
RowPress: Amplifying Read Disturbance in Modern DRAM Chips
Haocong Luo Ataberk Olgun A. Giray Yağlıkçı Yahya Can Tuğrul Steve Rhyner

Meryem Banu Cavlak Joël Lindegger Mohammad Sadrosadati Onur Mutlu
ETH Zürich

Abstract
Memory isolation is critical for system reliability, security, and
safety. Unfortunately, read disturbance can break memory isolation
inmodern DRAM chips. For example, RowHammer is a well-studied
read-disturb phenomenon where repeatedly opening and closing
(i.e., hammering) a DRAM row many times causes bitflips in physi-
cally nearby rows.

This paper experimentally demonstrates and analyzes another
widespread read-disturb phenomenon, RowPress, in real DDR4
DRAM chips. RowPress breaks memory isolation by keeping a
DRAM row open for a long period of time, which disturbs physi-
cally nearby rows enough to cause bitflips. We show that RowPress
amplifies DRAM’s vulnerability to read-disturb attacks by signifi-
cantly reducing the number of row activations needed to induce a
bitflip by one to two orders of magnitude under realistic conditions.
In extreme cases, RowPress induces bitflips in a DRAM row when
an adjacent row is activated only once. Our detailed characterization
of 164 real DDR4 DRAM chips shows that RowPress 1) affects chips
from all three major DRAM manufacturers, 2) gets worse as DRAM
technology scales down to smaller node sizes, and 3) affects a differ-
ent set of DRAM cells from RowHammer and behaves differently
from RowHammer as temperature and access pattern changes. We
also show that cells vulnerable to RowPress are very different from
cells vulnerable to retention failures.

We demonstrate in a real DDR4-based system with RowHammer
protection that 1) a user-level program induces bitflips by leverag-
ing RowPress while conventional RowHammer cannot do so, and
2) a memory controller that adaptively keeps the DRAM row open
for a longer period of time based on access pattern can facilitate
RowPress-based attacks. To prevent bitflips due to RowPress, we de-
scribe and analyze four potential mitigation techniques, including
a new methodology that adapts existing RowHammer mitigation
techniques to also mitigate RowPress with low additional perfor-
mance overhead. We evaluate this methodology and demonstrate
that it is effective on a variety of workloads. We open source all our
code and data to facilitate future research on RowPress.

CCS Concepts
• Hardware → Dynamic memory; Hardware reliability; • Se-
curity and privacy→ Security in hardware.
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1 Introduction
To ensure system reliability, security, and safety, it is critical to
maintain memory isolation: accessing a memory address should
not cause unintended side-effects on data stored in other addresses.
Unfortunately, with aggressive technology node scaling, dynamic
random access memory (DRAM) [1], the prevalent main mem-
ory technology, suffers from increased read disturbance: accessing
(reading) a DRAM cell disturbs the operational characteristics (e.g.,
stored charge) of other physically close DRAM cells.

RowHammer is an example read-disturb phenomenon where
repeatedly opening and closing (i.e., hammering) a DRAM row
(called aggressor row)many times (e.g., tens of thousands times) can
cause bitflips in physically nearby rows (called victim rows) [2, 3].

RowHammer is a critical security vulnerability as attackers can
induce and exploit the bitflips to take over a system or leak private
or security-critical data [2, 4–55]. Prior works [2, 3] experimentally
demonstrate that RowHammer significantly worsens as DRAM
manufacturing technology scales to smaller nodes. For example,
the minimum number of total aggressor row activations to cause at
least one bitflip (𝐴𝐶𝑚𝑖𝑛) has reduced by 14× in less than a decade [3].
To ensure reliable, secure, and safe operation in modern and future
DRAM-based systems, it is critical to develop a rigorous under-
standing of read disturbance effects like RowHammer.

In this paper, we experimentally demonstrate another wide-
spread read-disturb phenomenon, RowPress, in real DDR4 DRAM
chips. We show that keeping a DRAM row (i.e., aggressor row)
open for a long period of time (i.e., a large aggressor row on time,
tAggON) disturbs physically nearby DRAM rows.1 Doing so induces
bitflips in the victim row without requiring (tens of) thousands
of activations to the aggressor row. We characterize RowPress in
164 off-the-shelf DDR4 DRAM chips from all three major manu-
facturers, and find that RowPress significantly amplifies DRAM’s
1The industry is aware that keeping a DRAM row open for a long period of time can
cause read disturbance: Micron mentions “RAS Clobber” in two earlier patents [56, 57],
while Samsung calls this “Passing Gate Effect” in a very recent work placed on arXiv
while our paper has been under review [58]. We name this phenomenon “RowPress”,
which we believe is an intuitive name that immediately shows the difference compared
to RowHammer in a figurative way: we “press” (i.e., keep open for a long period of
time) instead of “hammer” (i.e., repeatedly open and close) the row.
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vulnerability to read-disturb attacks (i.e., greatly reduces the mini-
mum number of total aggressor row activations to cause at least
one bitflip, 𝐴𝐶𝑚𝑖𝑛).

