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Lack inherent system Lack in-silicon
awareness customizability

Mainly use one
program context info.
for prediction
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Why do prefetchers
not perform well?
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Autonomously learns to prefetch using Can be customized in silicon to change
multiple program context information program context information or
and system-level feedback prefetching objective on the fly
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Brief Overview of Pythia

Pythia formulates prefetching as a reinforcement lea rning problem
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What s State?

e k-dimensional vector of features
S = {95, 9% .- P}
 Feature = control-flow + data-flow

* Control-flow examples
- PC
- Branch PC
- Last-3 PCs, ...

* Data-flow examples

Cacheline address

Physical page number

Delta between two cacheline addresses
Last 4 deltas, ...
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What is Action?

Given a demand access to address A
the action is to select prefetch offset “O”

: 127 actions in the range [-63, +63]
- For a machine with 4KB page and 64B cacheline

* Upper and lower limits ensure prefetches do not cross
physical page boundary

* A zero offset means no prefetch is generated

* We further prune action-space by design-space exploration
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What is Reward?

* Defines the objective of Pythia

* Encapsulates two metrics:

- Prefetch usefulness (e.g., accurate, late, out-of-page, ...)

- System-level feedback (e.g., mem. b/w usage, cache
pollution, energy, ...)

* We demonstrate Pythia with
as the system-level feedback in the paper
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What is Reward?

* Seven distinct reward levels

- Accurate and timely (Rxq)
- Accurate but late (Ry)
- Loss of coverage (R)
- Inaccurate
* With low memory b/w usage (R\-L)
* With high memory b/w usage (R\-H)
- No-prefetch
* With low memory b/w usage (Ryp-L)
* With high memory b/w usage(Ryp-H)

* Values are set at design time via automatic design-
space exploration

- Can be further in silicon for higher performance
SAFARI 8



Simulation Methodology

* Champsim |1 trace-driven simulator

* 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

* Homogeneous and heterogeneous multi-core mixes

* Five state-of-the-art prefetchers
- SPP

Bingo

MLOP

SPP+DSPatch

SPP+PPF
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Performance with Varying Core Count

1.35

=
W
|

=

N

U
|

=
N
|

Geomean speedup
over no prefetching

=

—

U
I

=
[EEY

0 2 4 6 8 10 12
Number of cores

SAFARI

10



Performance with Varying Core Count

1. Pythia consistently provides the highest
performance in all core configurations

2. Pythia’s gain increases with core count
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Performance with Varying DRAM Bandwidth
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Performance with Varying DRAM Bandwidth

Pythia outperforms prior best prefetchers for

a wide range of DRAM bandwidth configurations
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Performance Improvement via Customization

e Reward value customization

e Strict Pythia configuration
- Increasing the rewards for no prefetching
- Decreasing the rewards for inaccurate prefetching

e Strict Pythia is more conservative in generating
prefetch requests than the basic Pythia

* Evaluate on all Ligra graph processing workloads
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Performance Improvement via Customization
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Performance Improvement via Customization

Pythia can extract even higher performance

via customization without changing hardware
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Pythia’s Overhead

e 25.5 KB of total metadata storage per core
- Only simple tables

* We also model functionally-accurate Pythia with full
complexity in Chisel 4 HDL

1.03% area overhead

0.4% power overhead

v Satisfies prediction latency

of a desktop-class 4-core Skylake processor (Xeon D2132IT, 60W)
SAFAR' [4] https://www.chisel-lang.org 17
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More in the Paper

* Performance comparison with unseen traces
- Pythia provides equally high performance benefits

 Comparison against multi-level prefetchers
- Pythia outperforms prior best multi-level prefetchers

e Understanding Pythia’s learning with
- We reason towards of Pythia’s decision

towards different features and
hyperparameter values

* Detailed single-core and four-core performance
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Pythia is Open Source
https://github.com/CMU-SAFARI/Pythia

e MICRO’21 artifact evaluated
* Champsim source code + Chisel modeling code
e All traces used for evaluation

