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To employ a Convolutional Neural Network (CNN) in an energy-constrained embedded system, it is critical

for the CNN implementation to be highly energy efficient. Many recent studies propose CNN accelerator

architectures with custom computation units that try to improve energy-efficiency and performance of CNNs

by minimizing data transfers from DRAM-based main memory. However, in these architectures, DRAM is still

responsible for half of the overall energy consumption of the system, on average. A key factor of the high

energy consumption of DRAM is the refresh overhead, which is estimated to consume 40% of the total DRAM

energy.

In this paper, we propose a new mechanism, Refresh Triggered Computation (RTC), that exploits the memory

access patterns of CNN applications to reduce the number of refresh operations. RTC uses two major techniques

to mitigate the refresh overhead. First, Refresh Triggered Transfer (RTT) is based on our new observation that

a CNN application accesses a large portion of the DRAM in a predictable and recurring manner. Thus, the

read/write accesses of the application inherently refresh the DRAM, and therefore a significant fraction of

refresh operations can be skipped. Second, Partial Array Auto-Refresh (PAAR) eliminates the refresh operations

to DRAM regions that do not store any data.

We propose three RTC designs (min-RTC, mid-RTC, and full-RTC), each of which requires a different level

of aggressiveness in terms of customization to the DRAM subsystem. All of our designs have small overhead.

Even the most aggressive RTC design (i.e., full-RTC) imposes an area overhead of only 0.18% in a 16Gb DRAM

chip and can have less overhead for denser chips. Our experimental evaluation on six well-known CNNs show

that RTC reduces average DRAM energy consumption by 24.4% and 61.3%, for the least aggressive and the

most aggressive RTC implementations, respectively. Besides CNNs, we also evaluate our RTC mechanism

on three workloads from other domains. We show that RTC saves 31.9% and 16.9% DRAM energy for Face
Recognition and Bayesian Confidence Propagation Neural Network (BCPNN), respectively. We believe RTC can

be applied to other applications whose memory access patterns remain predictable for a sufficiently long time.
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1 INTRODUCTION
Neural Networks (NNs) are becoming a critically important class of mainstream machine learning

algorithms, as they provide high prediction accuracy and are easily parallelizable [10, 62]. However,

such benefits come at the cost of high computational power and intensive memory usage, which

require high energy consumption. Convolutional Neural Networks (CNNs), a widely used type

of NNs, try to reduce computation and memory usage by sharing synaptic weights in each layer

of the neural network. Despite their relatively efficient design, CNNs still require a significant

amount of energy. Furthermore, to process the information that is continuously received from

various sensors, emerging autonomous systems, e.g., self-driving vehicles, typically require multiple

simultaneously operating CNNs, which makes the energy consumed by CNNs even more important.

Hence, achieving low-power CNN implementations remains as a challenging task.

As DRAM-based memory provides high capacity with decent latency, it is typically used as main

memory in systems that implement CNNs. Although DRAM achieves high density by storing a

single bit of data in the form of charge in a DRAM cell, data stored in DRAM is volatile due to

charge leakage from the cell. To ensure data integrity, the charge of a cell needs to be periodically

replenished by refresh operations. DRAM refresh consumes significant amount of energy and its

overhead is expected to further increase in future DRAM devices as DRAM capacity increases [3, 9,

13, 24, 46, 48, 49, 51, 72, 73, 81, 83–85, 87–94, 114]. For example, Liu et al. [72] show that a single

4Gb DDR3 DRAM chip spends 15% of the total DRAM energy for refresh operations and project

refreshes to consume approximately half of the total DRAM energy in future 64Gb DRAM chips.

Thus, a DRAM device spends significant amount of energy only to ensure data is stored correctly,

even during idle periods where no DRAM accesses occur.

CNNs typically have a large memory footprint [11], mainly due to a large number of synaptic

weights that they maintain. Storing and accessing the synaptic weights from the DRAM constitute

the dominant portion of energy consumption in CNNs [11]. To tackle this problem, recently-

proposed accelerators focus on reducing the DRAM accesses by exploiting data locality [10, 11,

40, 102, 104]. Another approach compresses in-memory data to reduce the memory footprint and

data transfer overheads of CNNs [104]. Although these approaches improve energy consumption

by reducing DRAM accesses, a CNN accelerator still suffers from high DRAM refresh overhead.

Figure 1 shows the energy breakdown of three well-known CNNs, AlexNet [62], LeNet [64],

and GoogleNet [106], which are implemented on an architecture similar to the state-of-the-art

Eyeriss [11] CNN accelerator.
1
The figure shows that the DRAM refresh overhead constitutes a

portion as large as 15% for AlexNet and GoogleNet, which are examples of large CNNs, and 47%

for LeNet, which is a relatively smaller CNN. For these evaluations, we assume 2GB total DRAM

capacity. For higher capacity DRAM, which is common in systems today, the refresh overhead is

responsible for even larger portions of the overall DRAM energy consumption [72] (see Section 6.2).

Thus, it is critical to investigate and develop techniques that reduce the DRAM refresh overhead

for implementing energy-efficient CNNs.

Various mechanisms have been proposed to mitigate the DRAM refresh overhead. Du et al. [17]

eliminate the refresh overhead by implementing a CNN accelerator using only SRAM-basedmemory.

Such an approach not only restricts the applicability of the accelerator to small CNNs, as a majority

of CNNs typically require significant memory capacity [11, 102, 104], but also increases the energy

consumption for storing synaptic weights as SRAM has higher leakage power compared to DRAM

with the same capacity. Smart Refresh [24] can reduce the refresh overhead by skipping the refresh

operation for a recently-accessed row. However, to keep track of the time when a row was last

accessed, SmartRefresh introduces additional storage overhead by employing a counter for each

row. With the increase in DRAM capacity, the total storage required by the counters exceeds

one megabyte, overshadowing the energy savings by reducing the number of refresh operations,

1
Our methodology and accelerator architecture are described in Section 3.
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Fig. 1. Energy consumption breakdown of three CNNs on a modern CNN accelerator

as shown in [72]. There are also other works [1, 72, 95, 97] that propose mechanisms to reduce

the DRAM refresh energy overhead. However, they have high implementation cost or limited

applicability, as they require additional storage or can be applied only to embedded DRAM [1].

Our goal is to reduce the DRAM refresh overhead by eliminating the unnecessary refresh

operations withminimal overhead in CNN accelerators. To achieve this, we propose a new technique

that we call Refresh Triggered Computation (RTC). In RTC,we take advantage of two new observations

to develop two orthogonal mechanisms for reducing DRAM energy consumption by eliminating

unnecessary refresh operations. First, we observe that large CNNs, such as AlexNet [62], access

DRAM periodically, with a fixed pattern. As a read or write access implicitly refreshes the accessed

DRAM cells, we can exploit the access pattern of such CNNs to overlap and replace read/write

operations with the refresh operations. To this end, we propose and implement a new Refresh
Triggered Transfer (RTT) mechanism to coalesce the read/write accesses with refresh operations.

Second, we observe that smaller CNNs, such as LeNet, leave most of the DRAM capacity unused. We

propose and implement Partial-array Auto Refresh (PAAR), which eliminates the refresh operations

to the portions of DRAM that are not used. We find that large CNNs typically benefit more from

RTT than from PAAR, while the opposite is typically true for small CNNs that leave a large portion

of DRAM unallocated.

In this work, we implement and evaluate three variants of RTC that differ in the level of cus-

tomization required on the DRAM device and the memory controller. The first variant, min-RTC,

requires changes only in the memory controller, and is useful when the read/write requests are

frequent, such that they can be coalesced with the refresh operations. For the second variant,

mid-RTC, we slightly modify the implementation of the already-available Partial-array Self Refresh
(PASR) feature in modern DRAM chips [43, 80], to enable that feature not only in self-refresh mode,
but also during normal operation of the DRAM. For the third variant, full-RTC, we propose internal

DRAM modifications that fully exploit the capabilities of RTC. In particular, we add an Address

Generation Unit and a Finite State Machine (FSM) to skip refreshes of recently accessed rows. In

our evaluations, we find that RTC reduces the DRAM refresh energy by 25% to 96% across six

different CNNs, depending on the used RTC variant, DRAM capacity, and the access pattern of the

application.

