
Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori,
Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework

Using Online Reinforcement Learning

https://github.com/CMU-SAFARI/Pythia

https://github.com/CMU-SAFARI/Pythia

2

Executive Summary

https://github.com/CMU-SAFARI/Pythia

• Background: Prefetchers predict addresses of future memory requests by associating
memory access patterns with program context (called feature)

• Problem: Three key shortcomings of prior prefetchers:
- Predict mainly using a single program feature
- Lack inherent system awareness (e.g., memory bandwidth usage)
- Lack in-silicon customizability

• Goal: Design a prefetching framework that:
- Learns from multiple features and inherent system-level feedback
- Can be customized in silicon to use different features and/or prefetching objectives

• Contribution: Pythia, which formulates prefetching as reinforcement learning problem
- Takes adaptive prefetch decisions using multiple features and system-level feedback
- Can be customized in silicon for target workloads via simple configuration registers
- Proposes a realistic and practical implementation of RL algorithm in hardware

• Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher (in 1-core config.) by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
- Up to 7.8% more performance over basic Pythia across Ligra workloads via simple customization

https://github.com/CMU-SAFARI/Pythia

3

Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

4

Prefetching Basics
• Predicts addresses of long-latency memory requests and

fetches data before the program demands it

• Associates access patterns from past memory requests
with program context information

• Example program features
- Program counter (PC)
- Page number
- Page offset
- Cacheline delta
- …
- Or a combination of these attributes

Program context à Access PatternProgram Feature

5

Key Shortcomings in Prior Prefetchers

• We observe three key shortcomings that significantly
limit performance benefits of prior prefetchers

Predict mainly using a single program feature

Lack inherent system awareness

Lack in-silicon customizability

1

2

3

6

(1) Single-Feature Prefetch Prediction

• Provides good performance gains mainly on workloads
where the feature-to-pattern correlation exists

[1] Bakshalipour et al., HPCA’19 [2] Kim et al., MICRO’16

0%

10%

20%

30%

40%

50%

60%

482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim 459.GemsFDTD-765B

IP
C

im
pr

ov
em

en
t o

ve
r

ba
se

lin
e

(%
)

SPP Bingo Pythia15.4%

3.5%

5.5%

4.6%

Bingo [1] performs better SPP [2] performs better

7

(1) Single-Feature Prefetch Prediction

• Provides good performance gains mainly on workloads
where the feature-to-pattern correlation exists

[1] Bakshalipour et al., HPCA’19 [2] Kim et al., MICRO’16

0%

10%

20%

30%

40%

50%

60%

482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim 459.GemsFDTD-765B

IP
C

im
pr

ov
em

en
t o

ve
r

ba
se

lin
e

(%
)

SPP Bingo Pythia15.4%

3.5%

5.5%

4.6%

Bingo [1] performs better SPP [2] performs better

Relying on a single feature for prediction leaves
significant performance improvement on table

8

(2) Lack of Inherent System Awareness

• Little understanding of undesirable effects (e.g.,
memory bandwidth usage, cache pollution, …)
- Performance loss in resource-constrained configurations

0%

50%

100%

150%

200%

250%

SPP Bingo Pythia SPP Bingo Pythia

Ligra-CC PARSEC-Canneal

Fr
ac

tio
n

of
 L

LC
 m

iss
es Covered Uncovered Overpredicted

-4%

-2%
0%
2%
4%

6%
8%

10%

Ligra-CC PARSEC-Canneal

IP
C

im
pr

ov
em

en
t

ov
er

 b
as

el
in

e
(%

)

SPP Bingo Pythia
368% 574%

Similar coverage Lower overpredictions Yet, lower performance

9

(2) Lack of Inherent System Awareness

• Little understanding of undesirable effects (e.g.,
memory bandwidth usage, cache pollution, …)
- Performance loss in resource-constrained configurations

0%

50%

100%

150%

200%

250%

SPP Bingo Pythia SPP Bingo Pythia

Ligra-CC PARSEC-Canneal

Fr
ac

tio
n

of
 L

LC
 m

iss
es Covered Uncovered Overpredicted

-4%

-2%
0%
2%
4%

6%
8%

10%

Ligra-CC PARSEC-Canneal

IP
C

im
pr

ov
em

en
t

ov
er

 b
as

el
in

e
(%

)

SPP Bingo Pythia
368% 574%

Similar coverage Lower overpredictions Yet, lower performance

Prefetchers often lose performance due to lack
of inherent system awareness

10

(3) Lack of In-silicon Customizability

• Feature statically selected at design time
- Rigid hardware designed specifically to exploit that feature

