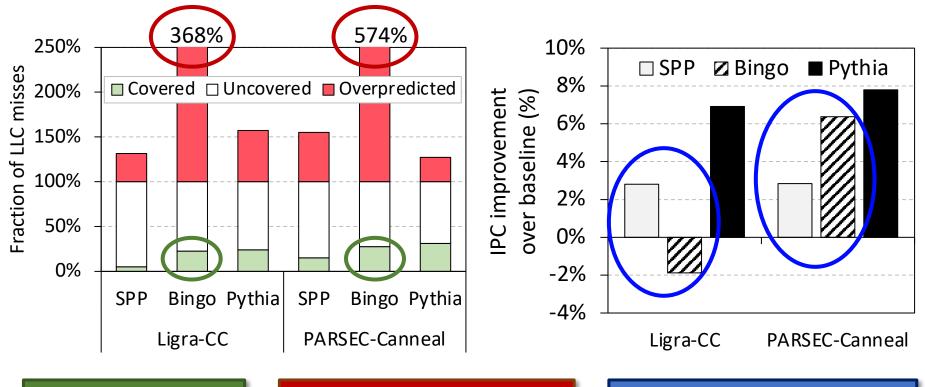
(1) Single-Feature Prefetch Prediction

 Provides good performance gains mainly on workloads where the feature-to-pattern correlation exists



(2) Lack of Inherent System Awareness

- Little understanding of **undesirable effects** (e.g., memory bandwidth usage, cache pollution, ...)
 - Performance loss in **resource-constrained** configurations



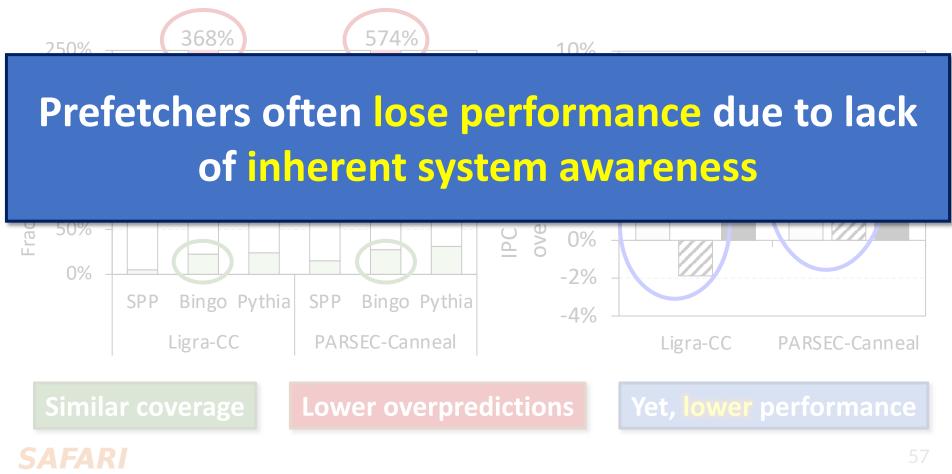
Similar coverage

Lower overpredictions

Yet, lower performance

(2) Lack of Inherent System Awareness

- Little understanding of **undesirable effects** (e.g., memory bandwidth usage, cache pollution, ...)
 - Performance loss in **resource-constrained** configurations

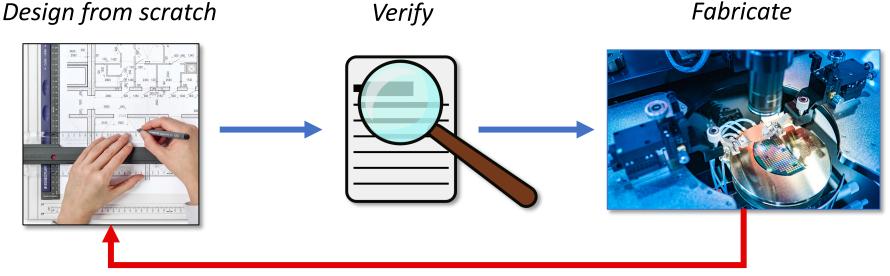


(3) Lack of In-silicon Customizability

• Feature **statically** selected at design time

SΔFΔ

- **Rigid hardware** designed specifically to exploit that feature
- No way to change program feature and/or change prefetcher's objective in silicon
 - Cannot adapt to a wide range of workload demands



Our Goal

A prefetching framework that can:

1.Learn to prefetch using multiple features and inherent system-level feedback information

2.Be **easily customized in silicon** to use different features and/or change prefetcher's objectives

Our Proposal

Pythia

Formulates prefetching as a reinforcement learning problem

Pythia is named after the oracle of Delphi, who is known for her accurate prophecies https://en.wikipedia.org/wiki/Pythia

Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

Basics of Reinforcement Learning (RL)

 Algorithmic approach to learn to take an action in a given situation to maximize a numerical reward

Environment

- Agent stores Q-values for every state-action pair
 - Expected return for taking an action in a state

- Given a state, selects action that provides highest Q-value SAFARI

Formulating Prefetching as RL

What is State?

k-dimensional vector of features

 $S \equiv \{\phi_S^1, \phi_S^2, \dots, \phi_S^k\}$

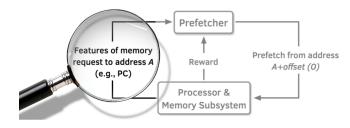
• Feature = control-flow + data-flow

Control-flow examples

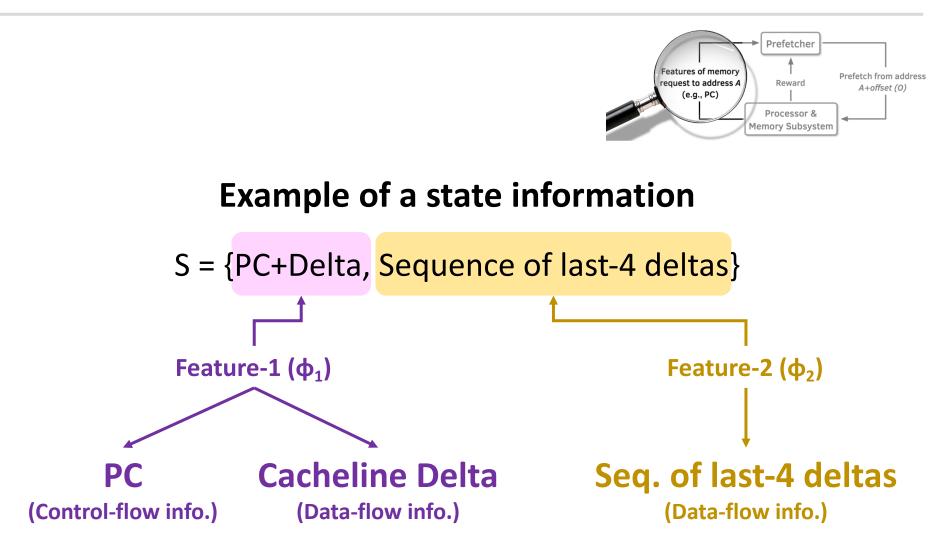
- PC
- Branch PC
- Last-3 PCs, ...

Data-flow examples

- Cacheline address
- Physical page number
- Delta between two cacheline addresses
- Last 4 deltas, ...



What is State?



What is Action?

Given a demand access to address A the action is to select prefetch offset "O"

- Action-space: 127 actions in the range [-63, +63]
 - For a machine with 4KB page and 64B cacheline
- Upper and lower limits ensure prefetches do not cross physical page boundary
- A zero offset means no prefetch is generated
- We further **prune** action-space by design-space exploration

SAFARI

Prefetcher

Reward

Prefetch from addres

A+offset (0)

Features of memory

request to address A

(e.g., PC)

What is Reward?

- Defines the **objective** of Pythia
- Encapsulates two metrics:

- Features of memory request to address A (e.g., PC) Processor & Memory Subsystem
- Prefetch usefulness (e.g., accurate, late, out-of-page, ...)
- **System-level feedback** (e.g., mem. b/w usage, cache pollution, energy, ...)
- We demonstrate Pythia with memory bandwidth usage as the system-level feedback in the paper

What is Reward?

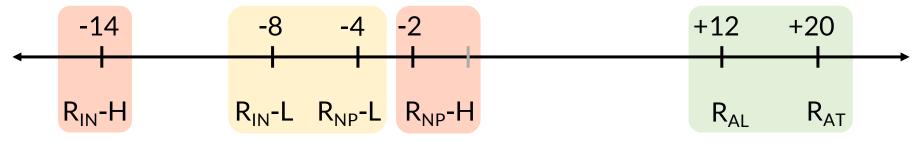
Seven distinct reward levels

- Accurate and timely (R_{AT})
- Accurate but late (R_{AL})
- Loss of coverage (R_{CL})
- Inaccurate
 - With low memory b/w usage (R_{IN}-L)
 - With high memory b/w usage (R_{IN}-H)
- No-prefetch
 - With low memory b/w usage (R_{NP}-L)
 - With high memory b/w usage(R_{NP}-H)
- Values are set at design time via automatic designspace exploration

