Reducing Solid-State Drive Read Latency by Optimizing Read-Retry

Jisung Park¹, Myungsuk Kim², Myoungjun Chun², Lois Orosa¹, Jihong Kim², and Onur Mutlu¹

ASPLOS 2021 (Session 17: Solid State Drives)

Executive Summary

- Problem: Long read latency in modern SSDs due to read-retry
 - Multiple retry steps required to read an erroneous page
 - Read-retry frequently occurs in modern NAND flash memory
- **Goal:** Reduce the latency of each read-retry operation

Key Ideas:

- Pipelined Read-Retry (PR²): Concurrently perform consecutive retry steps using the CACHE READ command
- Adaptive Read-Retry (AR²): Reduce read-timing parameters for every retry step by exploiting the reliability margin provided by strong ECC
- Evaluation Results: Our proposal improves SSD response time by
 Up to 51% (35% on average) compared to a high-end SSD
 - □ Up to 32% (17% on average) compared to a state-of-the-art baseline

Read-Retry in Modern NAND Flash-Based SSDs

PR²: Pipelined Read-Retry

AR²: Adaptive Read-Retry

Errors in NAND Flash Memory

NAND flash memory stores data by using cells' V_{TH} values

Cell's Threshold Voltage (V_{TH})

Errors in NAND Flash Memory

Various sources shift and widen programmed V_{TH} states
 Retention loss, program interference, read disturbance, etc.

of error cells > ECC correction capability → Uncorrectable errors in stored data

Read-Retry Operation

Reads the page again with adjusted V_{REF} values

Cell's Threshold Voltage ($V_{\rm TH})$

Read-Retry Operation

Reads the page again with adjusted V_{REF} values

Read-Retry: Performance Overhead

Read-Retry: Performance Overhead

Read-retry increases the read latency almost linearly with the number of retry steps

Talk Outline

Read-Retry in Modern NAND Flash-Based SSDs

PR²: Pipelined Read-Retry

AR²: Adaptive Read-Retry

PR²: <u>Pipelined Read-Retry</u>

Key idea: Concurrently perform consecutive retry steps

PR²: <u>Pipelined Read-Retry</u>

Key idea: Concurrently perform consecutive retry steps

PR²: <u>Pipelined Read-Retry</u>

Key idea: Concurrently perform consecutive retry steps

Talk Outline

Read-Retry in Modern NAND Flash-Based SSDs

PR²: Pipelined Read-Retry

AR²: Adaptive Read-Retry

Observation: A positive ECC margin in the final retry step when read-retry succeeds

AR²: <u>Adaptive Read-Retry</u>

Key idea: Reduce read-timing parameters for every retry step

AR²: <u>Adaptive Read-Retry</u>

Key idea: Reduce read-timing parameters for every retry step

AR²: <u>Adaptive Read-Retry</u>

Key idea: Reduce read-timing parameters for every retry step

Needs to ensure that # of additional errors < ECC margin

Validation with Real 3D NAND Flash Chips

- 160 real 48-layer Triple-Level Cell (TLC) NAND flash chips
- Observation 1: A large ECC margin in the final retry step even under worst-case operating conditions
 - Max. 40 errors per KiB under 1-year retention @ 2K P/E cycles
- Observation 2: A large reliability margin incorporated in read-timing parameters
 - □ 25% tR reduction \rightarrow Max. 23 additional errors

AR² can easily work in state-of-the-art NAND flash chips w/ at least 25% tR reduction

Talk Outline

Read-Retry in Modern NAND Flash-Based SSDs

PR²: Pipelined Read-Retry

AR²: Adaptive Read-Retry

- Simulation using MQSim [Tavakkol, FAST18] and 12 real workloads
- Our proposal improves SSD response time by
 - Up to 51% (35% on average) compared to a high-end SSD w/o read-retry mitigation
 - Up to 32% (17% on average) compared to a state-of-theart read-retry mitigation technique
- Many more detailed studies in the paper

Reducing Solid-State Drive Read Latency by Optimizing Read-Retry

Jisung Park¹, Myungsuk Kim², Myoungjun Chun², Lois Orosa¹, Jihong Kim², and Onur Mutlu¹

ASPLOS 2021 (Session 17: Solid State Drives)