Revisiting RowHammer An Experimental Analysis of Modern Devices and Mitigation Techniques

Jeremie S. KimMinesh PatelA. Giray YağlıkçıHasan HassanRoknoddin AziziLois OrosaOnur Mutlu

Executive Summary

- <u>Motivation</u>: Denser DRAM chips are more vulnerable to RowHammer but no characterization-based study demonstrates how vulnerability scales
- **<u>Problem</u>**: Unclear if existing mitigation mechanisms will remain viable for future DRAM chips that are likely to be more vulnerable to RowHammer
- <u>Goal</u>:
 - 1. Experimentally demonstrate how vulnerable modern DRAM chips are to RowHammer and study how this vulnerability will scale going forward
 - 2. Study viability of existing mitigation mechanisms on more vulnerable chips
- **Experimental Study**: First rigorous RowHammer characterization study across a broad range of DRAM chips
 - 1580 chips of different DRAM {types, technology node generations, manufacturers}
 - We find that RowHammer vulnerability worsens in newer chips
- **<u>RowHammer Mitigation Mechanism Study</u>**: How five state-of-the-art mechanisms are affected by worsening RowHammer vulnerability
 - Reasonable performance loss (8% on average) on modern DRAM chips
 - Scale poorly to more vulnerable DRAM chips (e.g., 80% performance loss)
- <u>Conclusion</u>: it is critical to research more effective solutions to RowHammer for future DRAM chips that will likely be even more vulnerable to RowHammer

Outline

RowHammer Introduction

DRAM Background

Motivation and Goal

Experimental Methodology

Characterization Results

Evaluation of Mitigation Mechanisms

RowHammer Solutions Going Forward

Conclusion

Outline

RowHammer Introduction

DRAM Background

Motivation and Goal

Experimental Methodology

Characterization Results

Evaluation of Mitigation Mechanisms

RowHammer Solutions Going Forward

Conclusion

The RowHammer Vulnerability

Repeatedly **opening** (activating) and **closing** (precharging) a DRAM row causes **RowHammer bit flips** in nearby cells **SAFARI**

Outline

RowHammer Introduction

DRAM Background

Motivation and Goal

Experimental Methodology

Characterization Results

Evaluation of Mitigation Mechanisms

RowHammer Solutions Going Forward

Conclusion

DRAM Organization

DRAM Cell Leakage

Each cell encodes information in leaky capacitors

Stored data is **corrupted** if too much charge leaks (i.e., the capacitor voltage degrades too much) SAFARI [Patel+, ISCA'17]

DRAM Refresh

Periodic refresh operations preserve stored data

RowHammer Bit Flips

Cell-to-Cell Variation

Some cells are more vulnerable due to **process variation** *SAFARI*11

Outline

RowHammer Introduction

DRAM Background

Motivation and Goal

Experimental Methodology

Characterization Results

Evaluation of Mitigation Mechanisms

RowHammer Solutions Going Forward

Conclusion

Motivation

- Denser DRAM chips are **more vulnerable** to RowHammer
- Three prior works [Kim+, ISCA'14], [Park+, MR'16], [Park+, MR'16], over the last six years provide RowHammer characterization data on real DRAM
- However, there is no comprehensive experimental study that demonstrates how vulnerability scales across DRAM types and technology node generations
- It is **unclear whether current mitigation mechanisms will remain viable** for future DRAM chips that are likely to be more vulnerable to RowHammer

Goal

 Experimentally demonstrate how vulnerable modern DRAM chips are to RowHammer and predict how this vulnerability will scale going forward

2. Examine the viability of current mitigation mechanisms on **more vulnerable chips**

Outline

RowHammer Introduction

DRAM Background

Motivation and Goal

Experimental Methodology

Characterization Results

Evaluation of Mitigation Mechanisms

RowHammer Solutions Going Forward

Conclusion

DRAM Testing Infrastructures

Three separate testing infrastructures

- 1. DDR3: FPGA-based SoftMC [Hassan+, HPCA'17] (Xilinx ML605)
- 2. DDR4: FPGA-based SoftMC [Hassan+, HPCA'17] (Xilinx Virtex UltraScale 95)
- **3.** LPDDR4: In-house testing hardware for LPDDR4 chips

