High-Throughput True Random Number Generation Using Quadruple Row Activation in Real DRAM Chips

Ataberk Olgun

Minesh Patel A. Giray Yağlıkçı Haocong Luo Jeremie S. Kim F. Nisa Bostancı Nandita Vijaykumar Oğuz Ergin Onur Mutlu

Executive Summary

- **Motivation**: DRAM-based true random number generators (TRNGs) provide true random numbers at low cost on a wide range of computing systems
- **Problem**: Prior DRAM-based TRNGs are slow:
 - 1. Based on fundamentally slow processes → high latency
 - 2. Cannot effectively harness entropy from DRAM rows \rightarrow low throughput
- **Goal**: **Develop** a **high-throughput** and **low-latency** TRNG that uses **commodity DRAM** devices
- **<u>Key Observation:</u>** Carefully engineered sequence of DRAM commands can activate **four DRAM rows** → **QU**adruple **AC**tivation **(QUAC)**
- **Key Idea**: **Use QUAC** to activate DRAM rows that are initialized with **conflicting data** (e.g., two '1's and two '0's) to generate random values
- **QUAC-TRNG:** DRAM-based TRNG that generates true random numbers at **high**throughput and low-latency by repeatedly performing QUAC operations
- **Results:** We evaluate QUAC-TRNG using **136** real DDR4 chips
 - 1. **5.4 Gb/s** maximum (**3.4 Gb/s** average) TRNG throughput per DRAM channel
 - 2. Outperforms existing DRAM-based TRNGs by **15.08x** (base), and **1.41x** (enhanced)
 - 3. Low TRNG latency: **256-bit RN** in **274 ns**
 - 4. Passes all 15 NIST randomness tests

Outline

True Random Numbers in DRAM

DRAM Organization and Operation

QUadruple ACtivation (QUAC)

QUAC-TRNG

Evaluation

Use Cases of True Random Numbers

High-quality true random numbers are critical to many applications

True random numbers can only be obtained by sampling random physical processes

Unfortunately, not all computing systems are equipped with TRNG hardware (e.g., dedicated circuitry)

DRAM-Based TRNGs

DRAM chips are ubiquitous in modern computing platforms

DRAM-based TRNGs enable true random number generation within DRAM chips

Low-cost: No specialized circuitry for RNG

- Beneficial for constrained systems

High-throughput: > Gb/s throughput

- Open application space that require high-throughput TRNG

Synergy with Processing-in-Memory

Processing-in-Memory (PIM) Systems

- Perform computation directly within a memory chip
- Improve system performance by avoiding off-chip data movement

[Samsung]

[UPMEM]

True random number generation within DRAM

- Enables PIM workloads to sample true random numbers directly within the memory chip
- Avoids inefficient communication to other possible off-chip TRNG sources, enhances security & privacy

Outline

True Random Numbers in DRAM

DRAM Organization and Operation

QUadruple ACtivation (QUAC)

QUAC-TRNG

Evaluation

DRAM Organization

Accessing a DRAM Cell

Accessing a DRAM Cell

DRAM Operation

Outline

True Random Numbers in DRAM

DRAM Organization and Operation

QUadruple ACtivation (QUAC)

QUAC-TRNG

Evaluation

Quadruple Activation (QUAC)

New Observation

Carefully-engineered DRAM commands can activate four rows in real DRAM chips

Activate four rows with two ACT commands

Quadruple Activation (QUAC)

Characteristic 1

Activates a set of four DRAM rows whose addresses differ only in their two LSBs

Quadruple Activation (QUAC)

Characteristic 2

First and second ACT's addresses must have their two LSBs inverted

- 2 001 0000000000000

PRE

ACT 011

ACT 010

PRE

ACT 001

QUAC on Real DRAM Chips

Valid QUAC behavior on 136 DDR4 chips

Why Does QUAC Work?