- Can be **customized** further in silicon for higher performance **SAFARI**

Steering Pythia's Objective via Reward Values

- Example reward configuration for
 - Generating accurate prefetches
 - Making bandwidth-aware prefetch decisions



AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;H = High mem. b/w; L = Low mem. b/w

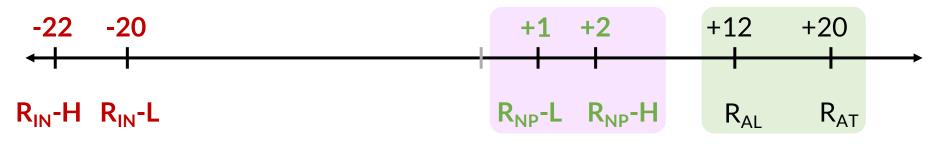
Highly prefers to generate accurate prefetches

Prefers not to prefetch if memory bandwidth usage is low

Strongly prefers not to prefetch if memory bandwidth usage is high

Steering Pythia's Objective via Reward Values

 Customizing reward values to make Pythia conservative towards prefetching



AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate; H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Otherwise prefers not to prefetch

Steering Pythia's Objective via Reward Values

Customizing reward values to make Dythis concernative towards p Strict Pythia configuration



Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

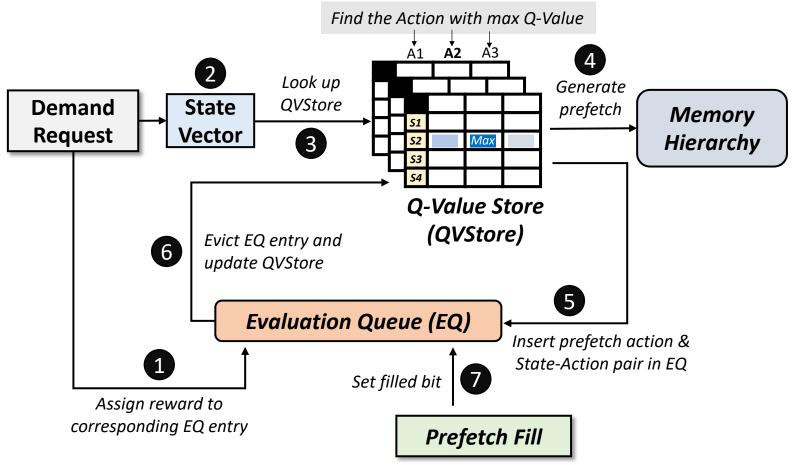
Pythia: Overview

Evaluation of Pythia and Key Results

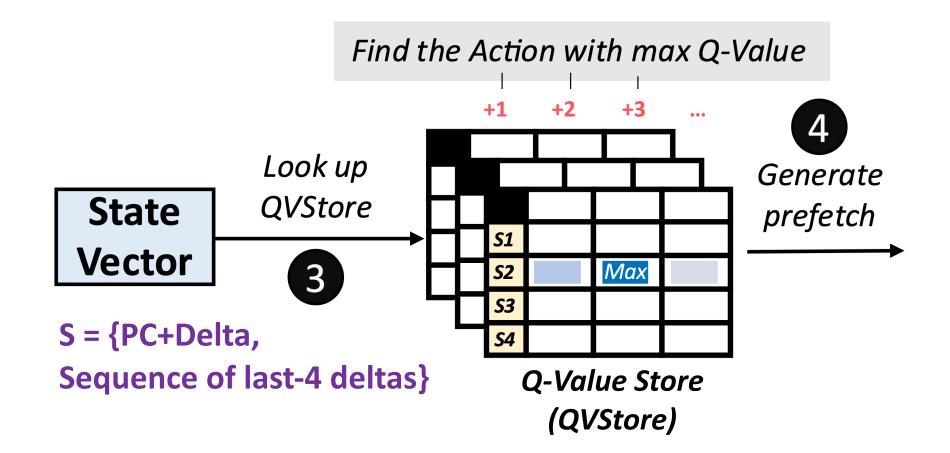
Conclusion

Pythia Overview

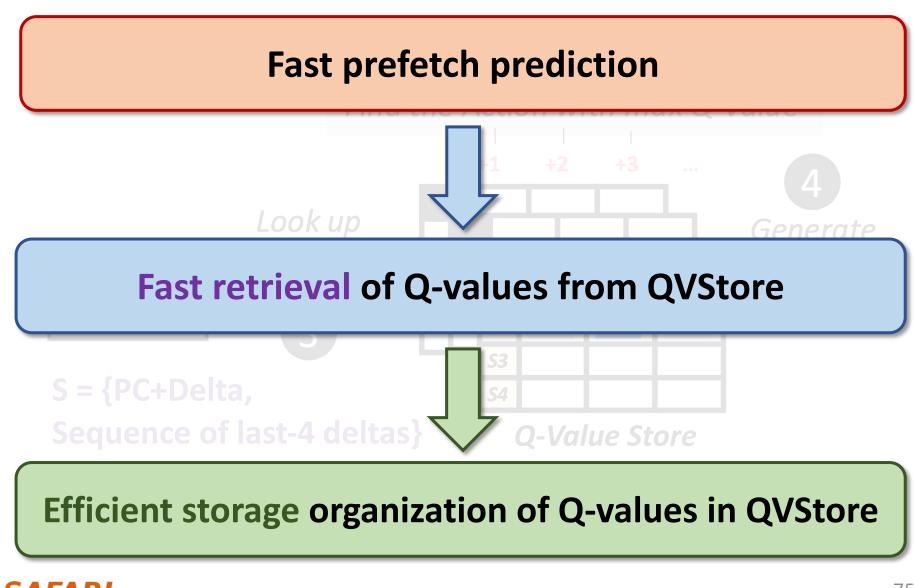
- **Q-Value Store**: Records Q-values for *all* state-action pairs
