Pythia

A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori,
Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

https://github.com/CMU-SAFARI/Pythia

-]
SAFARI ETHziirich TUDelft

SAFARI Research Group

https://github.com/CMU-SAFARI/Pythia

y

Lack inherent system Lack in-silicon
awareness customizability

Mainly use one
program context info.
for prediction

mﬁ il H||I||\l|m..Vm.'.é.".\'

Why do prefetchers
not perform well?

SAFARI > 2

Autonomously learns to prefetch using Can be customized in silicon to change
multiple program context information program context information or
and system-level feedback prefetching objective on the fly

SAFARI 3

Brief Overview of Pythia

Pythia formulates prefetching as a reinforcement lea rning problem

>| Agent l

*

State (S¢) Reward (R;+1) Action (Ay)

| 4_I
‘— Environment
‘ >| Prefetcher l

Features of memory T Prefetch from address
request to address A Reward A+offset (0)
(e.g., PC) |

‘ Processor &
Memory Subsystem

SAFARI

What s State?

e k-dimensional vector of features
S = {95, 9% .- P}
 Feature = control-flow + data-flow

* Control-flow examples
- PC
- Branch PC
- Last-3 PCs, ...

* Data-flow examples

Cacheline address

Physical page number

Delta between two cacheline addresses
Last 4 deltas, ...

SAFARI

Memory Subsystem

om address
set (0)

What is Action?

Given a demand access to address A
the action is to select prefetch offset “O”

: 127 actions in the range [-63, +63]
- For a machine with 4KB page and 64B cacheline

* Upper and lower limits ensure prefetches do not cross
physical page boundary

* A zero offset means no prefetch is generated

* We further prune action-space by design-space exploration

SAFARI 6

What is Reward?

* Defines the objective of Pythia

* Encapsulates two metrics:

- Prefetch usefulness (e.g., accurate, late, out-of-page, ...)

- System-level feedback (e.g., mem. b/w usage, cache
pollution, energy, ...)

* We demonstrate Pythia with
as the system-level feedback in the paper

SAFARI 7

What is Reward?

* Seven distinct reward levels

- Accurate and timely (Rxq)
- Accurate but late (Ry)
- Loss of coverage (R)
- Inaccurate
* With low memory b/w usage (R\-L)
* With high memory b/w usage (R\-H)
- No-prefetch
* With low memory b/w usage (Ryp-L)
* With high memory b/w usage(Ryp-H)

* Values are set at design time via automatic design-
space exploration

- Can be further in silicon for higher performance
SAFARI 8

Simulation Methodology

* Champsim |1 trace-driven simulator

* 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

* Homogeneous and heterogeneous multi-core mixes

* Five state-of-the-art prefetchers
- SPP

Bingo

MLOP

SPP+DSPatch

SPP+PPF

SAFARI

https://github.com/ChampSim/ChampSim

Performance with Varying Core Count

1.35

=
W
|

=

N

U
|

=
N
|

Geomean speedup
over no prefetching

=

—

U
I

=
[EEY

0 2 4 6 8 10 12
Number of cores

SAFARI

10

Performance with Varying Core Count

1. Pythia consistently provides the highest
performance in all core configurations

2. Pythia’s gain increases with core count

SAFARI 11

Performance with Varying DRAM Bandwidth

1.25 3% _
Pythia
1.2 - Bingo
LOP
S %D 1.15 - Baseline SPP
@% 1.1 - /
Q. o 105 - Intel Xeon 6258R
c Q L (Cascade Lake, 28C/6¢ch)
c < 1 -
2
o = 0.95 - ~AMD EPYC Rome 7702P
© 3 o9 - (Zen 2, 64C/8ch)
0.85 -
0.8) ~AMD Threadripper 3990x (Zen 2, 64C/4ch)
. [[[[[[
Q Q Q Q Q Q Q Q
S S S R O

Cb

N
DRAM MTPS (in log scale)

SAFARI 12

Performance with Varying DRAM Bandwidth

Pythia outperforms prior best prefetchers for

a wide range of DRAM bandwidth configurations

SAFARI 13

Performance Improvement via Customization

e Reward value customization

e Strict Pythia configuration
- Increasing the rewards for no prefetching
- Decreasing the rewards for inaccurate prefetching

e Strict Pythia is more conservative in generating
prefetch requests than the basic Pythia

* Evaluate on all Ligra graph processing workloads

SAFARI 14

Performance Improvement via Customization

N
o
)

M Basic Pythia

o] 0]

S

<

O

QL 1.8 -

Q

Q.

2 16 -

o

)

©

'g 1.4 -

[E

S 1.2 -

-

&

= 1.0

& ,O&Q @Q
R ng% €
Q’b

SAFARI 15

Performance Improvement via Customization

Pythia can extract even higher performance

via customization without changing hardware

SAFARI) 16

Pythia’s Overhead

e 25.5 KB of total metadata storage per core
- Only simple tables

* We also model functionally-accurate Pythia with full
complexity in Chisel 4 HDL

1.03% area overhead

0.4% power overhead

v Satisfies prediction latency

of a desktop-class 4-core Skylake processor (Xeon D2132IT, 60W)
SAFAR' [4] https://www.chisel-lang.org 17

https://www.chisel-lang.org/

More in the Paper

* Performance comparison with unseen traces
- Pythia provides equally high performance benefits

 Comparison against multi-level prefetchers
- Pythia outperforms prior best multi-level prefetchers

e Understanding Pythia’s learning with
- We reason towards of Pythia’s decision

towards different features and
hyperparameter values

* Detailed single-core and four-core performance

SAFARI

More in the Paper

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera! Konstantinos Kanellopoulos! =~ Anant V. Nori* Taha Shahroodi®
Sreenivas Subramoney? Onur Mutlu!