• No way to change program feature and/or change
prefetcher’s objective in silicon
- Cannot adapt to a wide range of workload demands

Design from scratch Verify Fabricate

11

Our Goal

A prefetching framework that can:

1.Learn to prefetch using multiple features and
inherent system-level feedback information

2.Be easily customized in silicon to use different
features and/or change prefetcher’s objectives

12

Our Proposal

Pythia
Formulates prefetching as a

reinforcement learning problem

Pythia is named after the oracle of Delphi, who is known for her accurate prophecies
https://en.wikipedia.org/wiki/Pythia

13

Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

14

Basics of Reinforcement Learning (RL)

• Algorithmic approach to learn to take an action in a
given situation to maximize a numerical reward

• Agent stores Q-values for every state-action pair
- Expected return for taking an action in a state
- Given a state, selects action that provides highest Q-value

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

15

Formulating Prefetching as RL

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

Prefetcher

Processor &
Memory Subsystem

Reward
Prefetch from address

A+offset (O)

Features of memory
request to address A

(e.g., PC)

16

What is State?
• k-dimensional vector of features

• Feature = control-flow + data-flow

• Control-flow examples
- PC
- Branch PC
- Last-3 PCs, …

• Data-flow examples
- Cacheline address
- Physical page number
- Delta between two cacheline addresses
- Last 4 deltas, …

17

What is State?

S = {PC+Delta, Sequence of last-4 deltas}

Example of a state information

Feature-1 (ɸ1) Feature-2 (ɸ2)

PC
(Control-flow info.)

Cacheline Delta
(Data-flow info.)

Seq. of last-4 deltas
(Data-flow info.)

18

What is Action?
Given a demand access to address A
the action is to select prefetch offset “O”

• Action-space: 127 actions in the range [-63, +63]
- For a machine with 4KB page and 64B cacheline

• Upper and lower limits ensure prefetches do not cross
physical page boundary

• A zero offset means no prefetch is generated

• We further prune action-space by design-space exploration

19

What is Reward?
• Defines the objective of Pythia

• Encapsulates two metrics:
- Prefetch usefulness (e.g., accurate, late, out-of-page, …)
- System-level feedback (e.g., mem. b/w usage, cache

pollution, energy, …)

• We demonstrate Pythia with memory bandwidth
usage as the system-level feedback in the paper

20

What is Reward?
• Seven distinct reward levels

- Accurate and timely (RAT)
- Accurate but late (RAL)
- Loss of coverage (RCL)
- Inaccurate

• With low memory b/w usage (RIN-L)
• With high memory b/w usage (RIN-H)

- No-prefetch
• With low memory b/w usage (RNP-L)
• With high memory b/w usage(RNP-H)

• Values are set at design time via automatic design-
space exploration
- Can be customized further in silicon for higher performance

21

Steering Pythia’s Objective via Reward Values

• Example reward configuration for
- Generating accurate prefetches
- Making bandwidth-aware prefetch decisions

+20+12-2-4-8-14

RATRALRNP-HRNP-LRIN-LRIN-H

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Prefers not to prefetch if memory bandwidth usage is low

Strongly prefers not to prefetch if memory bandwidth usage is high

22

Steering Pythia’s Objective via Reward Values

• Customizing reward values to make Pythia conservative
towards prefetching

+20+12+2+1-20-22

RATRALRNP-HRNP-LRIN-LRIN-H

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Otherwise prefers not to prefetch

23

Steering Pythia’s Objective via Reward Values

• Customizing reward values to make Pythia conservative
towards prefetching

+20+12+4+2-20-22

RATRALRNP-HRNP-LRIN-LRIN-H

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Otherwise prefers not to prefetchServer-class processors
Bandwidth-sensitive

workloads

Strict Pythia configuration

24

Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

25

Pythia Overview
• Q-Value Store: Records Q-values for all state-action pairs
• Evaluation Queue: A FIFO queue of recently-taken actions

Evaluation Queue (EQ)

Demand
Request

1
Assign reward to

corresponding EQ entry

Look up
QVStoreState

Vector

Q-Value Store
(QVStore)

2

3

5
Insert prefetch action &
State-Action pair in EQ

6

Prefetch Fill

A1 A2 A3

Memory
Hierarchy

Generate
prefetch

Evict EQ entry and
update QVStore

4

Find the Action with max Q-Value

7

S1
S2
S3
S4

Set filled bit

Max

26

Architecting QVStore

S = {PC+Delta,
Sequence of last-4 deltas}

+1 +2 +3

Q-Value Store
(QVStore)

…

27

Architecting QVStore

S = {PC+Delta,
Sequence of last-4 deltas}

+1 +2 +3

Q-Value Store
(QVStore)

…

Fast retrieval of Q-values from QVStore

Efficient storage organization of Q-values in QVStore

Fast prefetch prediction

28

Organization of QVStore
• A monolithic two-dimensional table?