Although we apply RTC to mainly CNNs in the scope of this paper, a wide class of applica-

tions with a pseudo-stationary spatio-temporal memory access pattern can take advantage of the

RTC mechanism. RTC reduces DRAM refresh overhead when the memory access pattern of a

workload is stationary for a time interval sufficiently long enough to reconfigure the RTC logic,

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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and otherwise remains inactive with negligible system performance and energy overhead. We

believe that such long intervals with stationary memory accesses are prevalent for a wide variety of

streaming applications (e.g., pattern recognition, signal processing, computer vision) that operate

on large amounts of data. We demonstrate that multiple other applications, i.e., Face Recognition

and Bayesian Confidence Propagation Neural Network (BCPNN), significantly benefit from RTC

(Section 6.7). We hope that future work finds other use cases for RTC.

We make the following major contributions:

• We observe that the regular memory access patterns of CNNs can be exploited to reduce the

DRAM refresh overhead by replacing periodic refresh operations with read and write accesses.

• We propose Refresh Triggered Computation (RTC) as a general technique to reduce the number of

refresh operations based on applications memory access patterns. RTC includes two mechanisms:

Refresh Triggered Transfer (RTT) for coalescing the read/write accesses with refresh operations,

and Partial-array Auto Refresh (PAAR) for eliminating refreshes to portions of DRAM that are

not being used.

• To improve the adoption of RTC, we implement three variants of it that differ in the amount

of modifications required to the DRAM device and the memory controller. We evaluate refresh

overhead reduction of all three variants for six widely used CNN applications (i.e., AlexNet [62],

LeNet [64], GoogleNet [106], Winograd [63], ResNet [29], and Generative Adversarial Net-

work [25]). We show that RTC, in its most aggressive variant, reduces DRAM refresh energy

in a state-of-the-art CNN accelerator by up to 96% (on average 61.3% across multiple CNNs).

We show that RTC is also effective for Face Recognition and Bayesian Confidence Propagation

Neural Network (BCPNN) applications.

2 BACKGROUND
In this section, we provide background on DRAM and CNNs, necessary to understand the RTC

framework that we propose. We refer the reader to past works in DRAM for more details [6–

9, 22, 23, 26–28, 34, 36, 38, 47, 53–56, 58, 59, 65–69, 76, 99–101, 116, 117, 120].

2.1 DRAM Organization and Operation
Dynamic Random Access Memory (DRAM) offers high memory density at relatively low latency,

which makes it the most preferable alternative for implementing main memory on mobile, desktop,

and warehouse-scale systems. DRAM is also a viable option for CNN accelerators, as it provides

enough capacity to fit large CNNs.

DRAM stores data in a hierarchical structure, as we show in Figure 2. As the smallest component

of the hierarchy, a DRAM cell stores a single bit of data in a capacitor that is accessed by enabling

the access transistor of the cell. As the cell capacitor leaks its charge over time, to correctly maintain

the data, the capacitor needs to be periodically refreshed, commonly once every 64ms . Typically 2K

to 16K cells are organized as a row, where all cells share the same wordline connected to their access
transistors. Therefore, all cells in a row are refreshed simultaneously. The refresh operation involves

the sense amplifiers, which are units that connect to the cells via bitlines and read the data out of

the corresponding cells based on the charge amount their capacitors store, and correspondingly

replenish the capacitor charge afterwards. As the area of a sense amplifier is much higher than that

of a DRAM cell [68], a large number of cells from different rows share the same sense amplifier to

provide high memory density. However, as having an extremely large number of rows that share a

sense amplifier would negatively affect the access latency due to increased parasitic capacitance on

the bitline, the rows are grouped into multiple banks, where each bank has its own set of sense

amplifiers, referred to as row-buffer. Besides improving access latency, a banked structure also

improves the memory throughput by providing parallelism at bank-level (i.e., multiple banks can

operate simultaneously as they have separate row-buffers). Finally, at the top level of the hierarchy,

multiple chips are organized as a rank, where the chips operate in lock step (i.e., perform the same

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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operation concurrently). There might be one or more ranks per channel. In the latter case, multiple

ranks share the same memory bus to interface with the processor, reducing I/O pin requirements,

but limiting parallelism.

Wordline

B
itlin

e

Capacitor

Access 
Transistor

Cell
. . .
. . .

. . .
. . .

Bank

Sense 
Amplifier

Row

Row-buffer

Fig. 2. DRAM cell and bank

DRAM commands are the interface between the memory controller and DRAM. There are four

main DRAM commands involved in a DRAM access. First, to service a demand request (i.e., a load
or store request) the memory controller issues an Activate (ACT) command to select a row from a

bank, and copy its data to the row-buffer. After completion of that operation, the memory controller

can issue multiple READ andWRITE commands to access the data in the row-buffer at a granularity

equal to the data bus width of the DRAM chip. In order to access data from another row in the

same bank, the memory controller first closes the currently active row by issuing a Precharge (PRE)
command.

In addition to these four commands used to access DRAM, the memory controller also periodically

issues a Refresh (REF) command to replenish the charge stored in DRAM cell capacitors and ensure

data integrity. For the chips available in the market today, the entire DRAM chip has to be refreshed

every 64ms [42] (or 32ms when operating at temperatures exceeding 85
◦
C [42]). As there is a

large number of rows in the chip, the memory controller issues a refresh command once every

7.8us to complete the refresh cycle for the entire DRAM in 64ms . A single refresh command

typically refreshes multiple rows in batch in hundreds of nanoseconds.
2
DRAM refresh consumes

significant amount of energy and its overhead is expected to further increase in future DRAM

devices as DRAM capacity increases [3, 9, 13, 24, 46, 48, 49, 51, 72, 73, 81, 83, 87, 92–94, 114]. For

example, Liu et al. [72] show that refreshes constitute 15% of the total DRAM energy for a 4Gb
DDR3 chip and the fraction of DRAM energy spent on DRAM refresh is projected to increase as

DRAM chips become denser (e.g., refreshes would consume about 50% of the total DRAM energy

in future 64Gb DRAM chips). Additionally, although a DRAM device may not be always accessed

with maximum throughput while executing a workload, all DRAM rows have to be refreshed at a

constant rate. Thus, when DRAM is accessed infrequently, energy spent on DRAM refresh accounts

for a significant portion of the overall DRAM energy. We observe that typical CNN workloads

access DRAM regularly but not frequently enough such that refresh operations consume significant

DRAM energy compared to the energy consumed by DRAM accesses.

An ACT-PRE command pair, which the memory controller issues to service a demand request,

also fundamentally performs the same operation as refresh. Both, first transfer the charge stored

in the capacitor to the sense amplifier, which later fully restores the capacitor back to its original

level (i.e., fully-charged or empty). As a result, both refresh and demand requests have the ability

to replenish the charge stored in the DRAM cells. We exploit this observation in the design of our

mechanism to save DRAM refresh energy.

2
For an 8Gb DDR3 chip, a DRAM refresh command takes 350 ns to complete, during which all banks are unavailable for

access [9, 42].
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2.2 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) [64] are machine learning algorithms that achieve state-of-

the-art learning accuracy. The basic idea of CNNs is to extract low-level features from the input

data at high resolution, and later combine those features to build more complex ones.

As we show in Figure 3, a CNN consists of multiple layers, which contain feature maps at different

abstraction levels of the input data, and synaptic weights (i.e., convolutional kernels), which are

used for extracting the features of the next layer by performing convolution on the output of the

previous layer. There are two main computational phases in a CNN: training and inference. During
the training phase, to learn what to infer from the input data, the CNN processes a large amount

of reference data using error back-propagation [98]. Later, during the inference phase, the CNN

classifies the input data by using the information that it has learned during the training phase. In

general, it is sufficient to perform the training phase offline, before the inference phase [10, 102].

