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Nanopore Sequencing

Nanopore Sequencing: a widely used sequencing technology
Can sequence large fragments of nucleic acid molecules (up to >2Mbp)
Offers high throughput

Cost-effective

Enables real-time genome analysis
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Real-Time Analysis with Nanopore Sequencing

Raw Signals Real-Time Analysis

Nanopore Sequencing

Raw Signals: Ionic current measurements generated at a certain throughput

Real-Time Analysis: Analyzing all raw signals by matching the throughput

Real-Time Decisions: Stopping sequencing early based on real-time analysis

SAFARI 3



Benefits of Real-Time Genome Analysis

/. Reducing latency by overlapping the sequencing and analysis steps

Time

Sequencing

|  Analysis

!

Sequencing & Real-Time Analysis

:‘ Reduced Latency

~ Reducing sequencing time and cost by stopping sequencing early

!

Completely Sequenced Read

Reduced Sequencing Time (and Cost)

Partially Sequenced Read |-

SAFARI

Sequencing is stopped early with a real-time decision



Challenges in Real-Time Genome Analysis

71 Rapid analysis to match the nanopore sequencer throughput

Timely decisions to stop sequencing as early as possible

@ Accurate analysis from noisy raw signal data

42

Power-efficient computation for scalability and portability
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Executive Summary

r

Problem: Real-time analysis of nanopore raw signals is inaccurate and inefficient for

large genomes
.

7

Goal: Enable fast and accurate real-time analysis of raw signals for large genomes

\

7

Key Contributions:
1) The first hash-based mechanism that can quickly and accurately analyze raw
nanopore signals for large genomes

2) The novel Sequence Until technique can accurately and dynamically stop
the entire sequencing of all reads at once if further sequencing is not necessary

\

Key Results: Across 3 use cases and 5 genomes of varying sizes, RawHash provides
— 25.8x and 3.4x better average throughput compared to two state-of-the-art works
— 1.14x — 2.13x more accurate mapping results for large genomes
— Sequence Until reduces the sequencing time and cost by 15x

\
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Existing Solutions

1.

Deep neural networks (DNNSs)

Real-Time Analysis
Basecalling Read Mapping

- =

Less noisy analysis from
basecalled sequences

7

\

Costly and power-hungry
computational requirements

N

SAFARI

2.
for translating signals to bases

Mapping signals to reference
genomes without basecalling

Real-Time Analysis

Mapping Raw Signals

\. J

Raw signals contain richer
information than bases

Efficient analysis with better
scalability and portability




The Problem — Mapping Raw Signals

Raw Signal

N\

l

Small Reference Genome

Large Reference Genome (Human)

Fewer candidate regions
in small genomes

Substantially larger number of regions to
check per read as the genome size increases

Accurate mapping

Problem: Probabilistic mechanisms
Oon many regions =» inaccurate mapping

High throughput

SAFARI

Problem: Distance calculation
on many regions = reduced throughput
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The Problem — Mapping Raw Signals

Existing solutions are
inaccurate or inefficient
for large genomes
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Goal

Enable fast and accurate real-time analysis
of raw nanopore signals for large genomes

SAFARI
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w RawHash

The first hash-based search mechanism
to quickly and accurately map raw nanopore signals
to reference genomes

\§

Sequence Until can accurately and dynamically stop
the entire sequencing run at once
if further sequencing is unnecessary
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W RawHash

The first hash-based search mechanism

to quickly and accurately map raw nanopore signals

to reference genomes

&

SAFARI
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RawHash — Key Idea

Key Observation: Identical nucleotides generate similar raw signals

Raw Signal #1 Raw Signal #2
A A

Fast
0x01 >[ Match ]4 0x01

Challenge #1: Generating the same hash value for similar enough signals

Challenge #2: Accurately finding similar regions as few as possible
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RawHash Overview

Indexing (Offline)

SAFARI

Reference Genome
...GCTATTACCTTAATGTG...