- Indexed by state and action values
• State-space increases exponentially with #bits

S = {PC+Delta, Sequence of last-4 deltas}

32b 7b 4x7b = 67 bits+ +

A1 A2 A3 A4 A5 A6 A7 A8 A9
S1
S2
S3
S4
S5
S6
S7

Design complexity Access latency

127 actions

26
7

st
at

es

29

Organization of QVStore
• We partition QVStore into k vaults [k = number of features in state]

- Each vault corresponds to one feature and stores the Q-
values of feature-action pairs

… Vaultk

MAX

(a)

Vault1 Vault2

State-action Q-value

Plane1

Shift

+ #

+

Feature Index

φ1
Sφ
1
S φ2

Sφ
2
S φk

Sφ
k
S

Program
feature

Q(φ1
S , A)Q(φ1
S , A) Q(φ2

S , A)Q(φ2
S , A) Q(φk

S , A)Q(φk
S , A)

Feature-action Q-value

Q(S,A)Q(S,A)
φk
Sφ
k
S

Q(φk
S , A)Q(φk
S , A)

Feature-action Q-value

φk
Sφ
k
S

Index
Generation

Index
Generation

Index
Generation

Action (A)Action (A) Action (A)Action (A)
(b)

(c)

• Query each vault in
parallel with feature
and action

• Retrieve feature-action
Q-value from each vault

• Compute MAX of all
feature-action Q-values

MAX ensures the Q(S,A) is driven by the
constituent feature that has highest Q(ɸ,A)

To retrieve Q(S,A) for
each action

30

Organization of QVStore
• We further partition each vault into multiple planes

- Each plane stores a partial Q-value of a feature-action pair

… Vaultk

MAX

(a)

Vault1 Vault2

State-action Q-value

Plane1

Shift

+ #

+

Feature Index

φ1
Sφ
1
S φ2

Sφ
2
S φk

Sφ
k
S

Program
feature

Q(φ1
S , A)Q(φ1
S , A) Q(φ2

S , A)Q(φ2
S , A) Q(φk

S , A)Q(φk
S , A)

Feature-action Q-value

Q(S,A)Q(S,A)
φk
Sφ
k
S

Q(φk
S , A)Q(φk
S , A)

Feature-action Q-value

φk
Sφ
k
S

Index
Generation

Index
Generation

Index
Generation

Action (A)Action (A) Action (A)Action (A)
(b)

(c)

• Query each plane in
parallel with hashed
feature and action

• Retrieve partial feature-
action Q-value from each
plane

• Compute SUM of all parital
feature-action Q-values

To retrieve Q(ɸ,A)
for each action

31

Organization of QVStore
• We further partition each vault into multiple planes

- Each plane stores a partial Q-value of a feature-action pair

… Vaultk

MAX

(a)

Vault1 Vault2

State-action Q-value

Plane1

Shift

+ #

+

Feature Index

φ1
Sφ
1
S φ2

Sφ
2
S φk

Sφ
k
S

Program
feature

Q(φ1
S , A)Q(φ1
S , A) Q(φ2

S , A)Q(φ2
S , A) Q(φk

S , A)Q(φk
S , A)

Feature-action Q-value

Q(S,A)Q(S,A)
φk
Sφ
k
S

Q(φk
S , A)Q(φk
S , A)

Feature-action Q-value

φk
Sφ
k
S

Index
Generation

Index
Generation

Index
Generation

Action (A)Action (A) Action (A)Action (A)
(b)

(c)

• Query each plane in
parallel with hashed
feature and action

• Retrieve partial feature-
action Q-value from each
plane

• Compute SUM of all parital
feature-action Q-values

To retrieve Q(ɸ,A)
for each action

1. Enables sharing of partial Q-values between similar
feature values, shortens prefetcher training time

2. Reduces chances of sharing partial Q-values
across widely different feature values

32

More in the Paper
• Pipelined search operation for QVStore

• Reward assignment and QVStore update

• Automatic design-space exploration
- Feature types
- Action
- Reward and Hyperparameter values