- Evaluation Queue: A FIFO queue of recently-taken actions



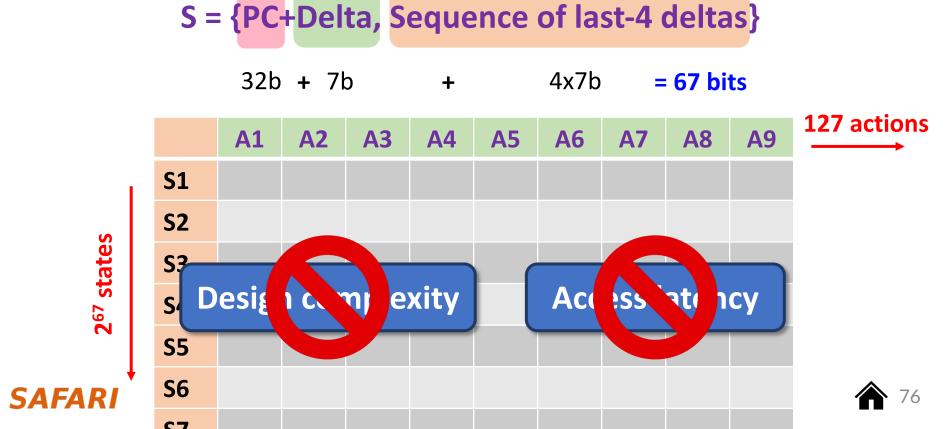
Architecting QVStore



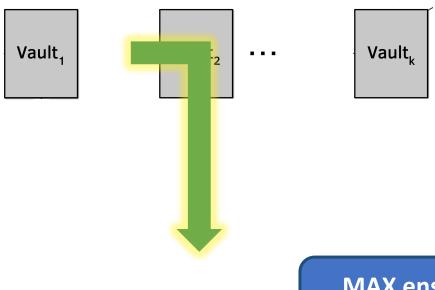
Architecting QVStore



- A monolithic two-dimensional table?
 - Indexed by state and action values
- State-space increases **exponentially** with #bits



- We partition QVStore into k vaults [k = number of features in state]
 - Each vault corresponds to one feature and stores the Qvalues of feature-action pairs



To retrieve Q(S,A) for each action

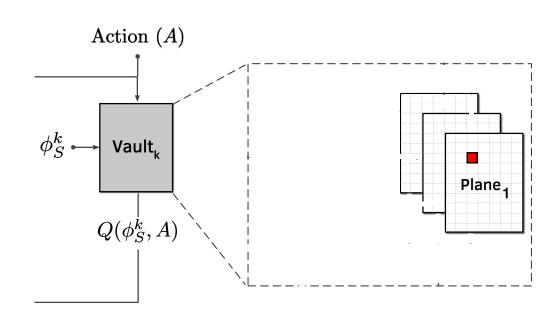
- Query each vault in parallel with feature and action
- Retrieve feature-action
 Q-value from each vault
- Compute MAX of all feature-action Q-values

MAX ensures the Q(S,A) is driven by the constituent feature that has highest Q(ϕ ,A)

- We further partition each vault into multiple planes
 - Each plane stores a partial Q-value of a feature-action pair

To retrieve Q(φ,A) for each action

- Query each plane in parallel with hashed feature and action
- Retrieve partial featureaction Q-value from each plane
- Compute SUM of all parital feature-action Q-values



We further partition each vault into multiple planes
 Each plane stores a partial Q-value of a feature-action pair