0 Reference-to-Event
Conversion

Raw Nanopore Signal

sy

\ 4

Signal-to-Event
Conversion

A 4

| 222 || -0091 ]| 1.18 |

@ Matching
Regions

Chaining Mapping
& Mapping Positions

(swip-jeay) buiddep
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RawHash Overview

SAFARI

Reference Genome

...GCTATTACCTTAATGTG...

Reference-to-Event

Conversion

A 4

Raw Nanopore Signal

sy

\ 4

Signal-to-Event
Conversion

A 4

2.21

-0.9 1.15

| 222 || -0091 ]| 1.18 |
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Events in Raw Nanopore Signals

- Event: A segment of the raw signal
- Corresponds to a particular k-mer

« Event detection finds these segments to identify k-mers
- Start and end positions are marked by abrupt signal changes
- Statistical methods identify these abrupt changes
- Event value: average of signals within an event

Event

k many
nucleotides

Event Value

(picoampere)
SAFARI
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Reference-to-Event Conversion

- K-mer model: Provides expected event values for each k-mer
- Preconstructed based on nanopore sequencer characteristics

 Use the k-mer model to convert all k-mers
of a reference genome to their expected event values

Reference Genome Expected Normalized
..GCTATTACC.. Event Values Event Values

~ A f_/\

) 4 r N\

1 [ CGCTATT { kemer 105757390 —( = (2.1

7“:« ) CTATTA 1 Model o 81.740642 —{ 3 +{-0.09

5 TATTAC " (Lookup ——{'103.170091 = +{1.15

E | (ATTACC }—{ Table) | 761.082485 —A\_ ° {1.11

o q Y - :
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Signal-to-Event Conversion

- Event detection: Identifies signal regions corresponding to
specific k-mers
- Uses statistical test (segmentation) to spot abrupt signal changes

Raw Nanopore Signal Event Value
1 . 11 1
o ' = » 2.21
=i 1 | (@]
Hwnmm . | Calculate | _Ji1o5.7101 1. 3 » 0.08
»l Segment > > i\ ! 3
Means | 11 Lo %. » 1.18
— ® o 1.14 )

» Consecutive events = consecutive k-mers
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Signal-to-Event Conversion

Can we match events (k-mers) between
reference genome and raw signals?

SAFARI
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RawHash Overview

Reference Genome Raw Nanopore Signal

..GCTATTACCTTAATGTG... *’JWWMWWWWW\W

\ 4
0 Reference-to-Event Signal-to-Event
Conversion Conversion
A 4 \ 4
2.21 -0.9 1.15 | 222 || -0091 ]| 1.18 |

@ Quantization Quantization

A 4

[ 28 || 6 |[ 18 | I

A 4

28 |[ 6 || 18 |
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Quantizing the Event Values

« Observation: Slight differences in raw signals from identical k-mers
- Challenge: Direct event value matching is not feasible and accurate

- Key Idea: Quantize the event values
- Enables assigning identical quantized values to similar event values

Normalized event values Quantized event values

from the same k-mer (in binary)

K—M r A N\
-0.091 * Quantize »{1]1]0]o}1
-0.084 * Quantize »{1]1]0]o}1

CTATTA

-0.09 » Quantize »{1]1]0]o}1
-0.086 * Quantize »1]1]0]0]1
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RawHash Overview

Reference Genome Nanopore Raw Signal

..GCTATTACCTTAATGTG... PJWWWMMWWWW

\ 4
0[ Reference-to-Event ] Signal-to-Event
Conversion Conversion
A 4 \ 4
2.21 -0.9 1.15 | 222 || -0091 ]| 1.18 |

@ Quantization

Quantization
A 4 A 4
[ 28 |6 |[ 18 | L 28 |6 |[ 18 |
v v
@ Hashing Hashing
Y Store Hash Query ¥
(ool ——] o s [ooi]
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Hashing for Fast Similarity Search

« Each event usually represents a very small k-mer (6 to 9 characters)
- Challenge: Short k-mers are likely to appear in many locations