33

More in the Paper
• Pipelined search operation for QVStore

• Reward assignment and QVStore update

• Automatic design-space exploration
- Feature types
- Action
- Reward and Hyperparameter valueshttps://arxiv.org/pdf/2109.12021.pdf

https://arxiv.org/pdf/2109.12021.pdf

34

Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

35

Simulation Methodology
• Champsim [3] trace-driven simulator

• 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

• Homogeneous and heterogeneous multi-core mixes

• Five state-of-the-art prefetchers
- SPP [Kim+, MICRO’16]
- Bingo [Bakhshalipour+, HPCA’19]
- MLOP [Shakerinava+, 3rd Prefetching Championship, 2019]
- SPP+DSPatch [Bera+, MICRO’19]
- SPP+PPF [Bhatia+, ISCA’20]

[3] https://github.com/ChampSim/ChampSim

https://github.com/ChampSim/ChampSim

36

Basic Pythia Configuration
• Derived from automatic design-space exploration

• State: 2 features
- PC+Delta
- Sequence of last-4 deltas

• Actions: 16 prefetch offsets
- Ranging between -6 to +32. Including 0.

• Rewards:
- RAT = +20; RAL = +12; RNP-H=-2; RNP-L=-4;
- RIN-H=-14; RIN-L=-8; RCL=-12

37

1.1

1.15

1.2

1.25

1.3

1.35

0 2 4 6 8 10 12

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Number of cores

Performance with Varying Core Count

Bingo
MLOP
SPP

Pythia

3.4% 7.7%

38

1.1

1.15

1.2

1.25

1.3

1.35

0 2 4 6 8 10 12

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Number of cores

Performance with Varying Core Count

Bingo
MLOP
SPP

Pythia

3.4%
7.7%

1. Pythia consistently provides the highest
performance in all core configurations

2. Pythia’s gain increases with core count

39

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

100
200

400
800

1600
3200

6400
12800

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

DRAM MTPS (in log scale)

Performance with Varying DRAM Bandwidth

~Intel Xeon 6258R

~AMD EPYC Rome 7702P

~AMD Threadripper 3990x

SPP

Bingo
MLOP

Pythia

Baseline

3%

17%

40

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

100
200

400
800

1600
3200

6400
12800

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

DRAM MTPS (in log scale)

Performance with Varying DRAM Bandwidth

~Intel Xeon 6258R

~AMD EPYC Rome 7702P

~AMD Threadripper 3990x

SPP

Bingo
MLOP

Pythia

Baseline

3%

17%

Pythia outperforms prior best prefetchers for
a wide range of DRAM bandwidth configurations

41

Performance Improvement via Customization

• Reward value customization
• Strict Pythia configuration

- Increasing the rewards for no prefetching
- Decreasing the rewards for inaccurate prefetching

• Strict Pythia is more conservative in generating
prefetch requests than the basic Pythia
• Evaluate on all Ligra graph processing workloads

42

1.0

1.2

1.4

1.6

1.8

2.0

Page
Rank

Page
RankD

elta CC
BFS BC

GEO
MEA

N

IP
C

no
rm

al
ize

d
to

 n
o

pr
ef

et
ch

in
g

Basic Pythia Strict Pythia

Performance Improvement via Customization

3.1% 2.8% 3.4%

7.8%

5.2%

2%

43

1.0

1.2

1.4

1.6

1.8

2.0

Page
Rank

Page
RankD

elta CC
BFS BC

GEO
MEA

N

IP
C

no
rm

al
ize

d
to

 n
o

pr
ef

et
ch

in
g

Basic Pythia Strict Pythia

Performance Improvement via Customization

3.1% 2.8% 3.4%

7.8%

5.2%

2%Pythia can extract even higher performance
via customization without changing hardware

44

Pythia’s Overhead
• 25.5 KB of total metadata storage per core

- Only simple tables
• We also model functionally-accurate Pythia with full

complexity in Chisel [4] HDL

1.03% area overhead

Satisfies prediction latency

0.4% power overhead

of a desktop-class 4-core Skylake processor (Xeon D2132IT, 60W)
[4] https://www.chisel-lang.org

https://www.chisel-lang.org/

45

More in the Paper
• Performance comparison with unseen traces

- Pythia provides equally high performance benefits

• Comparison against multi-level prefetchers
- Pythia outperforms prior best multi-level prefetchers