H CMU-SAFARI [ Pythia ' public ®uUnwatch ~ 3 ¢ Star 9 % Fork 2

<> Code © lIssues 19 Pull requests (® Actions [ Projects 07 wiki @ Security |~ Insights 83 Settings

¥ master ~ # 1branch  © 5 tags Go to file Add file ~ m About b
A customizable hardware prefetching
a rahulbera Github pages documentation Vv dilefcés 7 hoursago YO 40 commits framework using online reinforcement
learning as described in the MICRO
B8 branch Initial commit for MICRO'21 artifact evaluation 2 months ago 2021 paper by Bera and
Kanellopoulos et al.
M config Initial commit for MICRO'21 artifact evaluation 2 months ago P
> .
M docs Github pages documentation 7 hours ago & arxiv.org/pdf/2109.12021.pdf
I experiments Added chart visualization in Excel template 2 months ago e
reinforcement-learning
W inc Updated README 8 days ago .
computer-architecture prefetcher
Bn  prefetcher Initial commit for MICRO'21 artifact evaluation 2 months ago i i e cache-r
- . . . o branch-predi i imulator
B replacement Initial commit for MICRO'21 artifact evaluation 2 months ago
champsim-tracer
M scripts Added md5 checksum for all artifact traces to verify download 2 months ago
Read!
W src Initial commit for MICRO'21 artifact evaluation 2 months ago 0 Readme
View li
M tracer Initial commit for MICRO'21 artifact evaluation 2 months ago B View license
2 Cite this repository +
(i) .gitignore Initial commit for MICRO'21 artifact evaluation 2 months ago v P y
[ CITATION.cff Added citation file 8 days ago
Releases 5
[ LICENSE Updated LICENSE 2 months ago
F. s 20
SA A R ’ [ LICENSE.champsim Initial commit for MICRO'21 artifact evaluation 2 months ago © -

21 days ago


https://github.com/CMU-SAFARI/Pythia

Pythia

A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori,
Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

https://github.com/CMU-SAFARI/Pythia

- ]
SAFARI ETHziirich TUDelft

SAFARI Research Group



https://github.com/CMU-SAFARI/Pythia

Discussion

* FAQS

Why RL?
What about large page?
What’s the prefetch degree?

Can customization happen during
workload execution?

Can runtime mixing create problem?

e Simulation and Methodology

Basic Pythia configuration

System parameters
Configuration of prefetchers
Evaluated workloads

Feature selection

SAFARI

* Detailed Design

Reward structure

Design overview
QVStore Organization

* More Results

Comparison against other adaptive
prefetchers

Comparison against Context prefetcher
Feature combination sensitivity
Hyperparameter sensitivity
Comparison with multi-level prefetchers
Performance in unseen workloads
Single-core s-curve

Four-core s-curve

Detailed performance analysis

Benefit of bandwidth awareness

Case study

Customizing rewards

Customizing features
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Why RL? Why Not Supervised Learning?

* Determining the benefits of prefetching (i.e., whether a
decision was good for performance or not) is not easy

- Depends on a complex set of metrics
* Coverage, accuracy, timeliness
 Effects on system: b/w usage, pollution, cross-application interference, ...

- Dynamically-changing environmental conditions change the
benefit

(might not receive
feedback at all for inaccurate prefetches!)

* Differs from classification tasks (e.g., branch prediction)
- Performance strongly correlates mainly to accuracy

- Does not depend on environment
- Bounded feedback delay
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What About Large Pages?

e Pythia’s framework can be easily extended to incorporate
additional prefetch actions (i.e., possible prefetch offsets
for the page size)

* To decrease the storage overhead
via automatic design-space exploration
to retrieve Q-values
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What is the Prefetch Degree? Is It Managed by
the RL Agent?

* Pythia employs a simple degree selector, separate from
the RL agent

- If the agent has selected the same prefetch action (O) multiple
times in a row, Pythia increases the degree (A+20, A+30, ...)