1. Enables sharing of partial Q-values between similar feature values, shortens prefetcher training time

parallel with hashed feature and action

2. Reduces chances of sharing partial Q-values across widely different feature values

feature-action Q-values

More in the Paper

- Pipelined search operation for QVStore
- Reward assignment and **QVStore update**
- Automatic design-space exploration
 - Feature types
 - Action
 - Reward and Hyperparameter values

More in the Paper

• Pipelined search operation for QVStore

Reward assignment and OVStore undate

Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning

Rahul Bera¹ Konstantinos Kanellopoulos¹ Anant V. Nori² Taha Shahroodi^{3,1} Sreenivas Subramoney² Onur Mutlu¹ ¹ETH Zürich ²Processor Architecture Research Labs, Intel Labs ³TU Delft

- Reward a https://arxiv.org/pdf/2109.12021.pdf

Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

Simulation Methodology

- Champsim [3] trace-driven simulator
- **150** single-core memory-intensive workload traces
 - SPEC CPU2006 and CPU2017
 - PARSEC 2.1
 - Ligra
 - Cloudsuite
- Homogeneous and heterogeneous multi-core mixes

• Five state-of-the-art prefetchers

- SPP [Kim+, MICRO'16]
- Bingo [Bakhshalipour+, HPCA'19]
- MLOP [Shakerinava+, 3rd Prefetching Championship, 2019]
- SPP+DSPatch [Bera+, MICRO'19]
- SPP+PPF [Bhatia+, ISCA'20]

Basic Pythia Configuration

• Derived from automatic design-space exploration

• State: 2 features

- PC+Delta
- Sequence of last-4 deltas

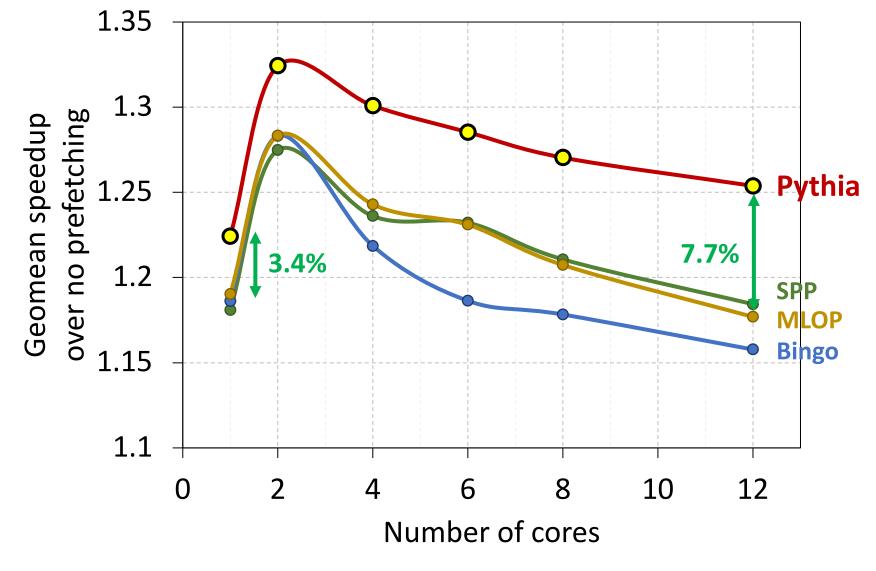
• Actions: 16 prefetch offsets

- Ranging between -6 to +32. Including 0.

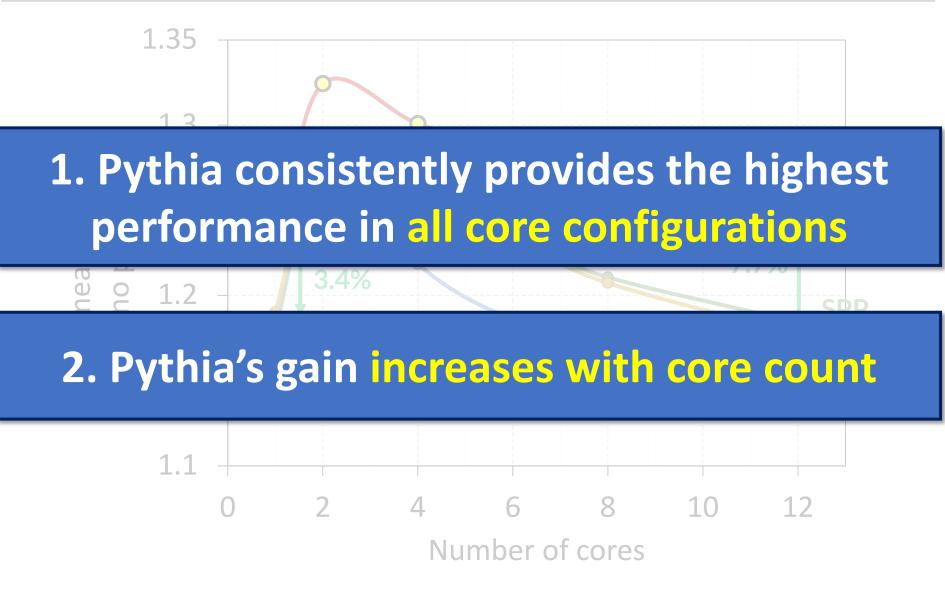
• Rewards:

- $R_{AT} = +20$; $R_{AL} = +12$; R_{NP} -H=-2; R_{NP} -L=-4;
- R_{IN} -H=-14; R_{IN} -L=-8; R_{CL} =-12

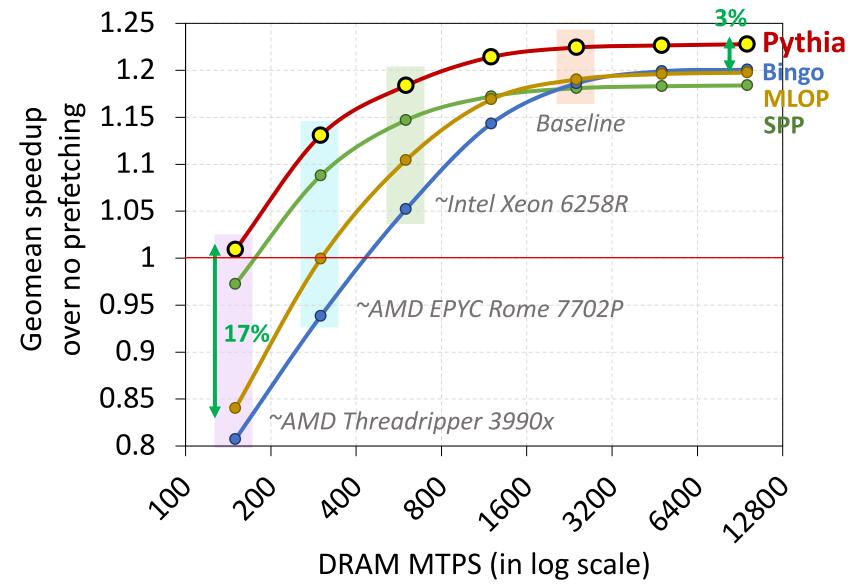
Performance with Varying Core Count



Performance with Varying Core Count

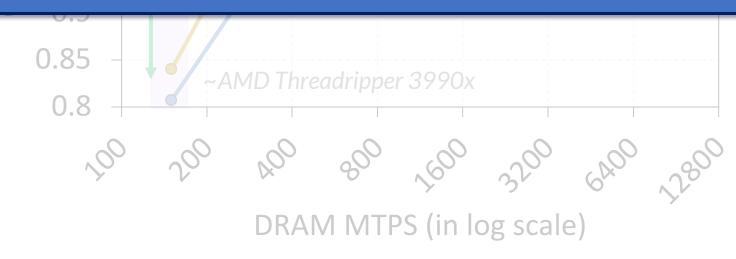


Performance with Varying DRAM Bandwidth



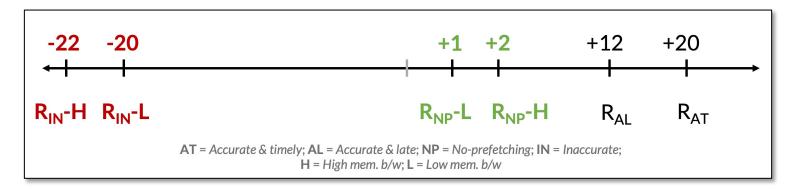
Performance with Varying DRAM Bandwidth

Pythia outperforms prior best prefetchers for a wide range of DRAM bandwidth configurations