IETH Ziirich ?Processor Architecture Research Labs, Intel Labs 3TU Delft

https://arxiv.org/pdf/2109.12021.pdf

SAFARI

https://arxiv.org/pdf/2109.12021.pdf

Pythia is Open Source
https://github.com/CMU-SAFARI/Pythia

e MICRO’21 artifact evaluated
* Champsim source code + Chisel modeling code
e All traces used for evaluation

H CMU-SAFARI [Pythia ' public ®uUnwatch ~ 3 ¢ Star 9 % Fork 2

<> Code © lIssues 19 Pull requests (® Actions [Projects 07 wiki @ Security |~ Insights 83 Settings

¥ master ~ # 1branch © 5 tags Go to file Add file ~ m About b
A customizable hardware prefetching
a rahulbera Github pages documentation Vv dilefcés 7 hoursago YO 40 commits framework using online reinforcement
learning as described in the MICRO
B8 branch Initial commit for MICRO'21 artifact evaluation 2 months ago 2021 paper by Bera and
Kanellopoulos et al.
M config Initial commit for MICRO'21 artifact evaluation 2 months ago P
> .
M docs Github pages documentation 7 hours ago & arxiv.org/pdf/2109.12021.pdf
I experiments Added chart visualization in Excel template 2 months ago e
reinforcement-learning
W inc Updated README 8 days ago .
computer-architecture prefetcher
Bn prefetcher Initial commit for MICRO'21 artifact evaluation 2 months ago i i e cache-r
- . . . o branch-predi i imulator
B replacement Initial commit for MICRO'21 artifact evaluation 2 months ago
champsim-tracer
M scripts Added md5 checksum for all artifact traces to verify download 2 months ago
Read!
W src Initial commit for MICRO'21 artifact evaluation 2 months ago 0 Readme
View li
M tracer Initial commit for MICRO'21 artifact evaluation 2 months ago B View license
2 Cite this repository +
(i) .gitignore Initial commit for MICRO'21 artifact evaluation 2 months ago v P y
[CITATION.cff Added citation file 8 days ago
Releases 5
[LICENSE Updated LICENSE 2 months ago
F. s 20
SA A R ’ [LICENSE.champsim Initial commit for MICRO'21 artifact evaluation 2 months ago © -

21 days ago

https://github.com/CMU-SAFARI/Pythia

Pythia

A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori,
Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

https://github.com/CMU-SAFARI/Pythia

-]
SAFARI ETHziirich TUDelft

SAFARI Research Group

https://github.com/CMU-SAFARI/Pythia

Discussion

* FAQS

Why RL?
What about large page?
What’s the prefetch degree?

Can customization happen during
workload execution?

Can runtime mixing create problem?

e Simulation and Methodology

Basic Pythia configuration

System parameters
Configuration of prefetchers
Evaluated workloads

Feature selection

SAFARI

* Detailed Design

Reward structure

Design overview
QVStore Organization

* More Results

Comparison against other adaptive
prefetchers

Comparison against Context prefetcher
Feature combination sensitivity
Hyperparameter sensitivity
Comparison with multi-level prefetchers
Performance in unseen workloads
Single-core s-curve

Four-core s-curve

Detailed performance analysis

Benefit of bandwidth awareness

Case study

Customizing rewards

Customizing features

22

FAQs

Why RL? Why Not Supervised Learning?

* Determining the benefits of prefetching (i.e., whether a
decision was good for performance or not) is not easy

- Depends on a complex set of metrics
* Coverage, accuracy, timeliness
 Effects on system: b/w usage, pollution, cross-application interference, ...

- Dynamically-changing environmental conditions change the
benefit

(might not receive
feedback at all for inaccurate prefetches!)

* Differs from classification tasks (e.g., branch prediction)
- Performance strongly correlates mainly to accuracy

- Does not depend on environment
- Bounded feedback delay

SAFARI A

What About Large Pages?

e Pythia’s framework can be easily extended to incorporate
additional prefetch actions (i.e., possible prefetch offsets
for the page size)

* To decrease the storage overhead
via automatic design-space exploration
to retrieve Q-values

SAFARI A 2

What is the Prefetch Degree? Is It Managed by
the RL Agent?

* Pythia employs a simple degree selector, separate from
the RL agent

- If the agent has selected the same prefetch action (O) multiple
times in a row, Pythia increases the degree (A+20, A+30, ...)

- At most degree 4

* Future works on managing degree by the RL agent

SAFARI A 2

Can the Customization Be Done While the
Workload is Running?

* Certainly.

* Pythia, being an online learning technique, will
autonomously adapt (and optimize) its policy to use the
new program features or the modified reward values

SAFARI A

Can Runtime Workload Mix Create an Issue?