Since the offline training does not affect the performance of the end-application, we focus on the

inference phase, similar to prior work [10, 11, 102, 104]. However, we observe that the training

phase exhibits similar memory access patterns as the inference phase, and thus the techniques we

propose can also be applied to the training phase.
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Fig. 3. The general structure of a CNN

The high-level goal of the inference phase is to infer the required information (e.g., whether a

particular object is available in the image) from raw input. CNNs have multiple layers between

the input data and the final classification output. Primarily, there are three types of layers: (i)

convolution, (ii) pooling, and (iii) classification layers. The convolutional layer extracts various

features (e.g., edges and corners) by convolving a 2D mask (of synaptic weights) with the input

data from the previous layer. For each feature that is being extracted, the CNN applies a different

set of synaptic weights to the input, producing multiple feature maps. For example, in Figure 3, the

first convolutional layer (Conv1) produces four output feature maps by convolving the input image

with a 5x5 mask. The pooling layer extracts the salient features from the previous layer, usually by

applying a max or averaging function. After several layers of convolution and pooling, the input

image is classified in the classification layer, which provides the probability that the input belongs

to a particular class.

The inference phase of the CNN is largely memory intensive. When processing an input image,

the CNN needs to read the large data (i.e., synaptic weights and outputs of previous layer) of each

layer from the memory. For each layer, the CNN runs multiple convolution or pooling operations

and writes back the results to memory. Thus, the inference phase yields a large read and write

traffic that could not be entirely filtered out by the caches, and requires the data to be serviced from

DRAM. For example, AlexNet [62] performs about 3 billion DRAM accesses when processing a

single image. Modern CNN accelerators [11] reduce this requirement to 60 million DRAM accesses

per input image by exploiting data locality. However, despite that huge reduction, DRAM is still

major contributor to the overall energy consumption of a system, as we see in Figure 1.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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3 REFRESH TRIGGERED COMPUTATION
As we explained in Section 2.1, the memory controller periodically issues refresh commands to

DRAM, in order to ensure data integrity. Such frequent and time-consuming refresh operations often

conflict with read and write requests that are issued by the workloads running on the system [9, 72].

As a result, a refresh operation not only consumes significant amount of energy, but also negatively

affects system performance by delaying read and write requests.

Refresh Triggered Computation (RTC) is based on the high-level observation that for applications

with regular memory access patterns, such as CNNs, it is possible to synchronize the refresh opera-

tions and the read/write requests, such that read/write requests of the application naturally refresh

DRAM. RTC not only eliminates conflicts between refresh and read/write, but also reduces the

number of refresh commands that the memory controller needs to issue by eliminating redundant

refresh operations. In this section, we first introduce the RTC concepts before elaborating on RTC’s

implementation details in Section 4.

3.1 Making Refresh Unnecessary
In Section 2.1, we explain that both refresh and access requests perform similar operations (i.e.,

activating and precharging a row) in the DRAM circuitry that replenish the charge of the DRAM

cells in a row. We observe that, in many cases, the explicit refresh operations can be eliminated,

since i) the DRAM access requests are at least as frequent as the periodic refresh operations and

ii) such requests continuously cover a very large portion of the DRAM. Hence, there is potential

to eliminate most of the explicit refresh operations since a large fraction of the DRAM is already

being implicitly refreshed when accessed.

We aim to make refresh unnecessary by ensuring that the row to be refreshed is accessed

at the same time it is supposed to be refreshed. However, performing such an alignment is not

straightforward due to two reasons. First, the periodic refresh operation is performed using an

in-DRAM counter that points to the next row to be refreshed. Thus, an application (or even the

memory controller) does not have control on which row will be refreshed next. Second, the access

requests are not as regular as the refresh operations, in terms of their row access pattern. Therefore,

aligning refresh operations with accesses is a challenging problem.

3.2 Alignment in a Controlled Environment
To develop a feasible and efficient solution for the problem of aligning the access requests with

the periodic refresh operations, we first make three simplifying assumptions. i) We assume that

the access pattern of the application is known in advance and it is periodic. In other words, the

application has an iterative execution flow and, in each iteration, it generates requests in a fixed

order. ii) The period of the access requests is lower than (or same as) the period of the refreshes. This

assumption ensures that the refresh period (e.g., 64ms) of a DRAM row is not exceeded between two

consecutive accesses to the row. iii) We assume that the entire working data set of the application

is accessed in each iteration. In Sections 3.3 and 3.4, we introduce our techniques to handle the

cases where these assumptions do not hold true.

In the process of making refreshes unnecessary, we first design a scheme that aligns refreshes

with reads when the three assumptions about the applications access pattern hold. In Figure 4, we

explain how such a scheme works by plotting a timeline of accesses that an application performs

and refreshes that the memory controller issues during three refresh periods. The refresh requests

iterate through rows r1 to r4 in the first two refresh periods. Close to the end of the first refresh

period, the application starts to issue access requests to all of these four rows, but in different order.

In the second period, the refresh operations are still required to ensure data integrity because if

we eliminate the refresh operations, the time since r1 was last refreshed would exceed the refresh

period. In contrast, all refresh operations in the third period are redundant as the rows are already

refreshed due to the accesses in the same period. Next, we introduce our techniques to align

refreshes and access request when the three simplifying assumptions are relaxed.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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Fig. 4. Periodic application access pattern vs. refresh pattern.

3.3 Refresh Triggered Transfer
The simple scheme we proposed in Section 3.2 assumes that the rate of the refresh operations

and accesses always match. However, in real applications, the access requests can be more or less

frequent than the refreshes.

To solve the problem of matching the rates of accesses and refreshes, we propose Refresh Triggered
Transfer (RTT). The key idea of RTT is to alter the existing periodic refresh scheme to align the

refreshes with the access requests. We achieve this by slightly modifying the DRAM auto-refresh

circuit, as we explain in Section 4.3.

Algorithm 1 describes how RTT handles the mismatch in the rates of accesses and refreshes.
3
If

the application generates access requests to its entire allocated memory as frequently as the refresh

rate or faster, RTT completely removes the refresh overhead and ensures data integrity as an access

(i.e., DRAM row activation and precharge) replenishes the charge of a row it accesses. However,

when the accesses are not frequent enough, the problem of matching the rates of the accesses and

refreshes becomes more challenging. To tackle this problem, RTT eliminates refreshes partially by

performing refresh only on rows that are not accessed within the refresh period.

Algorithm 1 takes Na and Nr as input
4
, which are the number of rows that the access requests

and refreshes target during a single refresh period, respectively. The output of the algorithm is the

explicit refresh (exp_re f ) signal, which determines whether a row will be explicitly refreshed or

implicitly replenished when accessed to read/write data. Thus, when Nr ≤ Na , exp_re f is set as 0

to indicate that an access occurs to all rows frequently enough (line 4). When the opposite is the

case, i.e., Nr > Na , then the algorithm needs to output additional refresh operations to compensate

for the rows that are not accessed during the refresh period. To find which rows to refresh using

explicit refresh requests, the algorithm starts with a credit c , equal to Nr (line 7). For each implicit

refresh, c is reduced by Nr − Na , until the credit becomes less than Nr − Na . At this point, the

algorithm signals exp_re f = 1 to indicate an explicit refresh, and increments the credit by Na .

To understand how Algorithm 1 operates, consider an example where Na = 2 and Nr = 4. Within

a refresh period, only half of the rows will be refreshed using an explicit refresh operation, as we

illustrate in Figure 5. Initially, P = 1 and c = 4 (lines 6-7). In the first iteration of the loop (line 8), c
is greater than Nr − Na = 2. Thus, the row is implicitly refreshed, and the credit is decreased (lines

10-11). In the next iteration, as the credit is not greater than Nr − Na , an explicit refresh will be

triggered (line 13). Thus, the algorithm will interleave between an implicit and an explicit refresh

operation. We implement the RTT scheme in DRAM with minor modifications to existing circuitry

as we explain in Section 4.