- Key Idea: Create longer k-mers from many consecutive events
- Key Benefit: Directly match hash values to quickly identify similarities

Consecutive Consecutive

k-mers events
_AL _A
' N\ ' Y \
CTATTA » -0.09 » Quantize m*1]1]o]o]1
TATTA > : > ' »0joj1]1]0
. C 1 _15 Qua.ntlze \ ( Pack
. . . - l
ATTACC > 1.11 :Quantlze :00101J 1l1lololilololil1lo --- ol1lolo

Hash value of { 0x400D70A4 |+— Hash

consecutive events
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RawHash Overview

Indexing (Offline)

SAFARI

Reference Genome
...GCTATTACCTTAATGTG...

0 Reference-to-Event
Conversion

Raw Nanopore Signal

sy

\ 4

Signal-to-Event
Conversion

A 4

| 222 || -0091 ]| 1.18 |

@ Matching
Regions

Chaining Mapping
& Mapping Positions

(swip-jeay) buiddep
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Real-Time Mapping using Hash-based Indexing

SAFARI

Indexing (Offline)
Reference Genome

llllllllllll v,
[
[

: Read Until : “No: Stop mapping

. or 1<
;, Run Until :

4pEEEEEEEEEEESR

...GCTATTACCTTAATGTG... —4—
v
Reference-to-Event Signal-to-Event
Conversion Conversion
A\ 4 \ 4
Quantization Quantization
v v
Hashing Hashing
y__ Store( ... . Query Y
0x01 Table I 1.0x01 |
; Chaining &
- - _ aining
Matching Positions " Mapping

Continue
Mapping?

Mapping (Real-time)
Raw Nanopore Signal

JUNYD 1XaU 3] SS320.d :SOA

\_
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W RawHash

The first hash-based search mechanism

to quickly and accurately map raw nanopore signals

to reference genomes

&

SAFARI
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RawHash

Sequence Until can accurately and dynamically stop
the entire sequencing run at once
if further sequencing is unnecessary

\§
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The Sequence Until Mechanism

* Problem:
- Unnecessary sequencing waste time, power and money

* Key Idea:

- Dynamically decide if further sequencing of the entire sample is
necessary to achieve high accuracy

- Stop sequencing early without sacrificing accuracy

* Potential Benefits:
- Significant reduction in sequencing time and cost

« Example real-time genome analysis use case:
- Relative abundance estimation
SAFARI
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The Sequence Until Mechanism

» Key Steps:

s

Keep the last t estimation results
Detect outliers in the results via cross-correlation of the recent t results

Absence of outliers indicates consistent results

Continuously generate relative abundance estimation after every n reads

 Further sequencing is likely to generate consistent results = Stop the sequencing

Relative

n Reads Sequenced

—> Abundance —

Estimation
Relative

2n Reads Sequenced

Estimation

Relative

txn Reads Sequenced

SAFARI

Estimation

Estimation #1

—> Abundance —

Estimation #2

—> Abundance —

Estimation #t

[

Keep
Sequencing
)
@
@
=)
2
[ Stop
Sequencing
30



Outline

Evaluation
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Evaluation Methodology

« Compared to UNCALLED
and Sigmap
- CPU baseline: AMD EPYC 7742 @2.26GHz
- 32 threads for each tool

« Use cases for real-time genome analysis:

1. Read mapping

2. Relative abundance estimation
* Benefits of Sequence Until

3. Contamination analysis

SAFARI
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Evaluation Methodology

e Evaluation metrics:

- Throughput (bases processed per second)
- Potential reduction in sequencing time and cost

- Accuracy

- Baseline: Mapping basecalled reads using minimap2
 Precision, recall, and F1 scores

« Relative abundance estimation distance to ground truth

 Datasets:

SAFARI

Organism

Reads (#) Bases (#) Genome Size

Read Mapping

Relative Abundance Estimation

DI SARS-CoV-2 1382016  594M 29,903
D2 E. coli 353317 2,365M 5M|
D3 Yeast 49,989 380M 12M|
D4  Green Algae 29,933 609M 111M|
D5 Human HGOOI 269,507  1,584M 3,117