All provide fine-grained control over DRAM commands, timing parameters and temperature

SAFARI

DDR4 DRAM testing infrastructure

DRAM Chips Tested

DRAM	Numb	er of Chips	s (Modules) Tested
type-node	Mfr. A	Mfr. B	Mfr. C	Total
DDR3-old	56 (10)	88 (11)	28 (7)	172 (28)
DDR3-new	80 (10)	52 (9)	104 (13)	236 (32)
DDR4-old	112 (16)	24 (3)	128 (18)	264 (37)
DDR4-new	264 (43)	16 (2)	108 (28)	388 (73)
LPDDR4-1x	12 (3)	180 (45)	N/A	192 (48)
LPDDR4-1y	184 (46)	N/A	144 (36)	328 (82)

1580 total DRAM chips tested from **300** DRAM modules

- **Three** major DRAM manufacturers {A, B, C}
- Three DRAM types or standards {DDR3, DDR4, LPDDR4}
 - LPDDR4 chips we test implement on-die ECC
- **Two** technology nodes per DRAM type {old/new, 1x/1y}
 - Categorized based on manufacturing date, datasheet publication date, purchase date, and characterization results

Type-node: configuration describing a chip's type and technology node generation: **DDR3-old/new, DDR4-old/new, LPDDR4-1x/1y**

Effective RowHammer Characterization

To characterize our DRAM chips at **worst-case** conditions, we:

1. Prevent sources of interference during core test loop

- We disable:

SAFARI

- **DRAM refresh**: to avoid refreshing victim row
- DRAM calibration events: to minimize variation in test timing
- RowHammer mitigation mechanisms: to observe circuit-level effects
- Test for less than refresh window (32ms) to avoid retention failures

2. Worst-case access sequence

- We use **worst-case** access sequence based on prior works' observations
- For each row, repeatedly access the two directly physically-adjacent rows as fast as possible

[More details in the paper]

Testing Methodology

	Row 0	Aggressor Row
REFRESH	Row 1	Victim Row
-	Row 2	Aggressor Row
-	Row 3	Row
	Row 4	Row
-	Row 5	Row

DRAM_RowHammer_Characterization():

foreach *row* in *DRAM*:

set victim_row to row

set aggressor_row1 to victim_row - 1

set aggressor_row2 to victim_row + 1

Disable DRAM refresh

Refresh victim_row

for $n = 1 \rightarrow HC$: // core test loop activate aggressor_row1 activate aggressor_row2 Enable DRAM refresh Record RowHammer bit flips to storage Restore bit flips to original values Disable refresh to **prevent interruptions** in the core loop of our test **from refresh operations**

Induce RowHammer bit flips on a **fully charged row**

Testing Methodology

- closed	Row 0	Aggressor Row
	Row 1	Aggressor Row
-	Row 2	Row
-	Row 3	Aggressor Row
-	Row 4	Victim Row
-	Row 5	Aggressor Row

DRAM RowHammer Characterization(): Disable refresh to **prevent foreach** row in DRAM: interruptions in the core loop of set victim row to row our test from refresh operations set aggressor_row1 to victim_row - 1 set aggressor_row2 to victim_row + 1 Induce RowHammer bit flips on a Disable DRAM refresh fully charged row Refresh victim row for $n = 1 \rightarrow HC$: // core test loop Core test loop where we alternate activate aggressor row1 accesses to adjacent rows activate aggressor_row2 1 Hammer (HC) = two accesses Enable DRAM refresh Record RowHammer bit flips to storage Prevent further retention failures Restore bit flips to original values Record bit flips for analysis 20SAFARI

Outline

RowHammer Introduction

DRAM Background

Motivation and Goal

Experimental Methodology

Characterization Results

Evaluation of Mitigation Mechanisms

RowHammer Solutions Going Forward

Conclusion

Key Takeaways from 1580 Chips

- Chips of newer DRAM technology nodes are more vulnerable to RowHammer
- There are chips today whose weakest cells fail after only 4800 hammers
- Chips of newer DRAM technology nodes can exhibit RowHammer bit flips 1) in more rows and 2) farther away from the victim row.