* We implement the bandwidth usage feedback using a
counter in the memory controller. Thus Pythia already has
a global view of the memory bandwidth usage that
incorporates all workloads running on a multi-core system

* We evaluate a diverse set (300 of each category) of four-
core, eight-core, twelve-core random workload mixes

* Based on our evaluation, we observe that Pythia
dynamically adapts itself to varying workload demands

SAFARI D =

How does Pythia Compare Against Other Adaptive
Prefetching Solutions?

* We compare Pythia against IBM POWER7: prefetcher

- Adaptively selects prefetcher degree/configuration by
monitoring program IPC

Geomean speedup

SAFARI

over baseline

Geomean speedup

over baseline

1.5

1.4 +
1.3 -
1.2 4
1.1 4

1.5

141 CPOWER7 m Pythia

1.3 -

1.2 -

i 1
1 . . —

SPECO6

SPEC17 PARSEC Lig

ra Cloudsuite GEOMEAN
(a) single-core

1

& POWER?

B Pythia

11

SPECO6

s B | HI m

SPEC17

PARSEC Ligra
(b) four-core

CIoud suite

Mix

GEOMEAN

D

How Does Pythia Compare Against the Context
Prefetcher?

* Pythia widely differs from the Context Prefetcher (CP): in
all three aspects: state, action, and reward. The key
differences are:

- CP does not consider system-level feedback

- CP models the agent as a contextual bandit which takes myopic
prefetch decisions as compared to Pythia

- CP requires compiler support to extract software-level features

(b) four-core

(a) single-core 1
@ CP-HW ® Pythia B CP-HW ® Pythia
i 1.3 -
_ 1.2 - b
i N | I i
,_l- T 1 T T T T ,_|. T T :

SPECO6 SPEC17 PARSEC Ligra CI udsuite GEOMEAN SPECO6 SPEC17 PARSEC Ligra Cloudsuite Mix GEOMEAN

Geomean speedup
over baseline
Ll
= = N w H O
|
Geomean speedup
over baseline

Pythia outperforms CP-HW by 5.3% in single-core and

7.6% in four-core system
SAFARI A =0

How Pythia’s Performance Changes With
Various State Definitions You Have Swept?

* In total we evaluate state defined as any-one, any-two,
and any-three combinations of 32 features

1.23 72% 1.23 33%
—Speedup —Coverage —Speedup —Overprediction

B i Q b= - 32% g
38 1.225 - 71% 8 8 1.225 - ° 8
(%] (%) (%]
. = L 319 2
£ 122 R 1.22 3A§
. N [. 7
5 5 2 | - 30% 2
o %= 3 .9
£ 1.215 - © £ 1.215 - 29% ;E_
2 68% 2 % =
¥o) a ¥o) - 28% ©
< 1.21 A = o 1.21 S c
v 67% S 9 S
3 » 3 - 27% ©
o | © o 1 S
31205 6% & 2 1.205 26% &
2 S g 5
v 1.2 65% v 1.2 25% 6
TN NN A NN MO 0NN O Ao W TN N A NN MO WIS O W
"ARYERESGREIN8RSR GAMSORESgRRIRE8ER
Experiment number Experiment number

SAFARI D

Is Pythia Sensitive to Hyperparameter?

* Not setting hyperparameters can significantly impact the
overall performance improvement

1.23
£ 2
% § 1.22
(O]
© ‘v 1.21
S a
8 8 1.2
3 S 1.19
3 3
s o 1.18
©
3 v 1.17 S
&
1.04 ‘ ‘ Y 116 ‘ ‘ ‘ ‘ ‘
1.E-6 1.E-5 1.E-4 1.E-3 1.E-2 1.E-1 1.E+0 1.6 1.E5 1.E4 1.E-3 1.E-2 1.E1 1.E+0
values values

SAFARI D 2

How Does Pythia Compare Against
Commercial Multi-level Prefetchers?

Geomean speedup
over no prefetch

SAFARI

1.25
1.2
1.15

ing

= =
© © o -
O U ~, O

0.85

-&--Stride-L1+Streamer-L2
-o- |[PCP
~0-Stride-L1+Pythia-L2

Does Pythia Perform Equally Well for Unseen
Workloads also?

* Evaluated with 500 traces from value prediction
championship

- No prefetcher has been trained on these traces

OSPP @Bingo #MLOP mPythia OSPP @Bingo #WMLOP mPythia

o 16 a 15
=) | B S
2 2 157 (a)single-core 2144 (b)fourcore /M 0000000
sg 41+ Atre =R %134 e m -
"n un g .
c © 13 4 AT - C 5
© 2 S~-124 il IR 0000
1<% QL) 1.2 e A I e E (O]
AR g5 il H *****
§°"] o (A & lm_ |l

Crypto INT FP Server GEOMEAN Crypto INT Server GEOMEAN

Pythia outperforms MLOP and Bingo by
8.3% and 3.5% in single-core

And 9.7% and 5.4% in four-core

SAFARI A

Basic Pythia Configuration

Table 2: Basic Pythia configuration derived from our auto-
mated design-space exploration

Features PC+Delta, Sequence of last-4 deltas

Prefetch Action List {-6,-3,-1,0,1,3,4,5,10,11,12,16,22,23,30,32}

Ra1=20, Rar=12, Rcp=-12, R;IN=—14,
L _ H _ L _

RIN__S’ :RNP__Z’ RNP__4

Hyperparameters o = 0.0065, y = 0.556, € = 0.002

Reward Level Values

SAFARI A

System Parameters

Table 5: Simulated system parameters

Core 1-12 cores, 4-wide O00, 256-entry ROB, 72/56-entry LQ/SQ
Branch Pred. Perceptron-based [69], 20-cycle misprediction penalty