D1-D5 2,084,762 5,531M 3,246 Ml
ontamination Analysis

D1 and D5

1,651,523 2,178M 29,903
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Throughput

- Real-time analysis requires faster throughput than sequencer
- Throughput of a nanopore sequencer: ~450 bp/sec (data generation speed)

M RawHash [ UNCALLED M Sigmap

106k
10|15
104
103t
102k
101}

Real-Time
Analysis

No Real-Time
Analysis

Throughput (bp/sec)

D1 D2 D3 D4 D5 Contamination Relative
SARS-CoV-2 E. coli Yeast Green Algae Human Abundance

25.8x and 3.4 x better average throughput compared to
UNCALLED and Sigmap, respectively

Sigmap cannot perform real-time analysis for large genomes
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Sequencing Time

» Fewer bases to sequence =
- Reduction in sequencing time and cost

[MIRawHash [ UNCALLED

1.3%x

the Sequencing (#)

0.5x%

19139q SI JOMO]

1000 0.4Xx

per Read before Stopping

Average Sequenced Bases

_ 0.4%

D1 D2 D3 D4 D5
SARS-CoV-2 E. coli Yeast Green Algae Human

RawHash reduces sequencing time and cost

for large genomes up to 1.3x compared to UNCALLED
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Mapping Accuracy

« Read mapping accuracy of each tool and each use case

Dataset UNCALLED Sigmap RawHash
Read Mapping
D1 Precision 0.9547  0.9929 0.9868
SARS-CoV-2 Recall 0.9910 0.5540 0.8735
Fq 09725 0.7112 0.9267
D2 Precision 0.9816  0.9842 0.9573
E. coli Recall 0.9647 0.9504 0.9009
Fq 09731 0.9670 0.9282
D3 Precision 0.9459  0.9856 0.9862
Yeast Recall 0.9366 0.9123 0.8412
Fq 09412  0.9475 0.9079
D4 Precision 0.8836  0.9741 0.9691
Green Algae Recall 0.7778  0.8987 0.7015
Fyq 0.8273  0.9349 0.8139
D5 Precision 0.4867  0.4287 0.8959
Human HGOOI  Recall 0.2379  0.2641 0.4054
Fq 0.3196  0.3268 0.5582

Dataset UNCALLED Sigmap RawHash
Relative Abundance Estimation
Precision 0.7683 0.7928 0.9484
D1-D5 Recall 0.1273 0.2739 0.3076
Fyq 0.2184  0.4072 0.4645
Contamination Analysis
Precision 0.9378 0.7856 0.8733
D1, D5 Recall 0.9910 0.5540 0.8735
Fq 0.9637 0.6498 0.8734

For Large Genomes: RawHash provides the best accuracy

in all metrics, resulting in 1.14x - 2.13x improvement in F; score

SAFARI
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Relative Abundance Estimation Accuracy

« Estimating the ratio of genomes in a sample in real-time
- Distance: Euclidean distance compared to the ground truth distance

- The dataset includes a large reference genome

Estimated Relative Abundance Ratios

Tool SARS-CoV-2 E. coli Yeast Green Algae Human Distance
Ground Truth 0.0929 0.4365 0.0698 0.1179  0.2828 N/A
UNCALLED 0.0026 0.5884 0.0615 0.1313  0.2161 0.1895
Sigmap 0.0419 04191 0.1038 0.0962  0.3390 0.0877
RawHash 0.1249 04701 0.0957 0.0629  0.2464 0.0847

RawHash provides the best relative abundance estimation

closest to the ground truth estimation

SAFARI



Real Implementation of Sequence Until

« Running RawHash by using
- RawHash (100%): The entire sample without Sequence Until