- At most degree 4

* Future works on managing degree by the RL agent

SAFARI A 2



Can the Customization Be Done While the
Workload is Running?

* Certainly.

* Pythia, being an online learning technique, will
autonomously adapt (and optimize) its policy to use the
new program features or the modified reward values
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Can Runtime Workload Mix Create an Issue?

* We implement the bandwidth usage feedback using a
counter in the memory controller. Thus Pythia already has
a global view of the memory bandwidth usage that
incorporates all workloads running on a multi-core system

* We evaluate a diverse set (300 of each category) of four-
core, eight-core, twelve-core random workload mixes

* Based on our evaluation, we observe that Pythia
dynamically adapts itself to varying workload demands

SAFARI D =



How does Pythia Compare Against Other Adaptive
Prefetching Solutions?

* We compare Pythia against IBM POWER7: prefetcher

- Adaptively selects prefetcher degree/configuration by
monitoring program IPC

Geomean speedup

SAFARI
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How Does Pythia Compare Against the Context
Prefetcher?

* Pythia widely differs from the Context Prefetcher (CP): in
all three aspects: state, action, and reward. The key
differences are:

- CP does not consider system-level feedback

- CP models the agent as a contextual bandit which takes myopic
prefetch decisions as compared to Pythia

- CP requires compiler support to extract software-level features

(b) four-core

(a) single-core 1
@ CP-HW ® Pythia B CP-HW ® Pythia
i 1.3 -
_ 1.2 - b
i N | I i
,_l- T 1 T T T T ,_|. T T :

SPECO6 SPEC17 PARSEC Ligra CI udsuite  GEOMEAN SPECO6 SPEC17  PARSEC Ligra Cloudsuite Mix GEOMEAN

Geomean speedup
over baseline
Ll
= = N w H O
|
Geomean speedup
over baseline

Pythia outperforms CP-HW by 5.3% in single-core and

7.6% in four-core system
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How Pythia’s Performance Changes With
Various State Definitions You Have Swept?

* In total we evaluate state defined as any-one, any-two,
and any-three combinations of 32 features
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Is Pythia Sensitive to Hyperparameter?

* Not setting hyperparameters can significantly impact the
overall performance improvement
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How Does Pythia Compare Against
Commercial Multi-level Prefetchers?

Geomean speedup
over no prefetch
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Does Pythia Perform Equally Well for Unseen
Workloads also?

* Evaluated with 500 traces from value prediction
championship

- No prefetcher has been trained on these traces

OSPP @Bingo #MLOP mPythia OSPP @Bingo #WMLOP mPythia

o 16 a 15
=) | B S
2 2 157 (a)single-core 2144 (b)fourcore /M 0000000
sg 41+ Atre =R %134 e m -
"n un g .
c © 13 4 AT - C 5
© 2 S~-124 il IR 0000
1<% QL) 1.2 e A I e E (O]
AR g5 il H *****
§°" ] o (A & lm_ |l

Crypto INT FP Server GEOMEAN Crypto INT Server GEOMEAN

Pythia outperforms MLOP and Bingo by
8.3% and 3.5% in single-core

And 9.7% and 5.4% in four-core
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Basic Pythia Configuration

Table 2: Basic Pythia configuration derived from our auto-
mated design-space exploration

Features PC+Delta, Sequence of last-4 deltas

Prefetch Action List {-6,-3,-1,0,1,3,4,5,10,11,12,16,22,23,30,32}

Ra1=20, Rar=12, Rcp=-12, R;IN=—14,
L _ H _ L _

RIN__S’ :RNP__Z’ RNP__4

Hyperparameters o = 0.0065, y = 0.556, € = 0.002

Reward Level Values
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System Parameters

Table 5: Simulated system parameters

Core 1-12 cores, 4-wide O00, 256-entry ROB, 72/56-entry LQ/SQ
Branch Pred. Perceptron-based [69], 20-cycle misprediction penalty