L1/1L2 Private, 32KB/256KB, 64B line, 8 way, LRU, 16/32 MSHRs, 4-
Caches cycle/14-cycle round-trip latency

T 2MB/core, 64B line, 16 way, SHiP [133], 64 MSHRs per LLC Bank,

34-cycle round-trip latency

Main Memory

1C: Single channel, 1 rank/channel; 4C: Dual channel, 2
ranks/channel; 8C: Quad channel, 2 ranks/channel;

8 banks/rank, 2400 MTPS, 64b data-bus/channel, 2KB row buffer-
/bank, tRCD=15ns, tRP=15ns, tCAS=12.5ns

SAFARI

Configuration of Prefetchers

Table 7: Configuration of evaluated prefetchers

SPP [78] 256-entry ST, 512-entry 4-way PT, 8-entry GHR || 6.2 KB
Bingo [27] 2KB region, 64/128/4K-entry FT/AT/PHT 46 KB
MLOP [111] 128-entry AMT, 500-update, 16-degree 8 KB
DSPatch [30] Same configuration as in [30] 3.6 KB
PPF [32] Same configuration as in [32] 39.3 KB
Pythia 2 features, 2 vaults, 3 planes, 16 actions 25.5 KB
SAFARI B

Evaluated Workloads

Table 6: Workloads used for evaluation

Suite # Workloads # Traces Example Workloads

SPECO06 16 28 gce, mcf, cactusADM, lbm, ...

SPEC17 12 18 gce, mcf, pop2, fotonik3d, ...

PARSEC 5 11 canneal, facesim, raytrace, ...

Ligra 13 40 BFS, PageRank, Bellman-ford, ...

Cloudsuite 4 53 cassandra, cloud9, nutch, ...
SAFARI D

List of Evaluated Features

Table 3: List of program control-flow and data-flow compo-
nents used to derive the list of features for exploration

Control-flow Component Data-flow Component

(1) Load cacheline address
(2) Page number

(1) PC of load request (3) Page offset

(2) PC-path (XOR-ed last-3 PCs) (4) Load address delta

(3) PC XOR-ed branch-PC (5) Sequence of last-4 offsets

(4) None (6) Sequence of last-4 deltas
(7) Offset XOR-ed with delta
(8) None

SAFARI A

MORE RESULTS

Performance S-curve: Single-core

oo 2.4
c 603.bwaves_s-2931B —
c 2.2 - : .
% 5 SPP Bingo MLOP —Pythia 462.libquantum<<_*
”&j 1.8
g' O] streamcluster —a
2 16 - f
E’ 14 - quidanimate—95OOM7
o 623.xalancbmk_s-592B
o 1.2 f
>
O 1 i p—— e — N M Y AW LYy - e—]
¥ CBrscc-ozs
o 0.8 A1
n X__ pagerank-51B — 429mcf—
0-6 ITTTTTTIT T I I eI T e I e e e T e e e T e T e e e e e e e e e e T e T e e e e e T e e eI T I I T TIo oo

A NN O N AN OO AN OO AN OO OO AN O W
T AN N TN O ONNOOCOOSCOOO A AN AN "M <
™ =~

Workload number

SAFARI A

Performance S-curve: Four-core

o
(2
|

3.0 .
0 437 .leslie3d-271B
= 2.5 1 X
% SPP Bingo MLOP —Pythia 462.libquantum- 13438
T 2.0 -
Q. raytrace-23.75B -
2 15 -
e 429.mcf-184B
2 [AT
O 1.0 fppr———por=vrprpe-—=NEE=ST VUMY B Y WY} -—--C ¥+ — L ______ k _________
Q Mix-59
-
o
Q
¥,
Q
n

v *=pagerank — " Mix-240

L B s T o B oy TR o R e T e K e A o O e B e R e B o TR o AR e R e AR e TR e A o TR e TR e TR o L o B o R e T o O o
NN < N O N0 OO O A AN N T 1N ONOW OO O A NN < 1N O
™I v v v A A A A A AN AN AN AN AN AN

o
o

Workload number

SAFARI A

Single-core Coverage & Overprediction

© 250% . 3|09|A> 315%

] J—

é’ 200% - W Covered O Uncovered mOverpredicted

S 150% -

—

s 100% - — —

S 50% -

S 0% A

£ * 5525 985 228525 95258823858 s

mggﬁmcgfmcgfmcgfmcgfmcgf

o S g o S o = g o S g o S g o S g
SPECO6 SPEC17 PARSEC Ligra Cloudsuite AVG

SAFARI A

Detailed Performance

N <
—

eIYIAd

H Q+9+S+1S
g+S+1S

| | SHIS

1S

I

(e 0]