- RawHash (7%): RawHash with Sequence Until where Sequence
Until dynamically stops the entire sequencing after sequencing 7% of

the sample
Estimated Relative Abundance Ratios in 50,000 Random Reads
Tool SARS-CoV-2 E. coli Yeast Green Algae Human Distance
RawHash (100%) 0.0270 0.3636 0.3062 0.1951  0.1081 N/A
RawHash + 0.0283 0.3539 0.3100 0.1946  0.1133 0.0118
Sequence Until (7%)

Sequence Until enables sequencing only 7% (~1/15)

of the entire sample with high accuracy

SAFARI



Simulating Sequence Until

* Real relative abundance results using the entire set of reads

Estimated Relative Abundance Ratios

Tool SARS-CoV-2 E. coli Yeast Green Algae Human Distance
Ground Truth 0.0929 0.4365 0.0698 0.1179  0.2828 N/A
UNCALLED 0.0026 0.5884 0.0615 0.1313  0.2161 0.1895
Sigmap 0.0419 0.4191 0.1038 0.0962  0.3390 0.0877
RawHash 0.1249 0.4701 0.0957 0.0629  0.2464 0.0847

 Simulating the benefits of Sequence Until by

- Using a random portion (25%, 10%, 1%, ...) of the sample

SAFARI

Estimated Relative Abundance Ratios

Tool SARS-CoV-2 E. coli Yeast Green Algae Human Distance
Ground Truth 0.0929 0.4365 0.0698 0.1179  0.2828 N/A
UNCALLED (25%) 0.0026 0.5890 0.0613 0.1332  0.2139 0.1910
RawHash (25%) 0.0271 0.4853 0.0920 0.0786  0.3170 0.0995
UNCALLED (10%) 0.0026 0.5906 0.0611 0.1316  0.2141 0.1920
RawHash (10%) 0.0273  0.4869 0.0963 0.0772  0.3124 0.1004
UNCALLED (1%) 0.0026  0.5750 0.0616 0.1506  0.2103 0.1836
RawHash (1%) 0.0259 0.4783 0.0987 0.0882  0.3088 0.0928
UNCALLED (0.1%) 0.0040 0.4565 0.0380 0.1910  0.3105 0.1242
RawHash (0.1%) 0.0212 0.5045 0.1120 0.0810  0.2814 0.1136
UNCALLED (0.01%) 0.0000 0.5551 0.0000 0.0000  0.4449 0.2602
RawHash (0.01%) 0.0906 0.6122  0.0000 0.0000  0.2972 0.2232
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Simulating Sequence Until

* Real relative abundance results using the entire set of reads

Estimated Relative Abundance Ratios

Tool SARS-CoV-2 E. coli Yeast Green Algae Human Distance
Ground Truth 0.0929 0.4365 0.0698 0.1179  0.2828 N/A
UNCALLED 0.0026 0.5884 0.0615 0.1313  0.2161 0.1895
Sigmap 0.0419 0.4191 0.1038 0.0962  0.3390 0.0877

UNCALLED and RawHash benefit from Sequence Until
significantly by up to 100x reductions in

sequencing time and costs

1001 SAK>-COV-Z E.COl Yeast Greem Aigae HUmMan  DISTAnce
Ground Truth 0.0929 0.4365 0.0698 0.1179  0.2828 N/A
UNCALLED (25%) 0.0026  0.5890 0.0613 0.1332  0.2139 0.1910
RawHash (25%) 0.0271 0.4853 0.0920 0.0786  0.3170 0.0995
UNCALLED (10%) 0.0026  0.5906 0.0611 0.1316  0.2141 0.1920
RawHash (10%) 0.0273  0.4869 0.0963 0.0772  0.3124 0.1004
UNCALLED (1%) 0.0026 0.5750 0.0616 0.1506  0.2103 0.1836
RawHash (1%) 0.0259 0.4783 0.0987 0.0882  0.3088 0.0928
UNCALLED (0.1%) 0.0040 0.4565 0.0380 0.1910  0.3105 0.1242
RawHash (0.1%) 0.0212 0.5045 0.1120 0.0810  0.2814 0.1136
UNCALLED (0.01%) 0.0000 0.5551 0.0000 0.0000  0.4449 0.2602
RawHash (0.01%) 0.0906 0.6122  0.0000 0.0000  0.2972 0.2232
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More in the Paper