Hypothetical circuit to explain QUAC

Hierarchical Wordlines

- High density and performance requirements
- Hierarchical organization of DRAM wordlines enable high-density and lowlatency DRAM operation

Hierarchical Wordlines

A master wordline drives multiple local wordlines

Hierarchical Wordlines

A master wordline drives multiple local wordlines

Select signals for rows 0-3

First ACT command drives a single wordline

Command ACT R0 $\frac{Violate}{Timing}$ PRE

PRE command cannot disable latches

 $ACT R0 \xrightarrow{Violate} PRE \xrightarrow{Violate} ACT R3$ **Command**

Second ACT drives the remaining three wordlines

All four wordlines are enabled

Quadruple Activation

Outline

True Random Numbers in DRAM

DRAM Organization and Operation

QUadruple ACtivation (QUAC)

QUAC-TRNG

Evaluation

Generating Random Values via QUAC

Generating Random Values via QUAC

Generating Random Values via QUAC

Key Idea: Leverage random values on sense amplifiers generated by QUAC operations as source of entropy

Key Idea: Leverage random values on sense amplifiers generated by QUAC operations as source of entropy

Key Idea: Leverage random values on sense amplifiers generated by QUAC operations as source of entropy

Generates a 256-bit random number for every 256-bit Shannon Entropy block

Outline

True Random Numbers in DRAM

DRAM Organization and Operation

QUadruple ACtivation (QUAC)

QUAC-TRNG

Evaluation

Real Chip Characterization

Experimentally study QUAC and QUAC-TRNG using 136 real DDR4 chips from SK Hynix

DDR4 SoftMC → DRAM Testing Infrastructure

Real Chip Characterization

Measure randomness of bitstreams using **Shannon Entropy**

$$H(x) = -\sum_{i=1}^2 p(x_i) \log_2 p(x_i)$$
 — Proportion of logic-1 and logic-0 values in the random bitstream

Sample each bitline following QUAC 1000 times and calculate the bitline's Shannon Entropy

$$SE(11111...111) = 0$$

 $0 < SE(1001...010) < 1$

Real Chip Characterization

At 50°C and nominal voltage:

Repeatedly perform QUAC 1000 times and measure the Shannon Entropy of each bitline in

8K DRAM Segments (32K DRAM Rows),

using all 16 different four-bit data patterns

Data Pattern Dependence

Calculate cache block entropy (CBE)

 \sum all bitline entropies in the cache block

Metrics based on CBE:

- 1. Average CBE: Average entropy across all cache blocks in a module
- 2. Maximum CBE: *Maximum* of the cache block entropies in a module

Data Pattern Dependence

Entropy varies with data pattern

Highest average entropy with pattern "01111"

Spatial Distribution

Segment entropy = \sum all bitline entropies in the segment

Segment entropy behavior is different for different modules

Spatial Distribution

Segment entropy = \sum all bitline entropies in the segment

Entropy significantly increases towards the end of the DRAM bank

Takeaways: QUAC Entropy

We observe that entropy resulting from QUAC operations changes according to the

- data pattern used in initialization
- physical location of DRAM segments

attributed to:

- systematic manufacturing process variation
- design-induced variation

QUAC-TRNG's Quality

Two experiments:

- 1. Collect bitstreams by repeatedly sampling bitlines after QUAC operations
 - 1 Mb bitstreams
 - Post-processing: Von Neumann Corrector
- 2. Collect bitstreams using QUAC-TRNG
 - 1 Gb bitstreams
 - Post-processing: SHA-256

QUAC-TRNG's Quality

Two experiments:

- 1. Collect bitstreams by repeatedly sampling bitlines after QUAC operations
 - 1 Mb bitstreams
 - Post-processing: Von Neumann Corrector

QUAC and QUAC-TRNG bitstreams pass all 15 NIST randomness tests

• Post-processing: SHA-256

Estimate QUAC-TRNG's throughput according to:

$$(256 \times SIB)/(L \times 10^{-9}) bps$$

SIB: # of **S**HA Input **B**locks in the highest-entropy segment

Estimate QUAC-TRNG's throughput according to:

$$(256 \times SIB)/(L \times 10^{-9}) bps$$

SIB: # of **S**HA **I**nput **B**locks in the highest-entropy segment

Estimate QUAC-TRNG's throughput according to:

$$(256 \times SIB)/(L \times 10^{-9}) bps$$

SIB: # of **S**HA **I**nput **B**locks in the highest-entropy segment

Estimate QUAC-TRNG's throughput according to:

$$(256 \times SIB)/(L \times 10^{-9}) bps$$

SIB: # of **S**HA **I**nput **B**locks in the highest-entropy segment

QUAC-TRNG Configurations

1 One Bank

Use a single DRAM bank

2 BGP

Bank **G**roup-Level **P**arallelism Use four banks from different bank groups

RowClone + BGP
Use in-DRAM copy to initialize DRAM rows and use four banks from different bank groups