Generating Memory Access Patterns. The existing refresh scheme implements a counter in

the DRAM chip to refresh the rows with a fixed pattern. However, the access pattern of a real

application may not follow the same pattern as the refreshes. To adapt the refresh scheme to

arbitrary access patterns, RTT implements an Address Generation Unit (AGU) that is similar to

the proposal in prior work [21]. AGUs are commonly used in Digital Signal Processors (DSPs) to

efficiently generate the memory addresses to feed to the functional units [21, 70, 71, 107, 112, 113].

An AGU can typically be programmed to generate various address sequences for a given application.

3
We adapt the algorithm from a technique [5, 41] that is used to align send and receive processes operating at rationally

related clock frequencies.

4Nr is equal to the number of rows in DRAM, as the entire DRAM needs to be refreshed in a single refresh period.
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Algorithm 1 Rate matching algorithm

▷ Na : the number of rows accessed by read/write during a refresh period
▷ Nr : the number of rows refreshed during a refresh period

1: procedure RateMatching(Na , Nr )

2: for every refresh period do
3: if Nr ≤ Na then
4: exp_re f ← 0 ▷ implicit refresh

5: else
6: P ← Nr /дcd(Nr ,Na)
7: c ← Nr
8: for i ← 1, P do
9: if c > Nr − Na then
10: exp_re f ← 0 ▷ implicit refresh

11: c ← c − (Nr − Na)
12: else
13: exp_re f ← 1 ▷ explicit refresh
14: c ← c + Na
15: end if
16: end for
17: end if
18: end for
19: end procedure

time

Refresh

Access 
Request

r4 r2 r3 r1

r4 r2

1
st
 Refresh Period 2

nd
 Refresh Period

r3 r1

Fig. 5. Accesses and refreshes generated by RTT for Nr = 4 and Na = 2

Prior works propose a broad range of AGU designs that can generate address sequences with various

amounts of complexity (e.g., commonly used DSP addressing modes such as bit-reverse and circular

buffer addressing [33, 118], piece-wise affine address pattern generation [32], two-dimensional

affine address generation [79], complex addressing modes that include multiplication, modulo, and

shift [108]). We observe that the memory access patterns of the workloads we focus on in the scope

of this work are relatively regular, and thus, to keep the design simple, we adopt an AGU design

that can generate address sequences based on an arbitrary affine function. We explain the details of

AGU’s implementation in Section 4.3.

3.4 Partial-Array Auto Refresh
For many applications, a significantly large portion of the DRAM may not always be in use (i.e.,

portions may be unallocated). For example, the memory footprint of LeNet [102], which is a

small CNN, is only 1.06MB (e.g., when 100*100 image is used for character recognition). Hence,

depending on the DRAM capacity, a large number of unallocated DRAM rows would unnecessarily

be refreshed, consuming significant energy. In RTC, we implement a technique, Partial-Array Auto
Refresh (PAAR), which ensures that refreshes are generated only for rows that are allocated.
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PAAR should not be confused with a technique called Partial-Array Self Refresh (PASR) [43], which
already exists in low-power DRAM chips and is used to refresh only certain DRAM banks while in

self-refresh mode (i.e., power-saving mode in which DRAM cannot be accessed). As PASR operates

at coarse bank granularity, no data should be allocated in an entire bank that PASR turns refresh

off. PAAR differs from PASR mainly in two ways. First, to enable PASR, the memory controller

needs to switch the DRAM to a special low-power mode. Besides switching in and out of this mode

is a relatively slow process [78], another downside of PASR is that the DRAM cannot serve access

requests while in PASR mode. In contrast, PAAR can be enabled during the normal operation of

the DRAM. Second, PASR can eliminate refreshes only at bank-granularity. In order to eliminate

refreshes using such a scheme, an entire bank should be unallocated. Leaving one or more banks

out of data allocation limits bank-level parallelism [78, 86], and reduces the memory bandwidth. In

contrast, PAAR operates at row-granularity and thus provides a more practical scheme to eliminate

redundant refreshes compared to PASR.

3.5 Limitations of RTC
Our RTC framework has two limitations.

Access Patterns. RTC can eliminate redundant refresh operations when the access pattern

of an application is stationary for sufficiently long time. Configuring the AGU of RTC can take

approximately 100 cycles. To compensate for this latency overhead, the access pattern of the

application should not change very frequently. Fortunately, there are many applications from

different domains (e.g., signal processing, neural networks, bioinformatics) that exhibit regular

access patterns. In this work, we expect the programmer to determine the memory access pattern

of an application. However, a profiling-based or compiler-assisted approach can potentially be used

to automatically determine access patterns of applications and take advantage of RTC without

involving the programmer. We leave this study to future work. For other applications that have

frequently changing access patterns, RTC can be disabled to operate DRAM in the conventional

way with negligible performance and energy overhead.

Simultaneously Running Applications. Even though two different applications have regular

access patterns, running them simultaneously on the same system may lead to irregularity in

the memory access pattern. To support multiple applications, we propose to map applications

to separate DRAM banks or channels, each with its own RTC control logic. Note that such an

approach does not reduce the bank-level parallelism, since all banks continue to receive memory

requests, but from different applications. In fact, prior work shows that partitioning the applications

to separate banks or channels improves overall system performance by reducing the bank/channel

conflicts [44, 74, 82].

4 THE RTC ARCHITECTURE
In this section, we present the RTC architecture, which implements the concepts we introduced in

Section 3. We propose three variants of RTC, differing in the level of customization that they require.

First, Min-RTC does not require any changes to the DRAM chip, but it only slightly changes the

memory controller. Second, besides the changes to the memory controller,Mid-RTC also introduces

minimal modifications the DRAM peripheral logic. Third, our most aggressive implementation,

Full-RTC, exploits the full potential of the RTC concepts.

4.1 Min-RTC
For this implementation, we restrain ourselves from making any changes to the DRAM chip. By

modifying only the memory controller, we can implement RTT partially and cannot implement

PAAR at all. Thus, Min-RTC is only useful when the accesses are more frequent than the refreshes

such that all refresh operations can be eliminated.

With min-RTC, the memory controller receives information about the access period directly

from the application. Based on the information, the memory controller decides whether to operate
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in normal or min-RTC mode. If the application accesses the memory slower than the refresh rate,

the memory controller disables min-RTC, and operates in normal mode. Otherwise, it enables

min-RTC to eliminate the overhead of the refresh operations. To achieve this, first, the memory

controller aligns the accesses with the refreshes as we describe in Section 3.2. Later, the memory

controller stops issuing refresh commands to DRAM, as the access requests implicitly refresh

DRAM. The memory controller disables min-RTC when the application completes execution or

another application is invoked. According to our evaluations (Section 6.1), even such a simple

mechanism saves significant energy.

4.2 Mid-RTC
In mid-RTC, besides the changes required for min-RTC, we also apply minor modifications to

the DRAM control logic to enable a coarse-grained (bank-granularity) implementation of PAAR.

Particularly, we modify the logic that enables PASR, which is already available in low power DRAM

chips [110], but is used only when the DRAM chip is in low-power stand-by mode. To enable PAAR,

we reuse the PASR logic and make it possible to activate even when the DRAM is in normal mode

of operation. In mid-RTC, we avoid adding additional registers to define the range of rows that will

be refreshed with PAAR, and thus PAAR operates at bank-granularity in this implementation.

Mid-RTC can mitigate the refresh overhead by eliminating unnecessary refreshes, as min-RTC

does, and by disabling the refreshes for the DRAM banks that do not have any allocated portions.

4.3 Full-RTC
As we show in Figure 6, the most aggressive implementation, full-RTC, requires mainly three

modifications in the DRAM chip and the memory controller. 1 To prevent a subset of non-

allocated DRAM rows from being refreshed, full-RTC modifies the in-DRAM refresh logic to be

configurable by the memory controller. 2 To fully implement the RTT scheme as described in

Section 3.3, full-RTC adds an Address Generation Unit (AGU), which is implemented in two levels

(i.e., Row AGU 2a and column AGU 2b ). An application can configure the AGU at runtime to

generate access and refresh requests using an arbitrary affine function. 3 Full-RTC implements

RTC Frontend Controller to enable reconfiguration of the AGUs and the refresh counter ; and executes
Algorithm 1 to determine which addresses generated by the AGU will transfer data from/to DRAM,

and which will only refresh the corresponding row. Full-RTC implements this algorithm in the

memory controller (i.e., in the RTC Frontend Controller) but it also introduces a small modification

to the DRAM command decoder to handle the explicit refresh (exp_re f ) signal generated by the

RTC Frontend Controller. We explain our design in more detail.