—

i
dui|aseq Jan0
dnpaads ueswo

7 7 ,
L

OSPP mBingo 2 MLOP M Pythia

ANNNNNNNNNN

|

(a)

i

1.1 A

I I I
M N
—
aui[aseq JaN0
dnpaads uesawo

_ 1

(o] O
— o
i i

29

99

=

aul|aseq Jan0

[JSPP @ Bingo ¥ MLOP M Pythia

©

1T T 1T 1
SN
™ v

aul|aseq JaNo

©

Q

@)
< <
s S

elyIAd
IN+Q+8+S+1S
Q+9+S+1S
g+S+1S

| | SHIS

dnpaads ueawoao

dnpaads ueawoan

€

SAFARI

Benefit of Bandwidth Awareness

0% T T I l ' !
0
i -0.3¢ -0.2% -0.2%
o 1% - -0.4% 0.3% 0 0
ERE -1.2%
€ 2% A
g &
S 3 -3% A -2.5% [0 Memory BW-oblivious Pythia
s 3
E 4% 4 14.6%
g

-5%

150 300 600 1200 2400 4800 9600

DRAM MTPS (in log scale)

SAFARI A

Case Study

+1 — +3 — +22 — +23 — +1 — 43 — +10 — +11 —
16 1 I I I 1 1 1 1 I 12 I I
14 Lol
12 8
Q o 6
S 107 = |
S S 4k
1 8 I 1
o O 2}
6 ok
4 -2 [
2 1 1 1 | 1 1 1 1 1 _4 1 1 1 1 | 1 1 1 1
1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k
of Q-value updates # of Q-value updates

Figure 13: Q-value curves of PC+Delta feature values (a)
0x436a81+0 and (b) 0x4377c5+0 in 459 . GemsFDTD-1320B.

SAFARI A

Customizing Rewards

[C1<25% of peak 325%-50% of peak EE50%-75% of peak EE>=75% of peak -©-Performance

g 100% 15% @ ¢

£ 80% - 9% g §

= 60% A 3% o g

S 40% - / 3% gy

2 20% y 9% O 3

S 0% : : : : : -15% =
Baseline SPP Bingo MLOP Basic Pythia Strict Pythia

Figure 14: Performance and main memory bandwidth usage
of prefetchers in Ligra-CC.

- 2.0 =
N 18 - : . : .
= M Basic Pythia [@Strict Pythia
£ 1.6 -
(%]
5 8 14 4
200 Iﬂ 11 lﬂ 1
= 10 = mm smiT mmE |
o3 > N\ £ (I
& 9 & & &L & <<‘°(’ &
& & P SR ™
¢ & c»>\@ cfb\ &
& 9 <

Figure 15: Performance of the basic and strict Pythia config-
urations on the Ligra workload suite.

SAFARI A 7

Customizing Features

o] 2.2
E)= %(8) { W Basic Pythia & Feature-optimized Pythia
€92 16 -
o 8 14 -
- o 1.2
© = 10
s

Figure 16: Performance of the basic and feature-optimized
Pythia on the SPEC CPU2006 suite.

SAFARI A

BACKUP

Executive Summary

* Background: Prefetchers predict addresses of future memory requests by associating
memory access patterns with program context (called feature)

* Problem: Three key shortcomings of prior prefetchers:
Predict mainly using a single program feature

Lack inherent system awareness (e.g., memory bandwidth usage)

Lack in-silicon customizability

: Design a prefetching framework that:
Learns from and

Can be to use different features and/or prefetching objectives

* Contribution: Pythia, which formulates prefetching as reinforcement learning problem
- Takes adaptive prefetch decisions using multiple features and system-level feedback
- Can be customized in silicon for target workloads via simple configuration registers
- Proposes a realistic and practical implementation of RL algorithm in hardware

* Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher (in 1-core config.) by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
- Up to 7.8% more performance over basic Pythia across Ligra workloads via simple customization

SAFARI https://github.com/CMU-SAFARI/Pythia 50

https://github.com/CMU-SAFARI/Pythia

Talk Outline

Key Shortcomings of Prior Prefetchers

SAFARI 51

Prefetching Basics

* Predicts addresses of long-latency memory requests and
fetches data before the program demands it

* Associates access patterns from past memory requests
with program context information

Program Feature - Access Pattern

 Example program features
- Program counter (PC)

Page number

Page offset

Cacheline delta

Or a combination of these attributes
SAFARI 52

Key Shortcomings in Prior Prefetchers

* We observe three key shortcomings that significantly
limit performance benefits of prior prefetchers

1 Predict mainly using a single program feature

2 Lack inherent system awareness

3 Lack in-silicon customizability

SAFARI 53

(1) Single-Feature Prefetch Prediction

* Provides good performance gains mainly on workloads
where the feature-to-pattern correlation exists

0% f—— — — |

I : I 1

5 50% i | : :
o ' 15.4% OSPP f4Bingo M Pythia | | o -
g 340% _E ? : i 4.6% E
S 2 30% |l %] :
s 7 ¥ :
e S 20% i / 5.5% Lo l
ST G I B :
= 10% ! é 3.5% /l: ! !
o LD ~7ZR | 7| 71 |

: 482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim’I i459.GemsFDTD-7658 :
“"""""/"_';" """"""""" ;')' """ ’

Bingo 1) performs better SPP) performs better

SAFARI >4

(1) Single-Feature Prefetch Prediction

Relying on a single feature for prediction leaves

significant performance improvement on table

SA FA Rl [1] Bakshalipour et al., HPCA’19 [2] Kim et al., MICRO’16 55

(2) Lack of Inherent System Awareness

e Little understanding of undesirable effects (e.g.,

memory bandwidth usage, cache pollution,

..)