* More Results
- Mapping time per read
- Overall computational resources required by each tool

« Peak memory usage, CPU time and real time in the
indexing and mapping steps

- Performance breakdown of the steps in RawHash

 Details of all mechanisms and configurations
- Details of the quantization and hashing mechanism
- Details of the parameter configurations

- Trade-offs between the DNN-based approaches and raw
sighal mapping approaches

SAFARI 41




RawHash

« Can Firtina, Nika Mansouri Ghiasi, Joel Lindegger, Gagandeep Singh,
Meryem Banu Cavlak, Haiyu Mao, and Onur Mutlu,
"RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw
Nanopore Signals for Large Genomes"
Proceedings of the 31st Annual Conference on Intelligent Systems for Molecular
Biology (ISMB) and the 22nd European Conference on Computational Biology
(ECCB), ul 2023
[arXiv preprint]
[Source Code]

Bioinformatics, 2023, 39, i297—i307
https://doi.org/10.1093/bioinformatics/btad272

ISMB/ECCB 2023

OXFORD

RawHash: enabling fast and accurate real-time analysis of
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RawHash Source Code

» Supports all major
raw signal file formats
and flow cell versions

- FASTS5, PODS5, S/BLOWS file formats

» Easy-to-use scripts
- To download all the datasets
- To reproduce all of our results

 You can write your outlier
function for Sequence Until

- Easily integrate Sequence Until

» Upcoming Feature:
- Integrating the MinKNOW API

SAFARI
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D DD DO DO DO

extern
gitfigures
src

test
.gitignore
.gitmodules
LICENSE
Makefile
README.md

code_of_conduct.md

README.md

Overview

¥ 1branch 0 tags

<% EditPins v

Go to file

(® Unwatch 5

e9a56fe last week O 19 commits

Decoupling HDF5/POD5/SLOWS5 compilations
Updating README

Adding the SLOWS5 support

Test README fixes
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Decoupling HDF5/POD5/SLOWS5 compilations
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RawHash
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RawHash is the first mechanism that can
accurately and efficiently map raw
nanopore signals to large reference
genomes (e.g., a human reference
genome) in real-time without using
powerful computational resources (e.g.,
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Conclusion

7

Key Contributions:
1) The first hash-based mechanism that can quickly and accurately analyze raw

nanopore signals for large genomes

2) The novel Sequence Until technique can accurately and dynamically stop
the entire sequencing of all reads at once if further sequencing is not necessary

s

Key Results: Across 3 use cases and 5 genomes of varying sizes, RawHash provides
— 25.8x and 3.4x better average throughput compared to two state-of-the-art works
— 1.14x — 2.13x more accurate mapping results for large genomes
— Sequence Until reduces the sequencing time and cost by 15x

\

p
Many opportunities for analyzing raw nanopore signals in real-time:

— Many hash-based sketching techniques can now be used for raw signals

— Indexing is very cheap: Many future use cases with the on-the-fly index construction

— We should rethink the algorithms to perform downstream analysis fully using raw signals

J

\.

SAFARI
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Practical Similarity Identifica

t101._— Seeds
- ———— >3 piion characters
[ 1 NG v
Reference TTGCCEATATGGTTAAGCTTICINIGG

............. v APMEGGGCTTTCGCTTTG
- /4’4})/’, =
W

K-mers Locations

| 1
Read [GCCCAAATGGTT] GCTYA 7
c| s
By
K-mers

AAA | 31 101
CCA | 25 230 | 400

Index (Hash Table)

. Determine potential matching regions (seeds) in the reference

Seed Filtering :
. . Prune some seeds in the reference genome
(e.g., Chaining)

Determine the exact differences between the read and the
reference genome

SAFARI
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Existing Solutions — Real-time Basecalling