4.3.1 Modifications to the Memory Controller. The memory controller is the interface between the

accelerator/processor and DRAM. We modify the memory controller to support our changes in the

DRAM architecture that enables full-RTC.

In full-RTC, applications need to provide their memory access patterns to the RTC Frontend

Controller, which reconfigures the AGU and the refresh counter. Once the RTC Frontend Controller

completes reconfiguring the AGU, the AGU starts generating DRAM row and column addresses to

access data according to how the application has configured the AGUs.

The address generation unit (AGU) incorporated inside the RTT counter logic can be configured

with an arbitrary affine function to generate various memory access patterns that applications

typically exhibit. In our implementation, the memory controller uses special commands to configure

the AGU.

4.3.2 Modifications to the DRAM chip. PAAR improves DRAM energy efficiency by eliminating

the refresh operations to DRAM regions that are not allocated. In conventional DRAM, periodic

refresh operations are performed on all DRAM rows with a fixed pattern. We slightly modify the

conventional control logic for the periodic refresh operations to limit the refreshed address range
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Fig. 6. Modifications in the memory controller and DRAM to support Full-RTC

such that only a specific region of DRAM is refreshed. As we illustrate in Figure 6, we implement

this feature by introducing a Configurable Refresh Counter, which incorporates a register for start

and end row addresses of the region to refresh. The RTC Backend Controller provides an interface

to the memory controller to configure start and end addresses of the DRAM rows to refresh.

4.3.3 RTC Controller Operation. The RTT technique aligns memory accesses with refresh requests

such that explicit refresh operations can be eliminated as accesses already implicitly refresh DRAM

rows. To achieve the alignment of accesses and refreshes, the RTC Frontend Controller implements

Algorithm 1 that we explain in Section 3.3. By running the algorithm, the RTC Frontend Controller

determines whether DRAM should perform an access using the next address generated by the AGU

or a refresh operation using the refresh counter.

In Figure 7, we describe the operation of the RTC Frontend Controller using a state diagram.

During the initial idle state, the RTC Frontend Controller expects signals for reconfiguring one of its
three components (shaded with different colors). Once reconfigured, it transitions into the Active
state, where RTT is enabled (we describe operation in Active state in Figure 8).

Idle
(start)Load 

refresh 
start

Load 
refresh 

end

Load Nr

Load Na

ld = 1,
refr = 1

ld=1, RTT = 1

ld = 1,
rate_fsm = 1

Reconfiguration of the
refresh counter

Reconfiguration of 
rate alignment parameters

Load
rate

Load other 
parameters

Reconfiguration of the AGUActive
See Figure 8 

Ld = 0

Nr: Number of rows required to be refreshed 
in the refresh period.

Na: Number of rows required to be accessed 
by the application in the refresh period

Fig. 7. Operation of the RTC Frontend Controller
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To enter a reconfiguration state, the load signal (ld) has to be asserted along with one of the

three signals that indicate which of the reconfiguration states to enter. First, when refr=1, the RTC
Controller reconfigures the start and end row addresses of the Configurable Refresh Counter. Second,
when rtt=1, the RTC Controller reconfigures the Row and Column AGUs. Third, when rate_fsm=1,
the RTC Controller reconfigures the Na and Nr parameters that we describe in Section 3.3.

In Figure 8, we show a diagram that describes the operation of RTT. While RTC reconfiguration

is in progress, the CKE signal remains low to keep RTT in idle state. After reconfiguration finishes,

the memory controller starts RTT operation by setting CKE and ld to 0.

Idle
(start)

Act

Read

Pre

Write

RowC=0

RowC=0

exp_ref=1

ld=0 

Explicit refresh path

Implicit refresh paths

cke=0
When cke=0, DRAM’s self-refresh mode is 
triggered and RTC control logic is idle

Fig. 8. State machine that describes full-RTC operation

In the Act state, the RTC Backend Controller generates a DRAM command either to activate the

row at the address that the Row AGU provides or to refresh the row that the Configurable Refresh
Counter points to depending on the exp_re f signal sent by the memory controller. First, if the time

interval between two consecutive read/write requests is greater than the required refresh interval

(i.e., the memory controller sends exp_re f = 1), the RTC Backend controller explicitly refreshes

the row that the refresh counter points to. We show this in Figure 8 with a red line from the Act
to the Pre state. During this state transition, the memory controller issues a precharge command

to close the open row. Second, when exp_re f = 0, control is transferred to either the Read or the

Write state depending on whether the write enable (we) signal is set to 1 or 0. This is because if

the read/write path is taken, the rows are implicitly refreshed. RTT remains operational as long

as ld=0. When ld=1, the control returns to the idle state in Figure 7, which allows the RTC to be

reconfigured.

5 METHODOLOGY
We implement the RTC framework on a system that consists of a LEON3-based open-source

processor, which is connected to a state-of-the-art CNN accelerator MOCHA [40], similar to

Eyeriss [11], via an AMBA AHB bus [2]. As we illustrate in Figure 9, the accelerator is implemented

in the logic-layer of a DRAM-based 3D-stacked memory. We evaluate DRAM capacities of 16Gb,
32Gb, and 64Gb. The CNN accelerator has a private 108KB scratch-pad memory, as in Eyeriss [11],

and it also incorporates a memory controller to interface the upper DRAM layers of the 3D-stacked

memory. The Eyeriss architecture uses row-stationary dataflow, which aims to maximize reuse
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of filter weights and feature maps in the processing engines’ local storage to minimize DRAM

accesses.

To analyze the effectiveness of RTC at saving DRAM refresh energy, we evaluate six widely-used

CNN applications, GoogleNet [106], AlexNet [62], LeNet [64], Winograd [63], ResNet [29], and

Generative Adversarial Network (GAN) [25]. We adjust the batch size for each CNN individually

depending on how many kernels we can accommodate at most in the register files of the MOCHA

accelerator.

Winograd is an algorithm for efficiently performing convolution operations. Winograd promises

reduction in multiplication operations but it does not affect main memory access characteristics.

Reducing the number of multiplications is beneficial for architectures such as GPUs and FPGAs that

perform convolutions as matrix multiplication. However, custom CNN accelerator architectures

already implement hardware optimizations to perform convolution efficiently, and therefore using

Winograd has negligible impact on performance and energy consumption of CNNs in the system

we model. We implement Winograd on only AlexNet but we expect Winograd to have limited

benefits when used with other CNNs in our system.

We evaluate each CNN with two different use cases: 1) a real-time video application that requires

30 frames per second (fps), and 2) a robotic vision application that requires 60 f ps . Thus, in our

evaluation, the accelerator in the system we model invokes CNN inference either at 30 f ps or
60 f ps , and we do not have any other performance requirements. Because of this, although RTC

can improve system performance by eliminating a significant fraction of refresh operations and

perform more accesses instead, we do not quantitatively evaluate potential performance benefits of

RTC in the scope of this work.

LEON3 
Other 

peripherals

CNN
accelerator

L1 
SRAM

AMBA AHB BUS

RTC enhanced
DRAM

Fig. 9. System-level view of the proposed architecture

Tools, Technology, Area, and Energy Models. We use commercial EDA tools for all of our

designs. We synthesize our designs to run at 200MHz frequency using the 40nm technology node

for both CMOS and DRAM logic. To quantify memory controller area and energy overhead of the

RTC logic, we use a Micron-compatible DRAM controller available from Gaisler [14] as the baseline.

