

RowPress Amplifying Read Disturbance in Modern DRAM Chips

Haocong Luo

Ataberk Olgun

A. Giray Yağlıkçı Yahya Can Tuğrul Steve Rhyner Meryem Banu Cavlak Joël Lindegger Mohammad Sadrosadati Onur Mutlu

High-Level Summary

- We demonstrate and analyze RowPress, a new read disturbance phenomenon that causes bitflips in real DRAM chips
- We show that RowPress is **different from the RowHammer vulnerability**
- We demonstrate RowPress **using a user-level program** on a real Intel system with real DRAM chips
- We provide **effective solutions** to RowPress

Outline

DRAM Background

What is RowPress?

Real DRAM Chip Characterization

Characterization Methodology

Key Characteristics of RowPress

Real-System Demonstration

Mitigating RowPress

Conclusion

DRAM Organization

DRAM is the prevalent technology for main memory

- A **DRAM cell** stores 1 bit of information in a **leaky** capacitor
- DRAM cells are organized into **DRAM rows**

Read Disturbance in DRAM

- Read disturbance in DRAM breaks memory isolation
- Prominent example: RowHammer

Repeatedly **opening (activating)** and **closing** a DRAM row **many times** causes **RowHammer bitflips** in adjacent rows

Are There Other Read-Disturb Issues in DRAM?

- RowHammer is the only studied read-disturb phenomenon
- Mitigations work by detecting high row activation count

What if there is another read-disturb phenomenon that **does NOT rely on high row activation count**?

https://www.reddit.com/r/CrappyDesign/comments/arw0q8/now_this_this_is_poor_fencing/

Outline

DRAM Background

What is RowPress?

Real DRAM Chip Characterization

Characterization Methodology

Key Characteristics of RowPress

Real-System Demonstration

Mitigating RowPress

Conclusion

Keeping a DRAM row **open for a long time** causes bitflips in adjacent rows

These bitflips do **NOT** require many row activations

Only one activation is enough in some cases!

Now, let's see how this is different from RowHammer

RowPress vs. RowHammer

Instead of using a high activation count, increase the time that the aggressor row stays open

We observe bitflips even with **ONLY ONE activation** in extreme cases where the row stays open for 30ms

Outline

DRAM Background

What is RowPress?

Real DRAM Chip Characterization

Characterization Methodology

Key Characteristics of RowPress

Real-System Demonstration

Mitigating RowPress

Conclusion

Major Takeaways from Real DRAM Chips

RowPress significantly **amplifies** DRAM's vulnerability to **read disturbance**

RowPress has a **different** underlying failure **mechanism** from RowHammer

Outline

DRAM Background

What is RowPress?

Real DRAM Chip Characterization

Characterization Methodology

Key Characteristics of RowPress

Real-System Demonstration

Mitigating RowPress

Conclusion

Characterization Methodology (I)

FPGA-based DDR4 testing infrastructure

- Developed from SoftMC [Hassan+, HPCA'17] and DRAM Bender [Olgun+, TCAD'23]
- Fine-grained control over DRAM commands, timings, and temperature

Characterization Methodology (II)

DRAM chips tested

- 164 DDR4 chips from all 3 major DRAM manufacturers
- Covers different die densities and revisions

Mfr.	#DIMMs	#Chips	Density	Die Rev.	Org.	Date
Mfr. S (Samsung)	2	8	8Gb	В	x8	20-53
	1	8	8Gb	С	x8	N/A
	3	8	8Gb	D	x8	21-10
	2	8	4Gb	F	x8	N/A
Mfr. H (SK Hynix)	1	8	4Gb	А	x8	19-46
	1	8	4Gb	Х	x8	N/A
	2	8	16Gb	А	x8	20-51
	2	8	16Gb	С	x8	21-36
Mfr. M (Micron)	1	16	8Gb	В	x4	N/A
	2	4	16Gb	В	x16	21-26
	1	16	16Gb	Е	x4	20-14
	2	4	16Gb	E	x16	20-46
	1	4	16Gb	F	x16	21-50

Characterization Methodology (III)

Metric: The minimum number of aggressor row activations in total to cause at least one bitflip (**ACmin**)

Access Pattern: Single-sided (i.e., only one aggressor row). Sweep aggressor row on time (tAggON) from 36ns to 30ms

Data Pattern: Checkerboard (0xAA in aggressor and 0x55 in victim)

Temperature: 50°C

Algorithm: Bisection-based ACmin search

- Each search iteration is capped at 60ms (<64ms refresh window)
- Repeat 5 times and report the minimum ACmin value observed
- Sample 3072 DRAM rows per chip

[More sensitivity studies in the paper]

Outline

DRAM Background

What is RowPress?