1. RowHammer Vulnerability

Q. Can we induce RowHammer bit flips in all of our DRAM chips?

All chips are vulnerable, except many DDR3 chips

- A total of 1320 out of all 1580 chips (84%) are vulnerable
- Within DDR3-old chips, only 12% of chips (24/204) are vulnerable
- Within **DDR3-new** chips, **65%** of chips (148/228) are vulnerable

Newer DRAM chips are more vulnerable to RowHammer

2. Data Pattern Dependence

Q. Are some data patterns more effective in inducing RowHammer bit flips?

• We test **several data patterns** typically examined in prior work to identify the worst-case data pattern

• The worst-case data pattern is **consistent across chips** of the same manufacturer and DRAM type-node configuration

• We use the **worst-case data pattern** per DRAM chip to characterize each chip at **worst-case conditions** and **minimize the extensive testing time**

[More detail and figures in paper]

3. Hammer Count (HC) Effects

Q. How does the Hammer Count affect the number of bit flips induced?

Hammer Count = 2 Accesses, one to each adjacent row of victim

3. Hammer Count (HC) Effects

RowHammer bit flip rates **increase** when going **from old to new** DDR4 technology node generations

RowHammer bit flip rates (i.e., RowHammer vulnerability) increase with technology node generation

4. Spatial Effects: Row Distance

Q. Where do RowHammer bit flips occur relative to aggressor rows?

The number of RowHammer bit flips that occur in a given row decreases as the distance from the **victim row (row 0)** increases.

Chips of newer DRAM technology nodes can exhibit RowHammer bit flips 1) in **more rows** and 2) **farther away** from the victim row.

28

4. Spatial Effects: Row Distance

We plot this data for each DRAM type-node configuration per manufacturer

[More analysis in the paper]

4. Spatial Distributi

Q. How are RowHammer bit flips spatic

We normalize data by inducing a bit flip rate of **10**-6 in each chip

The distribution of RowHammer bit flip density per word changes significantly in LPDDR4 chips from other DRAM types

At a bit flip rate of 10⁻⁶, a 64-bit word can contain up to **4 bit flips**. Even at this very low bit flip rate, a **very strong ECC** is required

4. Spatial Distribution of Bit Flips

We plot this data for each DRAM type-node configuration per manufacturer

[More analysis in the paper]

5. First RowHammer Bit Flips per Chip

What is the minimum Hammer Count required to cause bit flips (HC_{first})?

5. First RowHammer Bit Flips per Chip

What is the minimum Hammer Count required to cause bit flips (HC_{first})?

We note the different DRAM types on the x-axis: **DDR3**, **DDR4**, **LPDDR4**.

We focus on trends across chips of the same DRAM type to draw conclusions

5. First RowHammer Bit Flips per Chip Mfr. C Mfr. A Mfr. B 120K 00K for the first bit flip (HC_{first}) Hammer Count needed 80K 60K F i di la constante di la consta SO No Bit Flips 40K ц Ш +20K 2 S 0K DDR4-old DDR3-old DDR3-old DDR3-old **DDR3-new** DDR4-old DDR4-new -PDDR4-1y DDR3-new DDR4-new DDR3-new DDR4-old DDR4-new -PDDR4-1y PDDR4-1x PDDR4-1x

Newer chips from a given DRAM manufacturer **more** vulnerable to RowHammer

SAFARI

34

5. First RowHammer Bit Flips per Chip

Key Takeaways from 1580 Chips

- Chips of newer DRAM technology nodes are more vulnerable to RowHammer
- There are chips today whose weakest cells fail after only 4800 hammers
- Chips of newer DRAM technology nodes can exhibit RowHammer bit flips 1) in more rows and 2) farther away from the victim row.