L1/1L2 Private, 32KB/256KB, 64B line, 8 way, LRU, 16/32 MSHRs, 4-
Caches cycle/14-cycle round-trip latency

T 2MB/core, 64B line, 16 way, SHiP [133], 64 MSHRs per LLC Bank,

34-cycle round-trip latency

Main Memory

1C: Single channel, 1 rank/channel; 4C: Dual channel, 2
ranks/channel; 8C: Quad channel, 2 ranks/channel;

8 banks/rank, 2400 MTPS, 64b data-bus/channel, 2KB row buffer-
/bank, tRCD=15ns, tRP=15ns, tCAS=12.5ns
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Configuration of Prefetchers

Table 7: Configuration of evaluated prefetchers

SPP [78] 256-entry ST, 512-entry 4-way PT, 8-entry GHR || 6.2 KB
Bingo [27] 2KB region, 64/128/4K-entry FT/AT/PHT 46 KB
MLOP [111] 128-entry AMT, 500-update, 16-degree 8 KB
DSPatch [30] Same configuration as in [30] 3.6 KB
PPF [32] Same configuration as in [32] 39.3 KB
Pythia 2 features, 2 vaults, 3 planes, 16 actions 25.5 KB
SAFARI B



Evaluated Workloads

Table 6: Workloads used for evaluation

Suite # Workloads # Traces Example Workloads

SPECO06 16 28 gce, mcf, cactusADM, lbm, ...

SPEC17 12 18 gce, mcf, pop2, fotonik3d, ...

PARSEC 5 11 canneal, facesim, raytrace, ...

Ligra 13 40 BFS, PageRank, Bellman-ford, ...

Cloudsuite 4 53 cassandra, cloud9, nutch, ...
SAFARI D



List of Evaluated Features

Table 3: List of program control-flow and data-flow compo-
nents used to derive the list of features for exploration

Control-flow Component Data-flow Component

(1) Load cacheline address
(2) Page number

(1) PC of load request (3) Page offset

(2) PC-path (XOR-ed last-3 PCs) (4) Load address delta

(3) PC XOR-ed branch-PC (5) Sequence of last-4 offsets

(4) None (6) Sequence of last-4 deltas
(7) Offset XOR-ed with delta
(8) None
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Performance S-curve: Single-core
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Performance S-curve: Four-core
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Single-core Coverage & Overprediction
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Detailed Performance
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Benefit of Bandwidth Awareness
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Case Study
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Figure 13: Q-value curves of PC+Delta feature values (a)
0x436a81+0 and (b) 0x4377c5+0 in 459 . GemsFDTD-1320B.
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Customizing Rewards
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of prefetchers in Ligra-CC.
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Customizing Features
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Figure 16: Performance of the basic and feature-optimized
Pythia on the SPEC CPU2006 suite.
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Executive Summary

* Background: Prefetchers predict addresses of future memory requests by associating
memory access patterns with program context (called feature)

* Problem: Three key shortcomings of prior prefetchers:
Predict mainly using a single program feature

Lack inherent system awareness (e.g., memory bandwidth usage)

Lack in-silicon customizability

: Design a prefetching framework that:
Learns from and

Can be to use different features and/or prefetching objectives

* Contribution: Pythia, which formulates prefetching as reinforcement learning problem
- Takes adaptive prefetch decisions using multiple features and system-level feedback
- Can be customized in silicon for target workloads via simple configuration registers
- Proposes a realistic and practical implementation of RL algorithm in hardware

* Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher (in 1-core config.) by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
- Up to 7.8% more performance over basic Pythia across Ligra workloads via simple customization

SAFARI https://github.com/CMU-SAFARI/Pythia 50
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Talk Outline

Key Shortcomings of Prior Prefetchers
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Prefetching Basics

* Predicts addresses of long-latency memory requests and
fetches data before the program demands it

* Associates access patterns from past memory requests
with program context information