We extend this controller as we discuss in Section 4.3.1. We report area and energy overheads based

on post-layout data. The energy estimation for the CMOS logic is based on gate-level simulation,

back annotated with post-layout data. To quantify area and energy overheads in DRAM, we use

the Rambus DRAM model [115] for different DRAM dimensions and traces of access patterns.

We create three different datapaths, one for each of the three variants of RTC. For the full- and

mid-RTC, we modify the DRAM peripheral logic to reflect the RTC-enabled DRAM datapath. For

both models, we use technology parameters for 40nm DRAM from ITRS [37]. By supplying the

Rambus model a trace of operations, in terms of activate, read, write, and precharge, the Rambus

model provides the energy numbers. We generate traces using an in-house simulator [40] for the

workloads we evaluate.
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6 EVALUATION
In this section, we analyze DRAM energy savings and area overhead of each variant of RTC

compared to conventional low-power DRAM, LPDDR4 [43]. We evaluate six different workloads in

total. These include various CNNs (i.e., AlexNet (AN), LeNet (LN), GoogleNet (GN), and ResNet50

(RN)), a Generative Adversarial Network (GAN), and Winograd, which is an optimization for

performing faster convolution in CNNs. All these workloads vary in their memory footprints and

memory access patterns. We evaluate these workloads on systems with different DRAM capacities.

Furthermore, we provide a breakdown of the benefits of the RTT and PAAR techniques that are

part of the RTC framework.

6.1 Energy Savings on Different Workloads
We evaluate the DRAM energy savings of the three different implementations of RTC on six CNN

workloads in comparison to standard low-power 16Gb LPDDR4 DRAM.

Full-RTC. Figure 10a plots DRAM energy with full-RTC, normalized to the baseline DRAM

with conventional refresh. We break down the individual benefits of the RTT and PAAR techniques

that RTC combines. The DRAM energy savings of RTT primarily depend on how well the DRAM

refresh and access rates match: the closer they match, the greater is the energy reduction. On

average, RTT saves 32.3% DRAM energy across all workloads. RTT saves more DRAM energy at

60 f ps than at 30 f ps because running inference on the CNN more frequently results in a larger

number of DRAM accesses at 60 f ps , which in turn creates more opportunity for the accesses to

align with the refreshes, and thus makes the refreshes redundant. At 30 f ps , the DRAM access rate

is almost the half of at 60 f ps and the refresh rate remains the same, which results in an insufficient

number of DRAM accesses to cover all DRAM rows that contain workloads’ data before the 64ms
refresh period. Therefore, at 30 f ps , the memory controller needs to issue more explicit refreshes

that come with DRAM energy cost. Specifically, for LeNet, the effectiveness of RTT is minimal

because of the small memory footprint and fewer read/write DRAM accesses of this workload.

The PAAR technique saves DRAM energy by eliminating refreshes to DRAM regions that are not

allocated. Therefore, PAAR significantly favors low-memory-footprint workloads, such as LeNet.

PAAR alone saves 96% DRAM energy when running LeNet, as LeNet’s working data set mostly fits

into accelerator’s on-chip memory, and DRAM remains mostly idle. In such a case, PAAR eliminates

almost all refresh operations as very few DRAM rows are allocated by LeNet.

Full-RTC takes advantage of both RTT and PAAR at the same time and it reduces DRAM energy

consumption to 0.39x, achieving greater DRAM energy savings than each technique achieves alone.
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(c) Min-RTC

Fig. 10. DRAM energy consumption of different RTC implementations normalized to the baseline LPDDR4
DRAM with standard refresh for AlexNet (AN), LeNet (LN), GoogleNet (GN), Winograd (WG), ResNet50 (RN),
and Generative Adversarial Network (GAN).

Mid-RTC. Figure 10b plots the DRAM energy savings of mid-RTC. Mid-RTC implements a

low-overhead version of PAAR that operates at DRAM bank granularity, and thus PAAR in mid-RTC

eliminates refresh operations only if a bank does not have any allocated rows. As a result, mid-RTC
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PAAR saves less DRAM energy compared to full-RTC PAAR. Similarly, mid-RTC implements a

lighter version of RTT that is effective only when memory access rate is higher than refresh rate,

i.e., when memory accesses activate all rows that contain data at least once in every 64ms refresh
period. Mid-RTC reduces average DRAM energy consumption to 0.53x compared to the baseline

system. Therefore, mid-RTC RTT is not as effective as full-RTC RTT, which can partially align

memory accesses with refreshes and issue explicit refresh only when necessary.

Min-RTC. Figure 10c plots the DRAM energy savings for min-RTC. Min-RTC is the most

lightweight RTC implementation that only employs the same RTT technique as in mid-RTC. On

average, it reduces DRAM energy consumption to 0.76x compared to the baseline. Min-RTC provides

the largest benefits for AlexNet at 60 f ps , reducing DRAM energy consumption by 40.0%.

We conclude that all three variants of RTC save DRAM energy and the system designer can

choose the variant that fits best the energy and area constraints.

6.2 Sensitivity to DRAM Chip Capacity
Figure 11 plots the energy savings of full-RTC when employed in systems with different DRAM

capacities. On average, full-RTC provides higher DRAM energy saving as the DRAM capacity

increases, consuming 78.8% less DRAM energy for 64Gb DRAM. This is because high-capacity

DRAM contains a large number of unallocated rows, which PAAR skips refreshing. We note that

two workloads, RN and GAN, consume more energy with 32Gb DRAM than with 16Gb DRAM.

This is because the 32Gb DRAM we evaluate has the same number of DRAM rows as the 16Gb

DRAM but each row contains double the number of DRAM cells compared to the 16Gb DRAM. We

notice that RN and GAN allocate slightly more DRAM rows partially when using 32Gb DRAM,

which slightly increases the DRAM energy consumption compared to 16Gb DRAM.
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Fig. 11. DRAM energy savings of Full-RTC when using DRAM chips with different densities.

6.3 Sensitivity to Data Locality Exploitation
Data Locality exploitation refers to the ability of the system to cache the data read from DRAM. For

example, a data locality exploitation of 100% implies that once the data is read from DRAM during

an iteration in a CNN layer, the data never leaves the CPU cache, and thus it is not read from the

DRAM again during the same iteration. Similarly, a data locality exploitation of 50% implies that

the data set is read twice from the DRAM during each iteration. For many CNN applications, it is

likely to achieve a data locality exploitation of approximately 100%, as reported in [11].

We now elaborate on the impact of data locality exploitation on the effectiveness of RTC.

Figure 12 plots the normalized DRAM energy consumption for RTC with 50% and 100% data locality

exploitation. The absolute energy savings of the PAAR components of RTC are not dependent

on data locality exploitation. This is because PAAR eliminates refreshes to unallocated regions

in DRAM and the rate at which allocated regions are accessed does not affect PAAR. However,

overall DRAM energy reduction with PAAR reduces when data locality exploitation is low because

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2020.



Refresh Triggered Computation 1:17

frequent DRAM accesses increase the access energy proportionally to the refresh energy, which

remains constant.

The RTT component of RTC benefits more from low data locality exploitation. As we explain

in Section 3.2, RTT eliminates refresh overhead when an application accesses its data frequently

enough. Therefore, low data locality exploitation causes the DRAM to be accessed more frequently

and this enables more of the refresh requests to be synchronized with accesses.

Overall, full-RTC saves 41.3% and 61.3% DRAM energy for 50% and 100% data locality exploitation,

respectively.
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Fig. 12. Average DRAM energy savings of full-RTC vs. data locality exploitation ratio.

6.4 Comparison to the Most Relevant Works
In this section, we compare our RTC mechanism against prior works that attempt to reduce the

DRAM refresh overhead. In particular, we compare our work with SmartRefresh [24], the most

closely-related work to RTC. The key idea of SmartRefresh is to keep a history of the recently-

accessed rows and avoid refreshing these rows as their cells’ charge is already replenished when

they were recently accessed. SmartRefresh maintains 3-bit counters for each row. Using the coun-

ters, it ensures that a row is not refreshed if it had been accessed recently. To compare RTC against

SmartRefresh, we implement a DRAM controller with additional row counters (needed for SmartRe-

fresh). For this evaluation, we assume an 8GB DRAM module with a row size of 2048B. To utilize

the DRAM bandwidth, we run multiple instances of LeNet (LN), GoogleNet (GN), and AlexNet (AN).