Deep neural networks (DNNSs) for translating signals to bases

Nanopore sequencing Raw Signal Real-time Analysis
S Basecalling Read mapping

DNNSs provide less noisy analysis from basecalled sequences

Costly and power-hungry computational requirements
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The Problem

Real-time Analysis
Basecalling Read mapping

-

(Costly and energy-hungry\
computations to basecall
each read:
Portable sequencing becomes
challenging with

The existing solutions are ineffective for large genomes

Real-time Analysis
Signal mapping

kresource-constrained devices )

SAFARI

Larger number of reference
regions cannot be handled
accurately or quickly,
rendering existing solutions
ineffective for large
genomes
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Applications of Read Until

Depletion: Reads mapping to a particular reference genome is ejected
« Removing contaminated reads from a sample

» Relative abundance estimation

 Controlling low/high-abundance genomes in a sample

 Controlling the sequencing of depth of a genome

Enrichment: Reads not mapping to a particular reference genome is ejected
« Purifying the sample to ensure it contains only the selected genomes

* Removing the host genome (e.g., human) in contamination analysis
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Applications of Run Until and Sequence Until

Run Until: Stopping the sequencing without informative decision from analysis

 Stopping when reads reach to a particular depth of coverage

 Stopping when the abundance of all genomes reach a particular threshold

Sequence Until: Stopping the sequencing based on information decision

« Stopping when relative abundance estimations do not change substantially
(for high-abundance genomes)

 Stopping when finding that the sample is contaminated with a particular set
of genomes
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Details: Quantizing the Event Values

« Observation: Identical k-mers generate similar raw signals
- Challenge: Their corresponding event values can be slightly different

« Key Idea: Quantize the event values
- To enable assigning the same quantized value to the similar event values

Slightly Different

(Normalized)
/ Event Values

-0.091 in binary: -0.084 in binary:
1joj1p1jrjrjojryrjojayjry .. 1joj1j1§j1j1jo0y1j1jo0j11}o0
\ J \ & J
4 4
Most significant Q = 9 bits: Most significant Q = 9 bits:
110 o111 110 o111
N——rt N——rt
Pruning p = 4 bits: Pruning p = 4 bits:
Matching

1100111 p——> Quantized — 110]10]1]1
Event Values
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Average Sequenced Bases and Chunks

Tool SARS-CoV-2 E. coli Yeast Green Algae  Human
Average sequenced base length per read
UNCALLED 184.51 580.52 1,233.20 5,300.15 6,060.23
RawHash 51395 1,376.14 2,565.09 4,760.59 4,773.58
Average sequenced number of chunks per read
Sigmap 1.01 2.11 4.14 5.76 10.40
RawHash 1.24 3.20 5.83 10.72 10.70

RawHash reduces sequencing time and cost for large genomes
up to 1.3x compared to UNCALLED

Although Sigmap processes less number of chunks than RawHash, it fails to

provide real-time analysis capabilities for large genomes
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Breakdown Analysis of the RawHash Steps

Fraction of entire runtime (%)

Tool SARS-CoV-2 E.coli Yeast Green Algae Human
File I/O 0.00 0.00  0.00 0.00 0.00
Signal-to-Event 21.75 1.86  1.01 0.53 0.02
Sketching 0.74 0.06 0.04 0.03 0.00
Seeding 3.86 4.14  3.52 6.70 5.39
Chaining 73.50 9392 9542 92.43 94.46
Seeding + Chaining 7736  98.06 98.94 99.14 99.86

The entire runtime is bottlenecked by the chaining step
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Required Computation Resources in Indexing

Tool Contamination SARS-CoV-2 E.coli Yeast Green Algae Human Relative Abundance
CPU Time (sec)

UNCALLED 8.72 9.00 11.08 18.62 285.88  4,148.10 4,382.38

Sigmap 0.02 0.04 8.66 24.57 449.29 36,765.24 40,926.76

RawHash 0.18 0.13 2.62 448 34.18 1,184.42 788.88
Real time (sec)