Outline

RowHammer Introduction

DRAM Background

Motivation and Goal

Experimental Methodology

Characterization Results

Evaluation of Mitigation Mechanisms

RowHammer Solutions Going Forward

Conclusion

Evaluation Methodology

- Cycle-level simulator: Ramulator [Kim+, CAL'15] https://github.com/CMU-SAFARI/ramulator
 - 4GHz, 4-wide, 128 entry instruction window
 - 48 8-core workload mixes randomly drawn from SPEC CPU2006 (10 < MPKI < 740)
- Metrics to evaluate mitigation mechanisms
 - **1. DRAM Bandwidth Overhead:** fraction of total system DRAM bandwidth consumption from mitigation mechanism
 - *2. Normalized System Performance:* normalized weighted speedup to a 100% baseline

Evaluation Methodology

- We evaluate **five** state-of-the-art mitigation mechanisms:
 - Increased Refresh Rate [Kim+, ISCA'14]
 - PARA [Kim+, ISCA'14]
 - **ProHIT** [Son+, DAC'17]
 - MRLOC [You+, DAC'19]
 - TWiCe [Lee+, ISCA'19]
- and one ideal refresh-based mitigation mechanism:
 Ideal

• More detailed descriptions in the paper on:

- Descriptions of mechanisms in our paper and the original publications
- How we scale each mechanism to more vulnerable DRAM chips (lower HC_{first})

Substantial overhead for high HC_{first} values.

This mechanism does not support HC_{first} < 32k due to the prohibitively high refresh rates required

Mitigation Mechanism Evaluation (PARA)

Models for scaling ProHIT and MRLoc for HC_{first} < 2k are not provided and how to do so is not intuitive

Mitigation Mechanism Evaluation (TWiCe)

TWiCe does not support HC_{first} < 32k.

We evaluate an ideal scalable version (TWiCe-ideal) assuming it solves two critical design issues

Mitigation Mechanism Evaluation (Ideal

Ideal mechanism issues a refresh command to a row only right before the row can potentially experience a RowHammer bit flip

PARA, ProHIT, and MRLoc mitigate RowHammer bit flips in worst chips today with reasonable system performance (92%, 100%, 100%)

Only PARA's design scales to low HC_{first} values **but has very low normalized system performance**

Ideal mechanism is significantly better than any existing mechanism for HC_{first} < 1024

Significant opportunity for developing a RowHammer solution with low performance overhead that supports low HC_{first}

Key Takeaways from Mitigation Mechanisms

- Existing RowHammer mitigation mechanisms can prevent RowHammer attacks with **reasonable system performance overhead** in DRAM chips today
- Existing RowHammer mitigation mechanisms **do not scale well** to DRAM chips more vulnerable to RowHammer
- There is still **significant opportunity** for developing a mechanism that is **scalable with low overhead**

Additional Details in the Paper

- Single-cell RowHammer bit flip probability
- More details on our **data pattern dependence** study
- Analysis of **Error Correcting Codes (ECC)** in mitigating RowHammer bit flips
- Additional **observations** on our data
- Methodology details for characterizing DRAM
- Further discussion on comparing data across different infrastructures
- Discussion on scaling each mitigation mechanism
 SAFARI

Outline

RowHammer Introduction

DRAM Background

Motivation and Goal

Experimental Methodology

Characterization Results

Evaluation of Mitigation Mechanisms

RowHammer Solutions Going Forward

Conclusion

RowHammer Solutions Going Forward

Two promising directions for new RowHammer solutions:

1. DRAM-system cooperation

We believe the DRAM and system should cooperate more to provide a holistic solution can prevent RowHammer at low cost

