QUAC-TRNG

High-Throughput True Random Number Generation Using Quadruple Row Activation in Real DRAM Chips

Ataberk Olgun
Minesh Patel A. Giray Yağlıkçı Haocong Luo
Jeremie S. Kim F. Nisa Bostancı Nandita Vijaykumar
Oğuz Ergin Onur Mutlu
Executive Summary

- **Motivation**: DRAM-based true random number generators (TRNGs) provide true random numbers at low cost on a wide range of computing systems.

- **Problem**: Prior DRAM-based TRNGs are slow:
 1. Based on fundamentally slow processes → high latency
 2. Cannot effectively harness entropy from DRAM rows → low throughput

- **Goal**: Develop a high-throughput and low-latency TRNG that uses commodity DRAM devices.

- **Key Observation**: Carefully engineered sequence of DRAM commands can activate four DRAM rows → QUadruple Aactivation (QUAC).

- **Key Idea**: Use QUAC to activate DRAM rows that are initialized with conflicting data (e.g., two ‘1’s and two ‘0’s) to generate random values.

- **QUAC-TRNG**: DRAM-based TRNG that generates true random numbers at high-throughput and low-latency by repeatedly performing QUAC operations.

- **Results**: We evaluate QUAC-TRNG using 136 real DDR4 chips
 1. 5.4 Gb/s maximum (3.4 Gb/s average) TRNG throughput per DRAM channel
 2. Outperforms existing DRAM-based TRNGs by 15.08x (base), and 1.41x (enhanced).
 3. QUAC-TRNG has low TRNG latency: 256-bit RN in 274 ns
 4. QUAC-TRNG passes all 15 NIST randomness tests.
Use Cases of True Random Numbers

High-quality true random numbers are critical to many applications.

True random numbers can only be obtained by sampling random physical processes.

Not all computing systems are equipped with TRNG hardware (e.g., dedicated circuitry).
DRAM-Based TRNGs

DRAM is ubiquitous in modern computing platforms

DRAM-based TRNGs enable **low-cost and high-throughput** true random number generation **within DRAM**

- Requires no specialized hardware: Benefits constrained systems
- Open application space: Provides high-throughput TRNG

Processing-in-Memory (PIM) systems perform computation directly within memory

- Avoid inefficient off-chip data movement

DRAM-based TRNGs

- Enable PIM workloads to **sample** true random numbers directly within the memory chip
- Avoid communication to possible off-chip TRNG sources
Motivation and Goal

Prior DRAM-based TRNGs are slow, these TRNGs:
1. Are based on fundamentally slow physical processes
 - DRAM retention-based TRNGs
 - DRAM startup value-based TRNGs
2. Cannot effectively harness entropy from DRAM rows
 - DRAM timing failure-based TRNGs

Goal: Develop a high-throughput and low-latency TRNG that can be implemented using commodity DRAM devices

Key Observation
QUadruple ACtivation (QUAC): Carefully-engineered DRAM commands can activate four DRAM rows in real chips
Using QUAC to Generate Random Values

Use QUAC to **activate DRAM rows** that are **initialized with conflicting data** (e.g., two ‘1’s and two ‘0’s) to generate random values.

ACT \[\xrightarrow{\text{Violate Timing}}\] **PRE** \[\xrightarrow{\text{Violate Timing}}\] **ACT**
QUAC-TRNG

Sense Amplifiers

- 0000000000 (0 Entropy)
- 1101001001 (1 Entropy)

One-time Characterization

Find Shannon Entropy of Each Sense Amplifier

Sum of each bitline’s entropy = 256 bits

Memory Controller

SHA-256

256-bit True Random Number

1. Initialize Rows
2. Perform QUAC
3. Read Block
4. Post-process
Experimental Methodology

Experimentally study QUAC and QUAC-TRNG using 136 real DDR4 chips

- Spatial distribution of entropy
- Data pattern dependency of entropy

DDR4 SoftMC → DRAM Testing Infrastructure

[Hassan+ HPCA’17] [https://github.com/CMU-SAFARI/SoftMC]
Key Results

- 5.4 Gb/s TRNG throughput (3.44 Gb/s on average) per channel
- Outperform state-of-the-art base by **15.08x** and enhanced by **1.41x**
- Low latency: Generates a 256-bit random number in **274 ns**

- Passes all **15** standard NIST randomness tests

- Negligible area cost: **0.04%** of a contemporary CPU
- Negligible memory overhead: **0.002%** of an 8 GiB DRAM module

- Entropy **changes** with temperature
- Entropy remains **stable** for at least **up to a month**
QUAC-TRNG

High-Throughput True Random Number Generation Using Quadruple Row Activation in Real DRAM Chips

Ataberk Olgun
Minesh Patel A. Giray Yağlıkçı Haocong Luo
Jeremie S. Kim F. Nisa Bostancı Nandita Vijaykumar
Oğuz Ergin Onur Mutlu