QUAC-TRNG Throughput

Achieves 3.44 Gb/s throughput per DRAM channel on average across all modules

In-DRAM initialization greatly improves throughput

QUAC-TRNG vs State-Of-The-Art

High-throughput DRAM-based TRNGs:

- D-RaNGe: Activation latency failures
- Talukder et. al: Precharge latency failures

Calculate throughput by tightly scheduling the DDR4 commands required to induce failures

Evaluate two versions of these past two works:

- Base: As proposed
- Enhanced (Fair): Throughput-optimized (SHA-256)

Assume four-channel DDR4 memory

QUAC-TRNG vs State-Of-The-Art

Outperforms best prior DRAM-based TRNG
(i) "base" by 15.08x at 2.4 GT/s
(ii) "enhanced" by 2.03x at 12 GT/s

More in the Paper

- NIST randomness tests results
- Throughput & latency comparison against four other DRAM-based TRNGs
- System Integration
 - How QUAC-TRNG can be implemented in real systems
 - System performance study
 - QUAC-TRNG's throughput with concurrently running applications
 - Area overhead: 0.04% of a contemporary CPU (7 nm)
 - Memory overhead: 0.002% of an 8 GiB DRAM module
- Sensitivity Analysis
 - Effect of temperature on QUAC's entropy
 - Entropy changes with temperature
 - Time dependence study
 - Entropy remains stable for at least up to a month

Executive Summary

- **Motivation**: DRAM-based true random number generators (TRNGs) provide true random numbers at low cost on a wide range of computing systems
- **Problem**: Prior DRAM-based TRNGs are slow:
 - 1. Based on fundamentally slow processes → high latency
 - 2. Cannot effectively harness entropy from DRAM rows \rightarrow low throughput
- **Goal**: **Develop** a **high-throughput** and **low-latency** TRNG that uses **commodity DRAM** devices
- **<u>Key Observation:</u>** Carefully engineered sequence of DRAM commands can activate **four DRAM rows** → **QU**adruple **AC**tivation **(QUAC)**
- **Key Idea**: **Use QUAC** to activate DRAM rows that are initialized with **conflicting data** (e.g., two '1's and two '0's) to generate random values
- **QUAC-TRNG:** DRAM-based TRNG that generates true random numbers at **high**throughput and low-latency by repeatedly performing QUAC operations
- **Results:** We evaluate QUAC-TRNG using **136** real DDR4 chips
 - 1. **5.4 Gb/s** maximum (**3.4 Gb/s** average) TRNG throughput per DRAM channel
 - 2. QUAC-TRNG has low TRNG latency: 256-bit RN in 274 ns
 - 3. Outperforms existing DRAM-based TRNGs by **15.08x** (base), and **1.41x** (enhanced)
 - 4. QUAC-TRNG passes all 15 NIST randomness tests

QUAC-TRNG

High-Throughput True Random Number Generation Using Quadruple Row Activation in Real DRAM Chips

Ataberk Olgun

Minesh Patel A. Giray Yağlıkçı Haocong Luo Jeremie S. Kim F. Nisa Bostancı Nandita Vijaykumar Oğuz Ergin Onur Mutlu

BACKUP SLIDES

Spatial Distribution

Cache block entropy is the highest around the middle of the DRAM segment

NIST Results

Table 1: NIST STS Randomness Test Results

NIST STS Test	VNC* (p-value)	SHA-256 (p-value)
monobit	0.430	0.500
frequency_within_block	0.408	0.528
runs	0.335	0.558
longest_run_ones_in_a_block	0.564	0.533
binary_matrix_rank	0.554	0.548
dft	0.538	0.364
non_overlapping_template_matching	>0.999	0.488
overlapping_template_matching	0.513	0.410
maurers_universal	0.493	0.387
linear_complexity	0.483	0.559
serial	0.355	0.510
approximate_entropy	0.448	0.539
cumulative_sums	0.356	0.381
random_excursion	0.164	0.466
random_excursion_variant	0.116	0.510