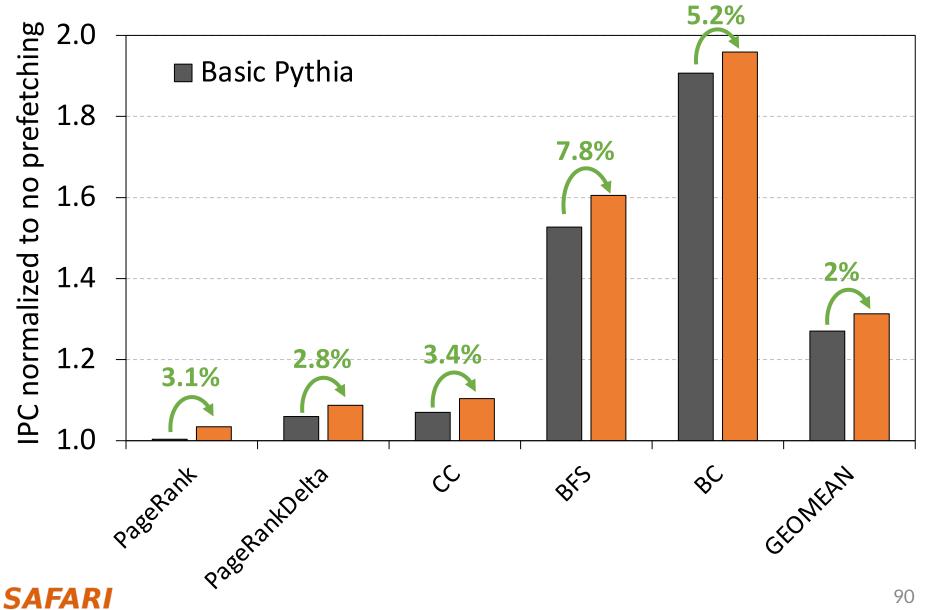
Performance Improvement via Customization

- Reward value customization
- Strict Pythia configuration
 - Increasing the rewards for no prefetching
 - **Decreasing** the rewards for **inaccurate prefetching**



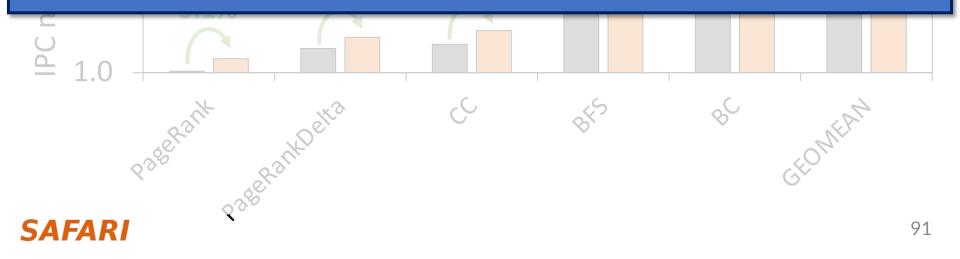
- Strict Pythia is more conservative in generating prefetch requests than the basic Pythia
- Evaluate on all Ligra graph processing workloads

Performance Improvement via Customization



Performance Improvement via Customization

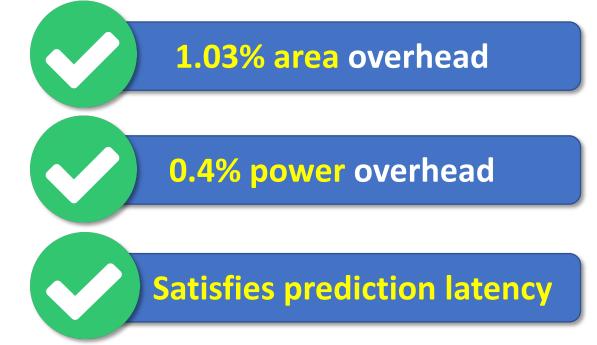
Pythia can extract even higher performance via customization without changing hardware



Pythia's Overhead

• 25.5 KB of total metadata storage per core

- Only simple tables
- We also model functionally-accurate Pythia with full complexity in Chisel [4] HDL



of a desktop-class 4-core Skylake processor (Xeon D2132IT, 60W)

More in the Paper

- Performance comparison with **unseen traces**
 - Pythia provides equally high performance benefits
- Comparison against multi-level prefetchers
 - Pythia outperforms prior best multi-level prefetchers
- Understanding Pythia's learning with a case study
 - We reason towards the correctness of Pythia's decision
- Performance sensitivity towards different features and hyperparameter values
- Detailed single-core and four-core performance

More in the Paper

Performance comparison with unseen traces
 Pythia provides equally high performance benefits

Comparison against multi-level prefetchers

Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning

Rahul Bera¹ Konstantinos Kanellopoulos¹ Anant V. Nori² Taha Shahroodi^{3,1} Sreenivas Subramoney² Onur Mutlu¹ ¹ETH Zürich ²Processor Architecture Research Labs, Intel Labs ³TU Delft

 Performance sensitivity towards unterent features and hyperparameter values

Detailed single-core and four-core performance

Pythia is Open Source

95

https://github.com/CMU-SAFARI/Pythia

- MICRO'21 artifact evaluated
- Champsim source code + Chisel modeling code
- All traces used for evaluation