- Performance loss in resource-constrained configurations

250%

200%

150%

100%

50%

Fraction of LLC misses

0%

(as8%)
NN g

(5ra)
./

O Covered O Uncovered @ Overpredicted

jS—
SPP Bingo Pythia

Ligra-CC

SAFARI

j—
SPP Bingo Pythia

PARSEC-Canneal

IPC improvement
over baseline (%)

10%
8%
6%
4%
2%
0%

-2%

-4%

OSPP FBingo M Pythia

DO

Ligra-CC

Similar coverage Lower overpredictions Yet, lower performance

PARSEC-Canneal

(2) Lack of Inherent System Awareness

Prefetchers often lose performance due to lack

of inherent system awareness

(3) Lack of In-silicon Customizability

* Feature statically selected at design time
- Rigid hardware designed specifically to exploit that feature

* No way to change program feature and/or change
prefetcher’s objective in silicon
- Cannot adapt to a wide range of workload demands

Design from scratch Verify Fabricate

SAFARI 58

Our Goal

A prefetching framework that can:

1.Learn to prefetch using and
information

2.Be easily customized in silicon to use different

features and/or change prefetcher’s objectives
.

SAFARI

Our Proposal

Formulates prefetching as a
reinforcement learning problem

Pythia is named after the oracle of Delphi, who is known for her accurate prophecies

SA F A R I https://en.wikipedia.org/wiki/Pythia

60

Talk Outline

Formulating Prefetching as Reinforcement Learning

SAFARI 61

Basics of Reinforcement Learning (RL)

* Algorithmic approach to learn to take an action in a
given situation to maximize a numerical reward

| Agent l

[Environment]

* Agent stores Q-values for every state-action pair
- Expected return for taking an action in a state

- Given a state, selects action that provides Q-value
SAFARI 62

Formulating Prefetching as RL

SAFARI

What s State?

e k-dimensional vector of features
S = {95, 9% .- P}
 Feature = control-flow + data-flow

A+offset (0)

Memory Subsystem

* Control-flow examples
- PC
- Branch PC
- Last-3 PCs, ...

* Data-flow examples

Cacheline address

Physical page number

Delta between two cacheline addresses
Last 4 deltas, ...

SAFARI 64

Prefetch from address

What s State?

A+offset (0)

rrrrrrrr
[Memory Subsystem

Example of a state information

S = {PC+Delta, Sequence of last-4 deltas}

I_T 1

Feature-1 (¢,) Feature-2 (¢,)
PC Cacheline Delta Seq. of last-4 deltas
(Control-flow info.) (Data-flow info.) (Data-flow info.)

SAFARI 65

Prefetch from address

What is Action?

Given a demand access to address A
the action is to select prefetch offset “O”

: 127 actions in the range [-63, +63]
- For a machine with 4KB page and 64B cacheline

* Upper and lower limits ensure prefetches do not cross
physical page boundary

* A zero offset means no prefetch is generated

* We further prune action-space by design-space exploration

SAFARI 66

What is Reward?

* Defines the objective of Pythia

* Encapsulates two metrics:

- Prefetch usefulness (e.g., accurate, late, out-of-page, ...)

- System-level feedback (e.g., mem. b/w usage, cache
pollution, energy, ...)

* We demonstrate Pythia with
as the system-level feedback in the paper

SAFARI 67

What is Reward?

* Seven distinct reward levels

- Accurate and timely (Rxq)
- Accurate but late (Ry)
- Loss of coverage (R)
- Inaccurate
* With low memory b/w usage (R\-L)
* With high memory b/w usage (R\-H)
- No-prefetch
* With low memory b/w usage (Ryp-L)
* With high memory b/w usage(Ryp-H)

* Values are set at design time via automatic design-
space exploration

- Can be further in silicon for higher performance
SAFARI 68

Steering Pythia’s Objective via Reward Values

* Example reward configuration for
- Generating accurate prefetches

- Making prefetch decisions
-14 8 -4 -2 +12 +20
Rin-H Rin-L Rnp-L Ryp-H RaL Rat

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

ﬂ Highly prefers to generate accurate prefetches

2 Prefers not to prefetch if memory bandwidth usage is low

\

@Strongly prefers not to prefetch if memory bandwidth usage is high
D

SAFARI

Steering Pythia’s Objective via Reward Values

* Customizing reward values to make Pythia conservative
towards prefetching

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

ﬂ Highly prefers to generate accurate prefetches

2 Otherwise prefers not to prefetch

SAFARI A 70

Steering Pythia’s Objective via Reward Values

Strict Pythia configuration

Bandwidth-sensitive

Server-class processors
P workloads

SAFARI A

Talk Outline

Pythia: Overview

SAFARI 72

Pythia Overview

: Records Q-values for all state-action pairs
 Evaluation Queue: A FIFO queue of recently-taken actions

Find the Action with max Q-Value

a Al1|AlzlAl3| a

Look up 1 |

Generate
II:)(emand . \;State Qvstore |1 prefetch (Memory]
equest ector 52 - i
9 2 [Viax L Hierarchy
> S4
Q-Value Store
6 Evict EQ entry and (QVStore)
update QVStore
—[Evaluation Queue (EQ) |- 9