• Understanding Pythia’s learning with a case study
- We reason towards the correctness of Pythia’s decision

• Performance sensitivity towards different features and
hyperparameter values

• Detailed single-core and four-core performance

46

More in the Paper
• Performance comparison with unseen traces

- Pythia provides equally high performance benefits

• Comparison against multi-level prefetchers
- Pythia outperforms prior best multi-level prefetchers

• Understanding Pythia’s learning with a case study
- We reason towards the correctness of Pythia’s decision

• Performance sensitivity towards different features
and hyperparameter values

• Detailed single-core and four-core performance

https://arxiv.org/pdf/2109.12021.pdf

https://arxiv.org/pdf/2109.12021.pdf

47

Pythia is Open Source
https://github.com/CMU-SAFARI/Pythia

• MICRO’21 artifact evaluated
• Champsim source code + Chisel modeling code
• All traces used for evaluation

https://github.com/CMU-SAFARI/Pythia

48

Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

49

Executive Summary

https://github.com/CMU-SAFARI/Pythia

• Background: Prefetchers predict addresses of future memory requests by associating
memory access patterns with program context (called feature)

• Problem: Three key shortcomings of prior prefetchers:
- Predict mainly using a single program feature
- Lack inherent system awareness (e.g., memory bandwidth usage)
- Lack in-silicon customizability

• Goal: Design a prefetching framework that:
- Learns from multiple features and inherent system-level feedback
- Can be customized in silicon to use different features and/or prefetching objectives

• Contribution: Pythia, which formulates prefetching as reinforcement learning problem
- Takes adaptive prefetch decisions using multiple features and system-level feedback
- Can be customized in silicon for target workloads via simple configuration registers
- Proposes a realistic and practical implementation of RL algorithm in hardware

• Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher (in 1-core config.) by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
- Up to 7.8% more performance over basic Pythia across Ligra workloads via simple customization

https://github.com/CMU-SAFARI/Pythia

Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori,
Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework

Using Online Reinforcement Learning

https://github.com/CMU-SAFARI/Pythia

https://github.com/CMU-SAFARI/Pythia

BACKUP

52

Reward Assignment to EQ Entry
• Every action gets inserted into EQ
• Reward is assigned to each EQ entry before or during the

eviction

• During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch

��
��
���������� ����

��	�
�
�������

�
�����������������

������������ �������!

���� ���
�
	���������

�����

��	
���������
��	������

�

�

�
���������������������#�
	����"����������������

�

�������������

�� �� ��

�������
����
����

��������
�������

������������!�����
��������
	����

�

���������������������� ��"
����

�

���
��
��
��
��

	�������������

53

Reward Assignment to EQ Entry
• Every action gets inserted into EQ
• Reward is assigned to each EQ entry before or during the

eviction

• During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch

• During EQ residency:
- In case address of a demand matches with address in EQ

(signifies accurate prefetch)

��
��
���������� ����

��	�
�
�������

�
�����������������

������������ �������!

���� ���
�
	���������

�����

��	
���������
��	������

�

�

�
���������������������#�
	����"����������������

�

�������������

�� �� ��

�������
����
����

��������
�������

������������!�����
��������
	����

�

���������������������� ��"
����

�

���
��
��
��
��

	�������������

54

Reward Assignment to EQ Entry
• Every action gets inserted into EQ
• Reward is assigned to each EQ entry before or during the

eviction

• During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch

• During EQ residency:
- In case address of a demand matches with address in EQ

(signifies accurate prefetch)

• During EQ eviction:
- In case no reward is assigned till eviction

(signifies inaccurate prefetch)

��
��
���������� ����

��	�
�
�������

�
�����������������

������������ �������!

���� ���
�
	���������

�����

��	
���������
��	������

�

�

�
���������������������#�
	����"����������������

�

�������������

�� �� ��

�������
����
����

��������
�������

������������!�����
��������
	����

�

���������������������� ��"
����

�

���
��
��
��
��

	�������������

55

Performance S-curve: Single-core

0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

Sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Workload number

SPP Bingo MLOP Pythia

623.xalancbmk_s-592B

603.bwaves_s-2931B

462.libquantum

streamcluster

429.mcf

BFSCC-22B

pagerank-51B

fluidanimate-9500M

56

Performance S-curve: Four-core

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

26
1

Sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Workload number

SPP Bingo MLOP Pythia

429.mcf-184B

pagerank

462.libquantum-1343B

437.leslie3d-271B

Mix-59

raytrace-23.75B

Mix-240

