

1: DRAM Background

DRAM cells are refreshed periodically to maintain data correctness

Revisiting Row Hammer: An Experimental Analysis of Modern DRAM Devices and Mitigation Techniques

> Jeremie Kim^{1,2}, Minesh Patel¹, A. Giray Yağlıkçı¹, Hasan Hassan¹, Roknoddin Azizi¹, Lois Orosa¹, and Onur Mutlu^{1,2}

² Carnegie Mellon

2: The RowHammer Phenomenon

er

If a nearby row is activated enough times within a refresh window, the charge leakage rate can be accelerated to the point of failure. Some cells require more hammers to fail.

SAFARI

Full Talk Video

https://www.youtube.com/watch?

v=Lqxc4_ToMUw

3: Motivation

.........

LPDDR4 chip

- Denser DRAM chips are **more vulnerable** to Rc
- No comprehensive experimental study demons vulnerability scales across DRAM types and tech.
- Unclear whether current mitigation mechanis viable for future DRAM chips that are likely to l RowHammer

4: Our Goal

- **1. Experimentally demonstrate** how vulnerable are to RowHammer and predict how this yuln going forward
- 2. Examine the viability of current mitigation met. vulnerable chips

a) RowHammer Vulnerability Newer DRAM chips are more vulnerable to

- b) Data Pattern Dependence
- Worst-case data pattern is same for chips of s

lammer

10

c) Hammer Count Effects

RowHammer bit flip rates increase with tec-

SC	ls		R	lep	res	ent	ative	of	DDR	23/	DD	R4 c	ſ	ip]	R	eprese	r	tative o
flij	orc	ips	1.0			· · ·]							-	7	1.0	ŀ	·!····	Π	
oit	\mathbf{M}	t fl	8.0	.											0.8				

I Methodology

11

ces of interference during core test loop

resh: to avoid refreshing victim row **ibration events**: to minimize variation in test timing er mitigation mechanisms: to observe circuit-level effects an refresh window (32ms) to avoid retention failures cess sequence

-case access sequence based on prior works' observations repeatedly access the two directly physically-adjacent rows

 \sim \sim \sim

A fast and accurate profiling mechanism is a key research challenge for developing low-overhead and scalable RowHammer solutions