) Insert prefetch action &

i' T State-Action pair in EQ
Set filled bit a

Assign reward to

corresponding EQ entry

Prefetch Fill
SAFARI A

Architecting QVStore

Find the Action with max Q-Value

Look up
State QVStore

Vector e

S = {PC+Delta,
Sequence of last-4 deltas}

SAFARI

Q-Value Store
(QVStore)

Architecting QVStore

{ Fast prefetch prediction J
[Fast retrieval of Q-values from QVStore J

U

[Efficient storage organization of Q-values in QVStore]

SAFARI 75

Organization of QVStore

* A monolithic two-dimensional table?
- Indexed by state and action values

 State-space increases exponentially with #bits

S = {PC+Delta, Sequence of last-4 deltas}

32b + 7b + 4x7b = 67 bits
127 actions

AA A5 A6 A7 A8 A ____ |

Al A2 A3

257 states

SAFARI

Organization of QVStore

* We partition QVStore into k vaults

- Each vault corresponds to one feature and stores the Q-
values of feature-action pairs

To retrieve Q(S,A) for

each action

e Query each vaultin

Vault, parallel with feature
and action

* Retrieve feature-action
O-value from each vault

e Compute MAX of all
feature-action Q-values

Vault1

MAX ensures the Q(S,A) is driven by the

constituent feature that has highest Q(¢,A)

SAFARI

Organization of QVStore

* We further partition each vault into multiple planes
- Each plane stores a partial Q-value of a feature-action pair

To retrieve Q(¢,A)
for each action

* Query
with hashed

feature and action

from each
plane
 Compute SUM of all parital
feature-action Q-values

SAFARI

Action (A)

———————————————————————

Organization of QVStore

1. Enables sharing of partial Q-values between similar
feature values, shortens prefetcher training time

2. Reduces chances of sharing partial Q-values
across widely different feature values

SAFARI 79

More in the Paper

* Pipelined search operation for QVStore
* Reward assignment and

* Automatic design-space exploration
- Feature types
- Action
- Reward and Hyperparameter values

SAFARI

80

More in the Paper

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera! Konstantinos Kanellopoulos! =~ Anant V. Nori* Taha Shahroodi®
Sreenivas Subramoney? Onur Mutlu!

IETH Ziirich ?Processor Architecture Research Labs, Intel Labs 3TU Delft

https://arxiv.org/pdf/2109.12021.pdf

SAFARI

https://arxiv.org/pdf/2109.12021.pdf

Talk Outline

Evaluation of Pythia and Key Results

SAFARI 82

Simulation Methodology

* Champsim |1 trace-driven simulator

* 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

* Homogeneous and heterogeneous multi-core mixes

* Five state-of-the-art prefetchers
- SPP

Bingo

MLOP

SPP+DSPatch

SPP+PPF

SAFARI

https://github.com/ChampSim/ChampSim

Basic Pythia Configuration

* Derived from automatic design-space exploration

e State: 2 features
- PC+Delta
- Sequence of last-4 deltas

* Actions: 16 prefetch offsets
- Ranging between -6 to +32. Including O.

* Rewards:
= RAT = +20; RAL - +12; RNP_H=_2; RNP_L=_4;
= R|N'H='14; R|N‘L='8; RCL=_12

SAFARI

Performance with Varying Core Count

1.35

=
W
|

=

N

U
|

=
N
|

Geomean speedup
over no prefetching

=

—

U
I

=
[EEY

0 2 4 6 8 10 12
Number of cores

SAFARI

85

Performance with Varying Core Count

1. Pythia consistently provides the highest
performance in all core configurations

2. Pythia’s gain increases with core count

SAFARI 86

Performance with Varying DRAM Bandwidth

1.25 3%
1.2 -

Pythia

Bingo
LOP

SPP

Baseline

= =

o P R

g = U
|

~Intel Xeon 6258R

[ERY
[

~AMD EPYC Rome 7702P

Geomean speedup
over no prefetching

=
© ©
©o U
|

0.85 - |
~AMD Threadripper 3990x

Q Q Q Q Q Q Q
Q Q Q Q Q Q Q

O
00

Q
Q
P

DRAM MTPS (in log scale)
SAFARI 87

Performance with Varying DRAM Bandwidth

Pythia outperforms prior best prefetchers for

a wide range of DRAM bandwidth configurations

SAFARI 88

Performance Improvement via Customization

e Reward value customization

e Strict Pythia configuration
- Increasing the rewards for no prefetching
- Decreasing the rewards for inaccurate prefetching

-22 -20 +1 +2 +12 +20

<l | | | | |
N 1 I I I 1

Rin-H Rin-L Rne-L Ryp-H RaL Rat

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

e Strict Pythia is more conservative in generating
prefetch requests than the basic Pythia

* Evaluate on all Ligra graph processing workloads
SAFARI 89

Performance Improvement via Customization

N
o
)

M Basic Pythia

o] 0]

S

<

O

QL 1.8 -

Q

Q.