Real DRAM Chip Characterization

Characterization Methodology

Key Characteristics of RowPress

Real-System Demonstration

Mitigating RowPress

Conclusion

Major Takeaways from Real DRAM Chips

RowPress significantly **amplifies** DRAM's vulnerability to **read disturbance**

RowPress has a **different** underlying failure **mechanism** from RowHammer

Key Characteristics of RowPress

Amplifying read disturbance in DRAM

- Reduces the minimum number of row activations needed to induce a bitflip (ACmin) by 1-2 orders of magnitude
- In extreme cases, activating a row **only once** induces bitflips
- Gets worse as **temperature increases**

Different from RowHammer

- Affects a **different set of cells** compared to RowHammer and retention failures
- **Behaves differently** as access pattern or temperature changes compared to RowHammer

Key Characteristics of RowPress

Amplifying read disturbance in DRAM

- Reduces the minimum number of row activations needed to induce a bitflip (ACmin) by 1-2 orders of magnitude
- In extreme cases, activating a row **only once** induces bitflips
- Gets worse as **temperature increases**

Different from RowHammer

- Affects a **different set of cells** compared to RowHammer and retention failures
- **Behaves differently** as access pattern or temperature changes compared to RowHammer

Amplifying Read Disturbance (I)

How minimum activation count to induce a bitflip (ACmin) changes as aggressor row on time (tAggON) increases

Amplifying Read Disturbance (II)

How minimum activation count to induce a bitflip (ACmin) changes as aggressor row on time (tAggON) increases

Aggressor row on time (tAggON)

Amplifying Read Disturbance (III)

How minimum activation count to induce a bitflip (ACmin) changes as aggressor row on time (tAggON) increases

ACmin reduces by 21X on average when tAggON increases from 36ns to 7.8μs 191X 70.2μs

RowPress significantly reduces ACmin as tAggON increases

Amplifying Read Disturbance (IV)

ACmin @ 80°C normalized to ACmin @ 50°C

Data point below 1 means fewer activations to cause bitflips @ 80°C compared to 50°C

Aggressor row on time (tAggON)

When tAggON is 7.8 μs, RowPress requires about 50% fewer activations to induce bitflips at 80°C compared to 50°C

RowPress gets worse as temperature increases

Key Characteristics of RowPress

Amplifying read disturbance in DRAM

- Reduces the minimum number of row activations needed to induce a bitflip (ACmin) by 1-2 orders of magnitude
- In extreme cases, activating a row **only once** induces bitflips
- Gets worse as **temperature increases**

Different from RowHammer

- Affects a **different set of cells** compared to RowHammer and retention failures
- **Behaves differently** as access pattern or temperature changes compared to RowHammer

Difference Between RowPress and RowHammer (I)

Cells vulnerable to RowPress vs. RowHammer

- Cells vulnerable to RowPress (RowHammer) are those that flip @ ACmin
- Overlap = <u>Number of Cells Vulnerable to Both RowPress and RowHammer</u>

Number of Cells Vulnerable to RowPress

On average, only 0.013% of DRAM cells vulnerable to RowPress are also vulnerable to RowHammer, when tAggON ≥ 7.8us

Difference Between RowPress and RowHammer (II)

Cells vulnerable to RowPress vs. RowHammer

- Cells vulnerable to RowPress (RowHammer) are those that flip @ ACmin
- Overlap = <u>Number of Cells Vulnerable to Both RowPress and RowHammer</u>

Number of Cells Vulnerable to RowPress

Most cells vulnerable to RowPress are NOT vulnerable to RowHammer

Difference Between RowPress and RowHammer (III)

Directionality of RowHammer and RowPress bitflips

The majority of **RowHammer** bitflips are 0 to 1 The majority of **RowPress** bitflips are 1 to 0

RowPress and RowHammer bitflips have opposite directions

Difference Between RowPress and RowHammer (IV)

Effectiveness of single-sided vs. double-sided RowPress

• Data point below 0 means fewer activations to cause bitflips with single-sided RowPress compared to double-sided RowPress

As tAggON increases beyond a certain level, **single-sided RowPress becomes more effective** compared to double-sided

Different from RowHammer where double-sided is more effective

Difference Between RowPress and RowHammer (V)

Sensitivity to temperature

Data point below 1 means fewer activations to cause bitflips @ 80°C compared to 50°C

RowPress gets worse as temperature increases, which is **very different from RowHammer**

Outline

DRAM Background

What is RowPress?