*VNC: Von Neumann Corrector

System Performance Study

The maximum throughput QUAC-TRNG provides without reducing the total off-chip memory bandwidth

Ramulator: 3.2 GHz core, four-channel DDR4 memory

QUAC-TRNG achieves 74.13% of the empirical average throughput

Throughput & Latency Comparison

Table 2: Summary of prior DRAM-TRNGs vs QUAC-TRNG

Proposal	Entropy	TRNG	256-bit TRNG	
	Source	Throughput	Latency	
QUAC-TRNG	Quadruple ACT Precharge Failure Activation Failure Retention Failure DRAM Start-up Retention Failure DRAM Cmd Schedule	13.76 Gb/s	274 ns	
Talukder+ [15]		0.68 - 6.13 Gb/s	249 ns - 201 ns	
D-RaNGe [88]		0.92 - 9.73 Gb/s	260 ns - 36 ns	
D-PUF [150]		0.20 Mb/s	40 s	
DRNG [47]		N/A	700 μs	
Keller+ [81]		0.025 Mb/s	40 s	
Pyo+ [126]		2.17 Mb/s	112.5 μs	

Temperature Dependence

Figure 14: Maximum and average segment entropy at different temperatures.

DDR4 Modules

Module	Module Identifier Chip Ident		fier Freq. (MT/s)	Organization		Segment Entropy			
		Chip Identifier		Size (GB)	Chips	Pins	Avg.	Max.†	Avg. (after 30 days)
M1	Unknown	H5AN4G8NAFR-TFC	2133	4	8	x8	1688.1	2247.4	
M2	Unknown	Unknown	2133	4	8	x8	1180.4	1406.1	-
M3	Unknown	H5AN4G8NAFR-TFC	2133	4	8	x8	1205.0	1858.3	1192.9
M4	76TT21NUS1R8-4G	H5AN4G8NAFR-TFC	2133	4	8	x8	1608.1	2406.5	1588.0
M5	Unknown	T4D5128HT-21	2133	4	8	x8	1618.2	2121.6	-
M6	TLRD44G2666HC18F-SBK	H5AN4G8NMFR-VKC	2666	4	8	x8	1211.5	1444.6	-
M7	TLRD44G2666HC18F-SBK	H5AN4G8NMFR-VKC	2666	4	8	x8	1177.7	1404.4	-
M8	TLRD44G2666HC18F-SBK	H5AN4G8NMFR-VKC	2666	4	8	x8	1332.9	1600.9	1407.0
M9	TLRD44G2666HC18F-SBK	H5AN4G8NMFR-VKC	2666	4	8	x8	1137.1	1370.9	-
M10	TLRD44G2666HC18F-SBK	H5AN4G8NMFR-VKC	2666	4	8	x8	1208.5	1473.2	1251.8
M11	TLRD44G2666HC18F-SBK	H5AN4G8NMFR-VKC	2666	4	8	x8	1176.0	1382.9	1165.1
M12	TLRD44G2666HC18F-SBK	H5AN4G8NMFR-VKC	2666	4	8	x8	1485.0	1740.6	_
M13	KSM32RD8/16HDR	H5AN4G8NAFA-UHC	2400	4	8	x8	1853.5	2849.6	-
M14	F4-2400C17S-8GNT	H5AN4G8NMFR-UHC	2400	8	8	x8	1369.3	1942.2	-
M15	F4-2400C17S-8GNT	H5AN4G8NMFR-UHC	3200	8	8	x8	1545.8	2147.2	-
M16	KSM32RD8/16HDR	H5AN8G8NDJR-XNC	3200	16	8	x8	1634.4	1944.6	-
M17	KSM32RD8/16HDR	H5AN8G8NDJR-XNC	3200	16	8	x8	1664.7	2016.6	-

 $^{^\}dagger \text{The maximum possible entropy in a DRAM segment is 64K (65,536) bits.}$