2 16 -

o

)

©

'g 1.4 -

[E

S 1.2 -

-

&

= 1.0

& ,O&Q @Q
R ng% €
Q’b

SAFARI 20

Performance Improvement via Customization

Pythia can extract even higher performance

via customization without changing hardware

SAFARI) 91

Pythia’s Overhead

e 25.5 KB of total metadata storage per core
- Only simple tables

* We also model functionally-accurate Pythia with full
complexity in Chisel 4 HDL

1.03% area overhead

0.4% power overhead

v Satisfies prediction latency

of a desktop-class 4-core Skylake processor (Xeon D2132IT, 60W)
SAFAR' [4] https://www.chisel-lang.org 92

https://www.chisel-lang.org/

More in the Paper

* Performance comparison with unseen traces
- Pythia provides equally high performance benefits

 Comparison against multi-level prefetchers
- Pythia outperforms prior best multi-level prefetchers

e Understanding Pythia’s learning with
- We reason towards of Pythia’s decision

towards different features and
hyperparameter values

* Detailed single-core and four-core performance

SAFARI

More in the Paper

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera! Konstantinos Kanellopoulos! =~ Anant V. Nori* Taha Shahroodi®
Sreenivas Subramoney? Onur Mutlu!

IETH Ziirich ?Processor Architecture Research Labs, Intel Labs 3TU Delft

https://arxiv.org/pdf/2109.12021.pdf

SAFARI

https://arxiv.org/pdf/2109.12021.pdf

Pythia is Open Source
https://github.com/CMU-SAFARI/Pythia

e MICRO’21 artifact evaluated
* Champsim source code + Chisel modeling code
e All traces used for evaluation

H CMU-SAFARI [Pythia ' public ®uUnwatch ~ 3 ¢ Star 9 % Fork 2

<> Code © lIssues 19 Pull requests (® Actions [Projects 07 wiki @ Security |~ Insights 83 Settings

¥ master ~ # 1branch © 5 tags Go to file Add file ~ m About b
A customizable hardware prefetching
a rahulbera Github pages documentation Vv dilefcés 7 hoursago YO 40 commits framework using online reinforcement
learning as described in the MICRO
B8 branch Initial commit for MICRO'21 artifact evaluation 2 months ago 2021 paper by Bera and
Kanellopoulos et al.
M config Initial commit for MICRO'21 artifact evaluation 2 months ago P
> .
M docs Github pages documentation 7 hours ago & arxiv.org/pdf/2109.12021.pdf
I experiments Added chart visualization in Excel template 2 months ago e
reinforcement-learning
W inc Updated README 8 days ago .
computer-architecture prefetcher
Bn prefetcher Initial commit for MICRO'21 artifact evaluation 2 months ago i i e cache-r
- . . . o branch-predi i imulator
B replacement Initial commit for MICRO'21 artifact evaluation 2 months ago
champsim-tracer
M scripts Added md5 checksum for all artifact traces to verify download 2 months ago
Read!
W src Initial commit for MICRO'21 artifact evaluation 2 months ago 0 Readme
View li
M tracer Initial commit for MICRO'21 artifact evaluation 2 months ago B View license
2 Cite this repository +
(i) .gitignore Initial commit for MICRO'21 artifact evaluation 2 months ago v P y
[CITATION.cff Added citation file 8 days ago
Releases 5
[LICENSE Updated LICENSE 2 months ago
F v1.3 9 5
SA A R ’ [LICENSE.champsim Initial commit for MICRO'21 artifact evaluation 2 months ago © -

21 days ago

https://github.com/CMU-SAFARI/Pythia

Talk Outline

Conclusion

SAFARI 926

Executive Summary

* Background: Prefetchers predict addresses of future memory requests by associating
memory access patterns with program context (called feature)

* Problem: Three key shortcomings of prior prefetchers:
Predict mainly using a single program feature

Lack inherent system awareness (e.g., memory bandwidth usage)

Lack in-silicon customizability

: Design a prefetching framework that:
Learns from and

Can be to use different features and/or prefetching objectives

* Contribution: Pythia, which formulates prefetching as reinforcement learning problem
- Takes adaptive prefetch decisions using multiple features and system-level feedback
- Can be customized in silicon for target workloads via simple configuration registers
- Proposes a realistic and practical implementation of RL algorithm in hardware

* Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher (in 1-core config.) by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
- Up to 7.8% more performance over basic Pythia across Ligra workloads via simple customization

SAFARI https://github.com/CMU-SAFARI/Pythia 97

https://github.com/CMU-SAFARI/Pythia

Reward Assighment to EQ Entry

* Every action gets inserted into EQ

* Reward is assigned to each EQ entry before or during the
eviction

* During EQ insertion: for actions

- Not to prefetch
- Out-of-page prefetch

SAFARI 98

Reward Assighment to EQ Entry

* Every action gets inserted into EQ

* Reward is assigned to each EQ entry before or during the
eviction)

sS4
Q-Value Store
(QVstore)

* During EQ insertion: for actions
/ Evaluation Queue (\E\Q)]4%

- Not to prefetch
- Out-of-page prefetch L N (R
* During EQ residency:

- In case address of a demand matches with address in EQ
(signifies accurate prefetch)

SAFARI 29

Reward Assighment to EQ Entry

* Every action gets inserted into EQ

* Reward is assigned to each EQ entry before or during the
eviction

* During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch

* During EQ residency:

- In case address of a demand matches with address in EQ
(signifies accurate prefetch)

Set filleadibit
Assign reward to
onding EQ entry Prefetch Fill

* During EQ eviction:

- In case no reward is assigned till eviction
(signifies inaccurate prefetch)

SAFARI 100