₽ C	CMU-SAFARI / Pythia Public		⊙ Unw	atch • 3 \swarrow Star 9 ${0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0$	
<>	Code 🕑 Issues 🖧 Pull reques	sts 🕑 Actions 🔟 Projects 🖽 Wiki	① Security 🗠 Insights 🕸 S	ettings	
٢	master - 🖓 1 branch 📎 5 tags		Go to file Add file - Code -	About දි	
	rahulbera Github pages documentatic	n v	/ dlefc65 7 hours ago 🕚 40 commits	A customizable hardware prefetching framework using online reinforcement learning as described in the MICRO	
	branch	Initial commit for MICRO'21 artifact evaluation	2 months ago	2021 paper by Bera and	
	config	Initial commit for MICRO'21 artifact evaluation	2 months ago	Kanellopoulos et al.	
	docs	Github pages documentation	7 hours ago		
	experiments	Added chart visualization in Excel template	2 months ago	machine-learning	
	inc	Updated README	8 days ago	reinforcement-learning computer-architecture prefetcher	
	prefetcher	Initial commit for MICRO'21 artifact evaluation	2 months ago	microarchitecture cache-replacement	
	replacement	Initial commit for MICRO'21 artifact evaluation	2 months ago	branch-predictor champsim-simulator	
	scripts	Added md5 checksum for all artifact traces to v	erify download 2 months ago	champsim-tracer	
	src	Initial commit for MICRO'21 artifact evaluation	2 months ago	🛱 Readme	
	tracer	Initial commit for MICRO'21 artifact evaluation	2 months ago	む View license	
ß	.gitignore	Initial commit for MICRO'21 artifact evaluation	2 months ago	Ç3 Cite this repository -	
۵	CITATION.cff	Added citation file	8 days ago		
۵	LICENSE	Updated LICENSE	2 months ago	Releases 5	
۵	LICENSE.champsim	Initial commit for MICRO'21 artifact evaluation	2 months ago	V1.3 Latest	

Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

Executive Summary

- Background: Prefetchers predict addresses of future memory requests by associating memory access patterns with program context (called feature)
- **Problem**: Three key shortcomings of prior prefetchers:
 - Predict mainly using a single program feature
 - Lack inherent system awareness (e.g., memory bandwidth usage)
 - Lack in-silicon customizability
- Goal: Design a prefetching framework that:
 - Learns from multiple features and inherent system-level feedback
 - Can be customized in silicon to use different features and/or prefetching objectives
- Contribution: Pythia, which formulates prefetching as reinforcement learning problem
 - Takes adaptive prefetch decisions using multiple features and system-level feedback
 - Can be **customized in silicon** for target workloads via simple configuration registers
 - Proposes a realistic and practical implementation of RL algorithm in hardware
- Key Results:

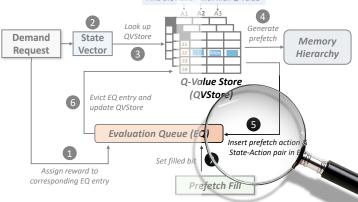
SAFARI

- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher (in 1-core config.) by **3.4%**, **7.7%** and **17%** in 1/4/bw-constrained cores
- Up to 7.8% more performance over basic Pythia across Ligra workloads via simple customization

https://github.com/CMU-SAFARI/Pythia

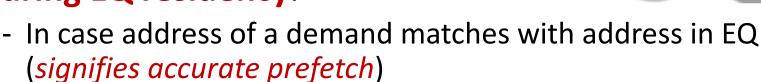
Reward Assignment to EQ Entry

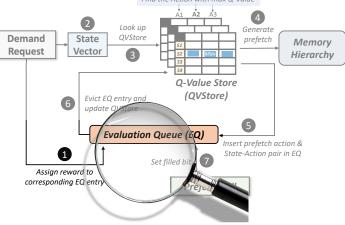
- Every action gets inserted into EQ
- Reward is assigned to each EQ entry **before or during** the eviction
- **During EQ insertion**: for actions
 - Not to prefetch
 - Out-of-page prefetch



Reward Assignment to EQ Entry

- Every action gets inserted into EQ
- Reward is assigned to each EQ entry **before or during** the eviction
- **During EQ insertion**: for actions
 - Not to prefetch
 - Out-of-page prefetch
- During EQ residency:





Reward Assignment to EQ Entry

- Every action gets inserted into EQ
- Reward is assigned to each EQ entry **before or during** the eviction
- During EQ insertion: for actions
 - Not to prefetch
 - Out-of-page prefetch
- During EQ residency:
 - In case address of a demand matches with address in EQ (signifies accurate prefetch)
- During EQ eviction:
 - In case no reward is assigned till eviction (signifies inaccurate prefetch)