Program Feature - Access Pattern

 Example program features
- Program counter (PC)

Page number

Page offset

Cacheline delta

Or a combination of these attributes
SAFARI 52



Key Shortcomings in Prior Prefetchers

* We observe three key shortcomings that significantly
limit performance benefits of prior prefetchers

1 Predict mainly using a single program feature

2 Lack inherent system awareness

3 Lack in-silicon customizability
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(1) Single-Feature Prefetch Prediction

* Provides good performance gains mainly on workloads
where the feature-to-pattern correlation exists

0% f—— — — |

I : I 1

5 50% i | : :
o ' 15.4% OSPP f4Bingo M Pythia | | o -
g 340% _E ? : i 4.6% E
S 2 30% |l % ] :
s 7 ¥ :
e S 20% i / 5.5% Lo l
ST G I B :
= 10% ! é 3.5% /l: ! !
o LD ~7ZR | 7| 71 |

: 482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim’I i459.GemsFDTD-7658 :
“"""""/"_';" """"""""" ;')' """ ’

Bingo 1) performs better SPP ) performs better

SAFARI >4



(1) Single-Feature Prefetch Prediction

Relying on a single feature for prediction leaves

significant performance improvement on table

SA FA Rl [1] Bakshalipour et al., HPCA’19 [2] Kim et al., MICRO’16 55



(2) Lack of Inherent System Awareness

e Little understanding of undesirable effects (e.g.,

memory bandwidth usage, cache pollution,

..)

- Performance loss in resource-constrained configurations

250%

200%
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100%

50%

Fraction of LLC misses

0%

(as8%)
NN g

(5ra)
./

O Covered O Uncovered @ Overpredicted

jS—
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(2) Lack of Inherent System Awareness

Prefetchers often lose performance due to lack

of inherent system awareness




(3) Lack of In-silicon Customizability

* Feature statically selected at design time
- Rigid hardware designed specifically to exploit that feature

* No way to change program feature and/or change
prefetcher’s objective in silicon
- Cannot adapt to a wide range of workload demands

Design from scratch Verify Fabricate
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Our Goal

A prefetching framework that can:

1.Learn to prefetch using and
information

2.Be easily customized in silicon to use different

features and/or change prefetcher’s objectives
.

SAFARI



Our Proposal

Formulates prefetching as a
reinforcement learning problem

Pythia is named after the oracle of Delphi, who is known for her accurate prophecies

SA F A R I https://en.wikipedia.org/wiki/Pythia
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Talk Outline

Formulating Prefetching as Reinforcement Learning
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Basics of Reinforcement Learning (RL)

* Algorithmic approach to learn to take an action in a
given situation to maximize a numerical reward

| Agent l

[ Environment ]

* Agent stores Q-values for every state-action pair
- Expected return for taking an action in a state

- Given a state, selects action that provides Q-value
SAFARI 62



Formulating Prefetching as RL
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What s State?

e k-dimensional vector of features
S = {95, 9% .- P}
 Feature = control-flow + data-flow

A+offset (0)

Memory Subsystem

* Control-flow examples
- PC
- Branch PC
- Last-3 PCs, ...

* Data-flow examples

Cacheline address

Physical page number

Delta between two cacheline addresses
Last 4 deltas, ...

SAFARI 64
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What s State?

A+offset (0)

rrrrrrrr
[ Memory Subsystem

Example of a state information

S = {PC+Delta, Sequence of last-4 deltas}

I_T 1

Feature-1 (¢,) Feature-2 (¢,)
PC Cacheline Delta Seq. of last-4 deltas
(Control-flow info.) (Data-flow info.) (Data-flow info.)

SAFARI 65
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What is Action?

Given a demand access to address A
the action is to select prefetch offset “O”

: 127 actions in the range [-63, +63]
- For a machine with 4KB page and 64B cacheline

* Upper and lower limits ensure prefetches do not cross
physical page boundary

* A zero offset means no prefetch is generated

* We further prune action-space by design-space exploration
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What is Reward?