UNCALLED 1.01 1.04 2.67 7179 280.27  4,190.00 4,471.82

Sigmap 0.13 0.25 9.31 25.86 458.46 37,136.61 41,340.16

RawHash 0.14 0.10 1.70  2.06 15.82 278.69 154.68

Peak memory (GB)

UNCALLED 0.07 0.07 0.13 0.31 11.96 48.44 47.81

Sigmap 0.01 0.01 040 1.04 8.63 227.77 238.32

RawHash 0.01 0.01 0.35 0.76 5.33 83.09 152.80

The indexing step of RawHash is orders of magnitude faster than

the indexing steps of UNCALLED and Sigmap, especially for large genomes

RawHash requires larger memory space than UNCALLED
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Required Computation Resources in Mapping

Tool Contamination SARS-CoV-2 E. coli Yeast Green Algae Human Relative Abundance
CPU Time (sec)

UNCALLED 265,902.26 36,667.26 35,821.14  8,933.52 16,769.09 262,597.83 586,561.54

Sigmap 4,573.18 1,997.84 23,894.70 11,168.96 31,544.55 4,837,058.90 11,027,652.91

RawHash 3,721.62 1,832.56  8,212.17  4,906.70 25,215.23  2,022,521.48 4,738,961.77
Real time (sec)

UNCALLED 20,628.57 2,794.76  1,544.68 285.42 2,138.91 8,794.30 19,409.71

Sigmap 6,725.26 3,222.32  2,067.02  1,167.08 2,398.83 158,904.69 361,443.88

RawHash 3,917.49 1,949.53 957.13 215.68 1,804.96 65,411.43 152,280.26

Peak memory (GB)

UNCALLED 0.65 0.19 0.52 0.37 0.81 9.46 9.10

Sigmap 111.69 28.26 111.11 14.65 29.18 311.89 489.89

RawHash 4.13 4.20 4.16 4.37 11.75 52.21 55.31

The mapping step of RawHash is significantly faster than Sigmap

for all genomes, and faster than UNCALLED for small genomes

RawHash requires larger memory space than UNCALLED
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Average Mapping Time per Read

[MRawHash [ UNCALLED [ Sigmap

o
S

| | | |
| | | |
| | | |
| | | |
| l | I
| | | I
| | | |
| | | |
| | | |
| | | |
| | | |
| l l I
| | | I
| | | |
| | | |
| | | |
| l | I
| l | I
| | | I

D1 D2 D3 D4 D5 Contamination Relative
SARS-CoV-2 E. coli Yeast Green Algae Human Abundance

The mapping step of RawHash is significantly faster than Sigmap
for all genomes, and faster than UNCALLED for small genomes
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Parameter Configurations

Tool Contamination SARS-CoV-2 E. coli Yeast Green Algae Human Relative Abundance
RawHash -x viral -t 32 -x viral -t 32 -x sensitive -t 32 -x sensitive -t 32  -x fast-t32  -x fast -t 32 -x fast -t 32
UNCALLED map -t 32
Sigmap -m -t 32
Minimap2 -X map-ont -t 32

Preset (-x) Corresponding parameters Usage

viral -5-q9-13 Viral genomes

sensitive -6-q9-13 Small genomes (i.e., < S0M bases)

fast -7-q9-13 Large genomes (i.e., > SOM bases)
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Versions

Tool Version Link to the Source Code

RawHash 0.9 https://github.com/CMU-SAFARI/RawHash/tree/8042b1728e352a28fcc79c2efd80c8b631fe7bac
UNCALLED 2.2 https://github.com/skovaka/UNCALLED/tree/74a5d4e5b5d02fb31d6e88926e8a0896dc3475ch
Sigmap 0.1 https://github.com/haowenz/sigmap/tree/c9a40483264c9514587a36555b5af48d3f054f6f
Minimap2 2.24 https://github.com/1h3/minimap2/releases/tag/v2.24
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