We assume that each CNN requires operation at 60 f ps . We calculate the access patterns using

state-of-the-art row stationary data flow [11]. Figure 13 shows the energy savings of RTC over

SmartRefresh. The figure shows that RTC provides from 28% to 96% energy reduction, compared to

SmartRefresh.
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Fig. 13. DRAM energy consumption with RTC normalized to DRAM energy consumption with SmartRefresh.

RTC outperforms SmartRefresh using three optimizations to reduce the refreshes. First, RTC

aligns the refresh with reads. In this way it ensures that the energy spent on both refresh and read

is not wasted. Second, RTC prevents the refresh of the DRAM rows that are not being used (i.e.,

not allocated). Third, RTC does not refresh the rows that have been recently accessed. However,

SmartRefresh applies only the third optimization by not refreshing recently-accessed DRAM rows.
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As a result, SmartRefresh is ineffective when data transfer rate is lower than the refresh rate, e.g.,

when only LeNet is running on the system. In contrast, our RTC mechanism can reduce DRAM

accesses regardless of the data rate. SmartRefresh is effective when access rate is greater than

the refresh rate, which is the case in the rightmost two bar graphs, where multiple workloads

run together. However, even in these two cases, RTC provides a significant ≈ 30% DRAM energy

reduction over SmartRefresh. The main reason is the large number (e.g., 4,194,304 in our evaluated

system) of SRAM counters that SmartRefresh needs to maintain to keep track of when each row

is accessed. These counters consume a significant amount of energy that offsets the benefits of

refresh reduction.

Refrint [1] is another refresh reduction technique, which has the advantage of being effective for

low data access rates. However, Refrint has the downside of being applicable to only embedded

DRAM that is used as a cache. This is because Refrint is based on the idea of refreshing only data

that will be accessed in near future and flushing the rest back to the main memory. In contrast, our

approach is generally applicable to any type of DRAM with small changes in the DRAM chips.

Similar to our PAAR technique, ESKIMO [35] skips refreshes to unallocated memory regions.

However, it does not perform any refresh-access synchronization. Hence, ESKIMO does not reduce

energy in allocated regions of memory.

6.5 Scalability Benefits
Refresh is a growing major energy and performance bottleneck with the scaling of the DRAM

technology [46, 72]. RTC mitigates this negative scaling trend [3, 9, 13, 24, 46, 48, 49, 51, 72, 73, 81,

83, 87, 92–94, 114] for a class of applications by minimizing the need to refresh with its Refresh

Triggered Transfer (RTT) and Partial Array Auto Refresh (PAAR) techniques. For a 64Gb DRAM

chip, even when working at peak bandwidth, refresh is expected to consume 46% of the total DRAM

energy [45, 72]. To understand how RTC mitigates the refresh overhead, consider two extremes

of applications’ DRAM access characteristics. The first extreme is when the application has a

small data set. For this scenario, almost all the DRAM energy will be spent on refresh. The PAAR

technique eliminates this refresh overhead. It should be noted that when the memory controller

puts the DRAM into self-refresh mode or power-down mode, PAAR still reduces DRAM energy

consumption since rows are still refreshed while conventional DRAM is in one of these modes, and

PAAR can eliminate unnecessary refreshes. The second extreme is when the application utilizes

the entire DRAM capacity and has a high DRAM bandwidth demand. Note that, in this scenario,

DRAM cannot switch to a low-power mode as it needs to keep servicing access requests. In such a

scenario, conventional DRAM still spends a significant amount of energy on refresh in addition to

read/write accesses. [45, 72] report that 47% of the total DRAM energy is spent while refreshing a

DRAM chip of size 64Gb. However, in an RTC-enabled DRAM, a large portion of refreshes can be

eliminated by implicit refreshes for applications that have regular memory access patterns. Thus,

in both extremes, RTC reduces the energy spent on refresh, and thus provides better scalability of

DRAM in future technology nodes for applications with access patterns that are amenable to it.

To make the above arguments more concrete, we quantify the scalability of RTC for emerging

large DRAMs when used for CNN applications. We perform an experiment by utilizing the entire

bandwidth of a DRAM module. We show our results in Figure 14. It can be seen that RTC-enabled

DRAM almost completely eliminates the DRAM refresh energy for CNN applications. Note that

our results are consistent with prior work [45, 72], providing external validity to the experimental

setup that we use.

6.6 Overhead of RTC
RTC-enabled DRAM incurs almost none to modest area, energy, and latency overheads. The

area overhead mainly stems from 1) the configurable refresh counter (see Section 4), 2) the AGU
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Fig. 14. Fraction of DRAM energy spent on refresh as a function of DRAM chip capacity.

for address generation, 3) the modifications to the data path (see Figure 6), 4) the RTC Backend

Controller (see Section 4.3.2) and 5) the RTC Frontend Controller. We quantify the area overhead by

synthesizing full-RTC in the standard CMOS 40nm technology. We synthesize the corresponding

logic components of the conventional DRAM also in the same process since we do not have access

to DRAM process technology parameters. However, to approximate DRAM process in a more

fair and accurate way, we restrict the physical design tool to use only three layers as commonly

done in DRAM process. Our experiments show that RTC has an area overhead of 0.18% compared

to a conventional 2Gb DRAM chip. This area overhead proportionally decreases as DRAM chip

density increases. This is because the area of only a few RTC components (e.g., counters) increase

with DRAM chip density, whereas the area of a large number of components (e.g., RTC Backend

Controller) do not change.

The latency overhead of the RTC logic stems from the extra cycles needed to reconfigure the

RTC registers and state machines. However, the latency overhead is negligibly small compared to

the execution time of a typical CNN-like application and reconfiguration of the RTC logic likely

occurs only once when an application starts.

6.7 Using RTC with Non-CNNWorkloads
So far, we have focused on CNNs as an example for discussing and quantifying the benefits and

overhead of RTC. However, we believe RTC can be applied to a wide variety of applications that

have a regular access pattern. We analyze the access patterns of three such well-known applications

and estimate the benefits of RTC while executing them. These applications are: 1) Face recognition

algorithm using Eigenfaces [60], 2) Bayesian Confidence Propagation Neural Network (BCPNN),

a spiking neural network model of biologically plausible human brain cortex [20], and 3) the

bioinformatics sequence alignment algorithm BFAST [31]. The reason for choosing these particular

applications is that all of them largely differ in DRAM access characteristics compared to CNNs.

Figure 15 shows the estimated DRAM energy reduction for these three applications when using

full-RTC-enabled DRAM chips with different densities. Face recognition is a streaming application

that requires multiple filtering stages, which typically access the same data multiple times from

DRAM. We evaluate face recognition using images of size 1024 ∗ 1024 ∗ 3 and frame rate of 60 f ps .
We find that full-RTC saves 12.2% to 31.9% DRAM energy for face recognition depending on the

DRAM chip density.

BCPNN is amemory- and compute-intensive application that requires approximately 740 teraflop/s

computational bandwidth and 30 TB memory storage with a bandwidth of 112 TB/s [20]. During a

single iteration, the BCPNN workload accesses its entire allocated memory four times. Because

of such high rate of access to all of the allocated memory, the RTT technique largely eliminates

the need for refresh in BCPNN, whereas PAAR provides small benefits since BCPNN allocates

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2020.



1:20 Jafri, et al.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

8Gb 16Gb 32Gb 64Gb

N
o

rm
al

iz
ed

 
D

R
A

M
 E

n
er

gy

DRAM Device Density

Face Recognition BCPNN Sequence alignment

Fig. 15. DRAM energy savings of RTC on applications from different domains

the majority of the system’s memory. Full-RTC saves 17.0% to 47.3% DRAM energy for BCPNN

depending on the DRAM chip density.