Real DRAM Chip Characterization

Characterization Methodology

Key Characteristics of RowPress

Real-System Demonstration

Mitigating RowPress

Conclusion

Real-System Demonstration (I)

Intel Core i5-10400 (Comet Lake)

Samsung DDR4 Module M378A2K43CB1-CTD (Date Code: 20-10) w/ TRR RowHammer Mitigation

Key Idea: A proof-of-concept RowPress program keeps a DRAM row open for a longer period by **keeping on accessing different cache blocks in the row**

Real-System Demonstration (II)

On 1500 victim rows

Leveraging RowPress, our user-level program induces bitflips when RowHammer cannot

Outline

DRAM Background

What is RowPress?

Real DRAM Chip Characterization

Characterization Methodology

Key Characteristics of RowPress

Real-System Demonstration

Mitigating RowPress

Conclusion

Mitigating RowPress (I)

We propose a methodology to adapt existing RowHammer mitigations to **also mitigate RowPress**

Key Idea:

- 1. Limit the maximum row open time (tmro)
- 2. Configure the RowHammer mitigation to account for the **RowPress-induced reduction in ACmin**

Mitigating RowPress (II)

Evaluation methodology

- Adapted RowHammer Mitigations: Graphene (Graphene-RP) and PARA (PARA-RP)
- Cycle-accurate DRAM simulator: Ramulator [Kim+, CAL'15]
 - 4 GHz Out-of-Order Core, dual-rank DDR4 DRAM
 - FR-FCFS scheduling
 - Open-row policy (with limited maximum row open time)
- 58 four-core multiprogrammed workloads from SPEC CPU2017, TPC-H, and YCSB
- Metric: Additional performance overhead of Graphene-RP (PARA-RP) over Graphene (PARA)
 - Measured by weighted speedup

Mitigating RowPress (III)

Key evaluation results

Our solutions **mitigate RowPress** at **low additional performance overhead**

Outline

DRAM Background

What is RowPress?

Real DRAM Chip Characterization

Characterization Methodology

Key Characteristics of RowPress

Real-System Demonstration

Mitigating RowPress

Conclusion

We demonstrate and analyze **RowPress, a widespread read disturbance phenomenon** that causes bitflips in real DRAM chips

We **characterize RowPress** on 164 DDR4 chips from all 3 major DRAM manufacturers

- RowPress greatly amplifies read disturbance: minimum activation count reduces by 1-2 orders of magnitude
- RowPress has a different mechanism from RowHammer & retention failures

We demonstrate RowPress using a user-level program

• Induces bitflips when RowHammer cannot

We provide **effective solutions** to RowPress

• Low additional performance overhead

More Results & Source Code

Many more results & analyses in the paper

- 6 major takeaways
- > 19 major empirical observations
- ➢ 3 more potential mitigations

Fully open source and artifact evaluated

https://github.com/CMU-SAFARI/RowPress

RowPress **Amplifying Read Disturbance** in Modern DRAM Chips

Haocong Luo

Ataberk Olgun

A. Giray Yağlıkçı Yahya Can Tuğrul Steve Rhyner Meryem Banu Cavlak Joël Lindegger Mohammad Sadrosadati Onur Mutlu

https://github.com/CMU-SAFARI/RowPress

Potential tAggON upper bounds

- tREFI: Interval between two REF commands
- 9tREFI:

🖉 Time Break 🛛 Don't Care

NOTE 1 Only DES commands allowed after Refresh command registered until tRFC(min) expires. NOTE 2 Time interval between two Refresh commands may be extended to a maximum of 9 X tREFI.

Figure 157 — Refresh Command Timing (Example of 1x Refresh mode)

JESD79-4C

Cells vulnerable to RowPress vs RowHammer

- Cells vulnerable to RowPress (RowHammer) are those that flip @ ACmax
- Overlap = <u>Number of Cells Vulnerable to Both RowPress and RowHammer</u>

Number of Cells Vulnerable to RowPress

Aggressor row on time (tAggON)

Directionality of RowHammer and RowPress bitflips

The majority of **RowHammer** bitflips are **1 to 0** The majority of **RowPress** bitflips are **0 to 1**

RowPress and RowHammer bitflips have opposite directions

Effectiveness of single-sided vs double-sided RowPress

• Data point below 0 means fewer activations to cause bitflips with single-sided RowPress compared to double-sided RowPress

As tAggON increases beyond a certain level, **single-sided RowPress becomes more effective** compared to double-sided

Different from RowHammer where double-sided is more effective

Sensitivity to temperature

Data point below 1 means fewer activations to cause bitflips @ 80°C compared to 50°C

RowPress gets worse as temperature increases, which is **very different from RowHammer**

RowPress significantly reduces ACmin as tAggON increases

Most Cells Vulnerable to RowPress are NOT vulnerable to RowHammer

RowPress and RowHammer bitflips have opposite directions

As tAggON increases beyond a certain level, **single-sided RowPress becomes more effective** compared to double-sided