* Defines the objective of Pythia

* Encapsulates two metrics:

- Prefetch usefulness (e.g., accurate, late, out-of-page, ...)

- System-level feedback (e.g., mem. b/w usage, cache
pollution, energy, ...)

* We demonstrate Pythia with
as the system-level feedback in the paper
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What is Reward?

* Seven distinct reward levels

- Accurate and timely (Rxq)
- Accurate but late (Ry)
- Loss of coverage (R)
- Inaccurate
* With low memory b/w usage (R\-L)
* With high memory b/w usage (R\-H)
- No-prefetch
* With low memory b/w usage (Ryp-L)
* With high memory b/w usage(Ryp-H)

* Values are set at design time via automatic design-
space exploration

- Can be further in silicon for higher performance
SAFARI 68



Steering Pythia’s Objective via Reward Values

* Example reward configuration for
- Generating accurate prefetches

- Making prefetch decisions
-14 8 -4 -2 +12  +20
Rin-H Rin-L Rnp-L Ryp-H RaL Rat

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

ﬂ Highly prefers to generate accurate prefetches

2 Prefers not to prefetch if memory bandwidth usage is low

\

@Strongly prefers not to prefetch if memory bandwidth usage is high
D

SAFARI




Steering Pythia’s Objective via Reward Values

* Customizing reward values to make Pythia conservative
towards prefetching

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

ﬂ Highly prefers to generate accurate prefetches

2 Otherwise prefers not to prefetch

SAFARI A 70




Steering Pythia’s Objective via Reward Values

Strict Pythia configuration

Bandwidth-sensitive

Server-class processors
P workloads

SAFARI A



Talk Outline

Pythia: Overview
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Pythia Overview

: Records Q-values for all state-action pairs
 Evaluation Queue: A FIFO queue of recently-taken actions

Find the Action with max Q-Value

a Al1|AlzlAl3| a

Look up 1 |

Generate
II:)(emand . \;State Qvstore |1 prefetch ( Memory ]
equest ector 52 - i
9 2 [Viax L Hierarchy
> S4
Q-Value Store
6 Evict EQ entry and (QVStore)
update QVStore
—[ Evaluation Queue (EQ) |- 9

) Insert prefetch action &

i' T State-Action pair in EQ
Set filled bit a

Assign reward to

corresponding EQ entry

Prefetch Fill
SAFARI A




Architecting QVStore

Find the Action with max Q-Value

Look up
State QVStore

Vector e

S = {PC+Delta,
Sequence of last-4 deltas}

SAFARI

Q-Value Store
(QVStore)




Architecting QVStore

{ Fast prefetch prediction J
[ Fast retrieval of Q-values from QVStore J

U

[ Efficient storage organization of Q-values in QVStore ]
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Organization of QVStore

* A monolithic two-dimensional table?
- Indexed by state and action values

 State-space increases exponentially with #bits

S = {PC+Delta, Sequence of last-4 deltas}

32b + 7b + 4x7b = 67 bits
127 actions

AA A5 A6 A7 A8 A ____ |

Al A2 A3

257 states

SAFARI



Organization of QVStore

* We partition QVStore into k vaults

- Each vault corresponds to one feature and stores the Q-
values of feature-action pairs

To retrieve Q(S,A) for

each action

e Query each vaultin

Vault, parallel with feature
and action

* Retrieve feature-action
O-value from each vault

e Compute MAX of all
feature-action Q-values

Vault1

MAX ensures the Q(S,A) is driven by the

constituent feature that has highest Q(¢,A)

SAFARI



Organization of QVStore

* We further partition each vault into multiple planes
- Each plane stores a partial Q-value of a feature-action pair

To retrieve Q(¢,A)
for each action

* Query
with hashed

feature and action

from each
plane
 Compute SUM of all parital
feature-action Q-values

SAFARI

Action (A)
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Organization of QVStore

1. Enables sharing of partial Q-values between similar
feature values, shortens prefetcher training time

2. Reduces chances of sharing partial Q-values
across widely different feature values
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More in the Paper

* Pipelined search operation for QVStore
* Reward assignment and

* Automatic design-space exploration
- Feature types
- Action
- Reward and Hyperparameter values

SAFARI
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More in the Paper

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera!  Konstantinos Kanellopoulos! =~ Anant V. Nori*  Taha Shahroodi®
Sreenivas Subramoney?  Onur Mutlu!