2. Profile-guided

- Accurate **profile of RowHammer-susceptible cells** in DRAM provides a powerful substrate for building **targeted** RowHammer solutions, e.g.:
 - Only increase the refresh rate for rows containing RowHammer-susceptible cells
- A **fast and accurate** profiling mechanism is a key research challenge for developing low-overhead and scalable RowHammer solutions

Outline

RowHammer Introduction

DRAM Background

Motivation and Goal

Experimental Methodology

Characterization Results

Evaluation of Mitigation Mechanisms

RowHammer Solutions Going Forward

Conclusion

Conclusion

- We characterized **1580 DRAM** chips of different DRAM types, technology nodes, and manufacturers.
- We studied **five** state-of-the-art RowHammer mitigation mechanisms and an ideal refresh-based mechanism
- We made two key observations
 - **1. RowHammer is getting much worse**. It takes much fewer hammers to induce RowHammer bit flips in newer chips
 - e.g., **DDR3:** 69.2k to 22.4k, **DDR4:** 17.5k to 10k, **LPDDR4:** 16.8k to 4.8k
 - **2. Existing mitigation mechanisms do not scale** to DRAM chips that are more vulnerable to RowHammer
 - e.g., 80% performance loss when the hammer count to induce the first bit flip is 128
- We **conclude** that it is **critical** to do more research on RowHammer and develop scalable mitigation mechanisms to prevent RowHammer in future systems

Revisiting RowHammer An Experimental Analysis of Modern Devices and Mitigation Techniques

Jeremie S. KimMinesh PatelA. Giray YağlıkçıHasan HassanRoknoddin AziziLois OrosaOnur Mutlu

Evaluation

PARA, ProHIT, and MRLoc are viable options for mitigating RowHammer bit flips in worst chips today with reasonable system performance (92%, 100%, 100%)

SAFARI

ס 🛞 10⁻³

Only PARA's design scales to low HC_{first} values that we may see in future DRAM chips but has very low normalized system performance

<u>ס</u> או 10⁻³

SAFA

Effective RowHammer Characterization

To characterize our DRAM chips at **worst-case** conditions, we:

1. Prevent sources of interference during core test loop

- **We disable**: DRAM refresh, DRAM calibration events, RowHammer mitigation mechanisms
- Ensure **test shorter than refresh window** (i.e., 32ms) to prevent retention failures

2. Worst-case access sequence

We construct based on three observations from prior work:

- 1. An aggressor row causes the most RowHammer bit flips in immediately **adjacent** rows
- 2. A **double-sided hammer** targeting victim row N (i.e., repeatedly accessing rows N+1 and N-1) causes the most bit flips in row N compared to other access patterns
- 3. Increasing the rate of DRAM activations results in more RowHammer bit flips

Using these observations, we test each row's worst-case vulnerability to RowHammer by **repeatedly accessing the two directly physically-adjacent rows as fast as possible**

6. Error-Correcting Code (ECC) Effects

Q. How would different Error Correction Codes (ECC) change the Hammer Count required to cause RowHammer bit flips?

6. Error-Correcting Code (ECC) Effects

Single-error correcting code can improve HC_{first} by up to 2.78× in DDR4 DRAM chips, and 1.65× in DDR3-new DRAM chips.

RowHammer Solutions Going Forward

Two promising directions for new RowHammer solutions:

1. DRAM-system cooperation

- DRAM-based or system-level mechanism **alone** ignores potential benefits of addressing the RowHammer vulnerability **holistically**
- We believe a **holistic** solution can prevent RowHammer at **low cost**

2. Profile-guided

- Accurate **profile of RowHammer-susceptible cells** in DRAM provides a powerful substrate for building **targeted** RowHammer solutions, e.g.:
 - Only increase the refresh rate for rows containing RowHammer-susceptible cells
- We believe a **fast and accurate** profiling mechanism is a key research challenge for developing low-overhead and scalable RowHammer solutions