BFAST is based on the well-known Smith-Waterman local DNA sequence alignment algo-

rithm [103]. BFAST has a mix of random- and linear-access patterns. For this application, the

RTC circuitry is bypassed as neither PAAR nor RTT is effective. By evaluating BFAST, we show that

RTC can be disabled when it is not effective, which incurs less than 0.01% DRAM energy overhead,

as shown in the rightmost bars of Figure 15.

7 RELATEDWORK
To our knowledge, this work is the first to methodically synchronize applications’ memory accesses

with DRAM refreshes, so that the overhead caused by refresh operations is significantly reduced

in Convolutional Neural Networks (CNNs). We briefly describe related work in DRAM refresh

optimization and CNN storage optimization.

7.1 DRAM Refresh Optimization
Several previous works change the DRAM refresh scheduling policy to improve DRAM energy

efficiency or performance. Bhati et al. [4] present a flexible refresh mechanism to reduce the

refreshes. Stuecheli et al. [105] propose a technique that avoids interfering requests by altering

the refresh schedule. It delays a refresh depending on the number of postponed refreshes and the

predicted rank idle time. Mukundan et al. [81] propose various scheduling techniques to tackle

command queue contention. Chang et al. [9] provide mechanisms to parallelize accesses and

refreshes via scheduling and DRAM changes. However, all these techniques consider refresh and

memory access as two disjoint processes and attempt to reduce the collisions between them as

opposed to synchronizing accesses and refreshes like we do.

Various works [3, 12, 15, 16, 18, 24, 35, 48–52, 57, 72, 73, 75–77, 93, 97, 114] reduce unnecessary

refreshes by exploiting the properties of DRAM cells and stored data. These works require expensive

mechanisms to discover the retention times of different DRAM cells [3, 12, 15, 16, 18, 24, 48–

51, 72, 73, 76, 93, 97, 114] or require knowledge of how tolerant stored data is to retention failures [15,

35, 52, 57, 75, 77]. RTC does not require such methods.

Zulian et al. [121] propose a mechanism that creates a mask of recently-accessed rows for

each bank and introduces a modified refresh command to skip refreshing the masked rows. Their

mechanism, likely concurrently developed with RTC, achieves a similar goal as RTC but has a large

area overhead as it stores one bit for every row in DRAM.

SmartRefresh [24], Refrint [1], and Refree [95] are techniques that reduce the refresh overhead

based on the memory access patterns of applications. These techniques are closely related to RTC.

SmartRefresh [24] reduces refresh energy in DRAM by maintaining a timeout counter for each row.
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This mechanism avoids unnecessary refreshes of recently accessed rows. However, SmartRefresh

does not skip refreshing rows that do not store useful data. Thus, SmartRefresh is not effective

for applications that have a small memory footprint where a significant number of DRAM rows

do not contain useful data. Furthermore, SmartRefresh requires significant additional energy to

maintain the large number of counters (see Section 6). Re f rint [1] eliminates refresh to unused

DRAM rows. However, its overheads are evaluated only for embedded DRAMs. Implementing

this technique on off-chip DRAMs would require changing the memory arrays (i.e., it would be

even more invasive than Full-RTC). Furthermore, similar to SmartRefresh, Refrint suffers from the

overhead of maintaining the state of each DRAM row. Refree [95] combines a non-volatile PCM

memory with conventional DRAM to eliminate DRAM refresh by moving a row to PCM when

the row needs to be refreshed. Refree requires retention timeout counters and incurs overhead of

moving data between PCM and DRAM. Compared to these approaches, RTC does not require any

per row state. RTC improves the energy efficiency with small overhead on the DRAM chip and the

memory controller.

ESKIMO [35] eliminates refreshes in unallocated memory regions. However, ESKIMO does not

synchronize memory accesses with refreshes, and thus it does not reduce refresh energy in memory

regions that allocate data. Using RTT and PAAR, RTC reduces the energy overhead of refresh

operations on both allocated and unallocated portions of the memory.

7.2 CNN Storage Optimization
Driven by the success of CNNs as a machine learning technique, many researchers have focused on

implementation aspects of CNN. While initially researchers focused on speeding up and improving

the energy efficiency of the computational aspects [19, 96, 109], recently, the research have shifted

towards improving the efficiency of the memory [10, 11, 104].

Chen et al. [10] show that CNNs can be viewed as nested loops. They present an accelerator

that reduces memory footprint using loop tiling. Du et al. [17] build on top of [10] and propose

an accelerator architecture that uses only SRAM to store application data, eliminating DRAM

completely. While their approach is applicable some application domains, many accelerators [11,

104] are designed to work with a DRAM to meet the memory requirements of large neural networks.

Chen et al. [11] show a technique to optimize the data movement between the memory and the

computational units. Song et al. [104] present a technique to reduce the number of memory accesses

using compression in classification layers. However, even after fully exploiting data locality, most

of the energy is still spent on data transfers between DRAM and SRAM. Overall, these prior works

aim to mitigate DRAM overhead in NN applications by exploiting data locality to better utilize

SRAM-based memories. However, such techniques do not reduce DRAM refresh energy, and thus,

DRAM refresh incurs significant overhead.

RANA [111] employs embedded DRAM (eDRAM) as an additional on-chip buffer to SRAM.

RANA mitigates the refresh overhead of eDRAM by disabling refresh when data lifetime in an

eDRAM bank is shorter than the retention time of the DRAM. RTC is complementary to this

work as RTC mitigates the refresh overhead when data stored in DRAM has a long lifetime by

synchronizing accesses to data with refresh operations.

EDEN [61] implements energy-efficient approximate DRAM for neural network inference by

exploiting the error tolerance property of neural networks. EDEN has the limitation of being only

applicable to data that has error tolerance. In contrast, RTC can mitigate DRAM refresh without

causing bit flips due to retention failures in DRAM. EDEN and RTC can be combined for higher

energy savings than each can achieve alone.

To the best of our knowledge, RTC is the first work that provides architectural solution for

mitigating DRAM refresh energy in CNNs by synchronizing applications’ memory accesses with

DRAM refresh operations.
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8 FUTUREWORK
We envision at least two major avenues of future work.

First, we plan to evaluate more applications and check if they can benefit from the new Refresh

Triggered Computation model we propose. For example, we expect various applications from

domains such as deep learning, computer vision, bioinformatics, and high-performance computing

to highly benefit from RTC. We believe RTC has the potential to be applied to a wide range of

applications from a variety of domains, as long as the access patterns can be regularized and

synchronized with refresh.

Second, we plan to use RTCwith a new class of neural networks, Self-Organizing Maps that a prior
work [119] uses for rapid and accurate identification of bacterial genomes and their resistance to

antibiotics. We also plan to incorporate the RTC technique as a part of the SiLago [30] framework,

which is a Lego-inspired VLSI design framework that we develop. We plan to expand such a

synthesis framework to map multiple complex workloads to custom SiLago design instances that

will use DRAM enhanced with RTC as main memory.

9 CONCLUSION
We introduce a new software/hardware cooperative DRAM refresh optimization technique, which

we refer to as Refresh Triggered Computation (RTC). RTC significantly reduces DRAM refresh

overhead using two key concepts. First, it synchronizes DRAM refreshes with application read/write

accesses to reduce the number of required refresh operations by exploiting the fact that applica-

tion DRAM accesses implicitly replenish the charge of the DRAM cells. Second, RTC eliminates

refreshing of rows that do not have any data allocated. We propose three variants of RTC, which

differ in the level of area overhead incurred in the memory controller and the DRAM chip. Our

extensive evaluations using commonly-used Convolutional Neural Networks (CNNs) show that

the most aggressive variant of RTC reduces average DRAM energy by 61.3% while incurring only

0.18% area overhead over a conventional DRAM chip. We also show that RTC improves DRAM

energy consumption of workloads from different domains. We conclude that RTC largely mitigates

DRAM refresh overhead in both CNN applications and various other applications by synchronizing

applications’ DRAM accesses with DRAM refresh operations. We hope that RTC inspires other

software/hardware cooperative mechanisms to reduce DRAM energy in data-intensive workloads.
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