IETH Ziirich  ?Processor Architecture Research Labs, Intel Labs  3TU Delft

https://arxiv.org/pdf/2109.12021.pdf
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https://arxiv.org/pdf/2109.12021.pdf

Talk Outline

Evaluation of Pythia and Key Results
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Simulation Methodology

* Champsim |1 trace-driven simulator

* 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

* Homogeneous and heterogeneous multi-core mixes

* Five state-of-the-art prefetchers
- SPP

Bingo

MLOP

SPP+DSPatch

SPP+PPF

SAFARI


https://github.com/ChampSim/ChampSim

Basic Pythia Configuration

* Derived from automatic design-space exploration

e State: 2 features
- PC+Delta
- Sequence of last-4 deltas

* Actions: 16 prefetch offsets
- Ranging between -6 to +32. Including O.

* Rewards:
= RAT = +20; RAL - +12; RNP_H=_2; RNP_L=_4;
= R|N'H='14; R|N‘L='8; RCL=_12

SAFARI



Performance with Varying Core Count
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Performance with Varying Core Count

1. Pythia consistently provides the highest
performance in all core configurations

2. Pythia’s gain increases with core count
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Performance with Varying DRAM Bandwidth
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Performance with Varying DRAM Bandwidth

Pythia outperforms prior best prefetchers for

a wide range of DRAM bandwidth configurations
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Performance Improvement via Customization

e Reward value customization

e Strict Pythia configuration
- Increasing the rewards for no prefetching
- Decreasing the rewards for inaccurate prefetching

-22 -20 +1 +2 +12 +20

<l | | | | |
N 1 I I I 1

Rin-H Rin-L Rne-L Ryp-H RaL Rat

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

e Strict Pythia is more conservative in generating
prefetch requests than the basic Pythia

* Evaluate on all Ligra graph processing workloads
SAFARI 89



Performance Improvement via Customization
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Performance Improvement via Customization

Pythia can extract even higher performance

via customization without changing hardware
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Pythia’s Overhead

e 25.5 KB of total metadata storage per core
- Only simple tables

* We also model functionally-accurate Pythia with full
complexity in Chisel 4 HDL

1.03% area overhead

0.4% power overhead

v Satisfies prediction latency

of a desktop-class 4-core Skylake processor (Xeon D2132IT, 60W)
SAFAR' [4] https://www.chisel-lang.org 92



https://www.chisel-lang.org/

More in the Paper

* Performance comparison with unseen traces
- Pythia provides equally high performance benefits

 Comparison against multi-level prefetchers
- Pythia outperforms prior best multi-level prefetchers

e Understanding Pythia’s learning with
- We reason towards of Pythia’s decision

towards different features and
hyperparameter values

* Detailed single-core and four-core performance

SAFARI



More in the Paper

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera!  Konstantinos Kanellopoulos! =~ Anant V. Nori*  Taha Shahroodi®
Sreenivas Subramoney?  Onur Mutlu!

IETH Ziirich  ?Processor Architecture Research Labs, Intel Labs  3TU Delft

https://arxiv.org/pdf/2109.12021.pdf
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https://arxiv.org/pdf/2109.12021.pdf

Pythia is Open Source
https://github.com/CMU-SAFARI/Pythia

e MICRO’21 artifact evaluated
* Champsim source code + Chisel modeling code
e All traces used for evaluation

H CMU-SAFARI [ Pythia ' public ®uUnwatch ~ 3 ¢ Star 9 % Fork 2

<> Code © lIssues 19 Pull requests (® Actions [ Projects 07 wiki @ Security |~ Insights 83 Settings

¥ master ~ # 1branch  © 5 tags Go to file Add file ~ m About b
A customizable hardware prefetching
a rahulbera Github pages documentation Vv dilefcés 7 hoursago YO 40 commits framework using online reinforcement
learning as described in the MICRO
B8 branch Initial commit for MICRO'21 artifact evaluation 2 months ago 2021 paper by Bera and
Kanellopoulos et al.
M config Initial commit for MICRO'21 artifact evaluation 2 months ago P
> .
M docs Github pages documentation 7 hours ago & arxiv.org/pdf/2109.12021.pdf
I experiments Added chart visualization in Excel template 2 months ago e
reinforcement-learning
W inc Updated README 8 days ago .
computer-architecture prefetcher
Bn  prefetcher Initial commit for MICRO'21 artifact evaluation 2 months ago i i e cache-r
- . . . o branch-predi i imulator
B replacement Initial commit for MICRO'21 artifact evaluation 2 months ago
champsim-tracer
M scripts Added md5 checksum for all artifact traces to verify download 2 months ago
Read!
W src Initial commit for MICRO'21 artifact evaluation 2 months ago 0 Readme
View li
M tracer Initial commit for MICRO'21 artifact evaluation 2 months ago B View license
2 Cite this repository +
(i) .gitignore Initial commit for MICRO'21 artifact evaluation 2 months ago v P y
[ CITATION.cff Added citation file 8 days ago
Releases 5
[ LICENSE Updated LICENSE 2 months ago
F v1.3 9 5
SA A R ’ [ LICENSE.champsim Initial commit for MICRO'21 artifact evaluation 2 months ago © -

21 days ago


https://github.com/CMU-SAFARI/Pythia

Talk Outline

Conclusion
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Executive Summary

* Background: Prefetchers predict addresses of future memory requests by associating
memory access patterns with program context (called feature)

* Problem: Three key shortcomings of prior prefetchers:
Predict mainly using a single program feature

Lack inherent system awareness (e.g., memory bandwidth usage)

Lack in-silicon customizability

: Design a prefetching framework that:
Learns from and

Can be to use different features and/or prefetching objectives

* Contribution: Pythia, which formulates prefetching as reinforcement learning problem
- Takes adaptive prefetch decisions using multiple features and system-level feedback
- Can be customized in silicon for target workloads via simple configuration registers
- Proposes a realistic and practical implementation of RL algorithm in hardware

* Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher (in 1-core config.) by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
- Up to 7.8% more performance over basic Pythia across Ligra workloads via simple customization

SAFARI https://github.com/CMU-SAFARI/Pythia 97



https://github.com/CMU-SAFARI/Pythia

Reward Assighment to EQ Entry

* Every action gets inserted into EQ

* Reward is assigned to each EQ entry before or during the
eviction

* During EQ insertion: for actions

- Not to prefetch
- Out-of-page prefetch
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Reward Assighment to EQ Entry

* Every action gets inserted into EQ

* Reward is assigned to each EQ entry before or during the
eviction )

sS4
Q-Value Store
(QVstore)

* During EQ insertion: for actions
/ Evaluation Queue (\E\Q) ]4%

- Not to prefetch
- Out-of-page prefetch L N (R
* During EQ residency:

- In case address of a demand matches with address in EQ
(signifies accurate prefetch)
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Reward Assighment to EQ Entry

* Every action gets inserted into EQ

* Reward is assigned to each EQ entry before or during the
eviction

* During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch

* During EQ residency:

- In case address of a demand matches with address in EQ
(signifies accurate prefetch)

Set filleadibit
Assign reward to
onding EQ entry Prefetch Fill

* During EQ eviction:

- In case no reward is assigned till eviction
(signifies inaccurate prefetch)
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