To illustrate this, Fig. 1 shows the distribution of 𝐴𝐶𝑚𝑖𝑛 (y-axis)
we measure in 164 DRAM chips across all three major DRAM
manufacturers when the aggressor row stays open as much as
tAggON (x-axis) between consecutive activations at 80 ◦C with one
(single-sided) and two (double-sided) aggressor row(s) in a box-and-
whiskers plot.2 We study the single- and double-sided RowPress
access patterns in detail in §5.2.
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Figure 1: 𝐴𝐶𝑚𝑖𝑛 distributions of conventional RowHammer
(RH) and three representative cases of RowPress (RP) at 80◦𝐶
across 164 DDR4 chips from manufacturers S, H, and M.

The two leftmost boxes in each plot shows the distribution of
𝐴𝐶𝑚𝑖𝑛 for the conventional single-sided (orange) and double-sided
(blue) RowHammer pattern, where the aggressor row is open for
the minimum amount of time (𝑡AggON = 𝑡RAS = 36𝑛𝑠)3 allowed by
the DRAM specification [59], as done in conventional RowHammer
attacks [2, 4–55]. We observe that as tAggON increases, compared
to the most effective RowHammer pattern, the most effective Row-
Press pattern reduces 𝐴𝐶𝑚𝑖𝑛 1) by 17.6× on average (up to 40.7×)
when tAggON is as large as the refresh interval (7.8 µs)4, 2) by 159.4×
on average (up to 363.8×) when tAggON is 70.2 µs, the maximum
allowed tAggON [59], and 3) down to only one activation for an
extreme tAggON of 30ms (highlighted by dashed red boxes).

Our detailed characterization results and sensitivity studies sug-
gest that RowPress has a different underlying error mechanism com-
pared to the RowHammer phenomenon in DRAM [2, 3, 27, 35, 62–
67]. We experimentally demonstrate that 1) only less than 0.013% of
the DRAM cells that exhibit RowPress bitflips also exhibit RowHam-
mer bitflips (§4.3), and 2) RowPress behaves very differently from
RowHammer with temperature (§5.1) and access pattern (§5.2)
changes. We also show detailed results demonstrating that cells
vulnerable to RowPress are very different from cells vulnerable to
retention failures (only less than 0.34% overlap).

We demonstrate that a user-level program can induce RowPress
bitflips in a real DDR4-based system that already employs RowHam-
mer protection. The program accesses multiple different columns
of the aggressor DRAM row so that the memory controller keeps
the aggressor row open for a longer period of time to serve these
2The box is lower-bounded by the first quartile (i.e., the median of the first half of the
ordered set of data points) and upper-bounded by the third quartile (i.e., the median
of the second half of the ordered set of data points). The interquartile range (𝐼𝑄𝑅) is
the distance between the first and third quartiles (i.e., box size). Whiskers show the
minimum and maximum values.
3Manufacturer-recommended minimum row open time (𝑡𝑅𝐴𝑆 ) ranges from 32 ns to
35 ns in DDR4 [59]. We use a 36 ns minimum tAggON 1) to cover the whole range of
𝑡𝑅𝐴𝑆 values and 2) due to the limited DRAM command bus frequency of our testing
infrastructure (i.e., we can only send a DRAM command at every 1.5 ns) [60].
4Refresh interval is the time interval between two consecutive refresh commands that
a DRAM row can be kept open [59, 61].

accesses. As a result, the program exercises RowPress and induces
bitflips, while conventional RowHammer cannot, in the presence
of in-DRAM RowHammer mitigation mechanisms (§6). We believe
this program can be the basis of a proof-of-concept RowPress attack.

Our characterization results suggest that DRAM-based systems
need to take RowPress into account to maintain the fundamental
security/safety/reliability property of memory isolation. Based on
our findings, we discuss and evaluate the implications of RowPress
on existing read-disturb mitigation mechanisms that consider only
RowHammer. We propose a methodology to adapt RowHammer
mitigation techniques to also mitigate RowPress with low additional
performance overhead by both 1) limiting the maximum row-open
time, and 2) configuring the RowHammer defense to account for the
RowPress-induced reduction in 𝐴𝐶𝑚𝑖𝑛 . We experimentally demon-
strate that by applying our proposed methodology to two major
techniques (PARA [2] and Graphene [68]), we can mitigate both
RowHammer and RowPress with an average (maximum) additional
slowdown of only 3.6% (13.1%) and −0.63% (4.6%), respectively.

We make the following contributions in this paper:
• To our knowledge, this is the first work to experimentally
demonstrate the RowPress phenomenon and its widespread
existence in real DDR4 DRAM chips from all three major
manufacturers.

• We provide an extensive characterization of RowPress on
164 real DRAM chips. Our results show that RowPress 1)
significantly amplifies DRAM’s vulnerability to read-disturb
attacks, 2) gets worse as DRAM technology scales down,
and 3) is very different from RowHammer and retention
failures in terms of the DRAM cells it affects and in the way
it behaves as temperature and access pattern changes.

• We demonstrate that a simple user-level program induces
RowPress bitflips on a real DDR4-based system, while a state-
of-the-art RowHammer program cannot.

• We describe, analyze, and evaluate four potential ways to mit-
igate read-disturb attacks exploiting RowPress. We introduce
a methodology to adapt existing RowHammer mitigation
techniques to also mitigate RowPress with low additional
performance overhead.

• We open-source [69] all our infrastructure, test programs,
and raw data to enable 1) reproduction and replication of
our results, and 2) further research on RowPress.

2 Background & Motivation
We provide a high-level introduction to DRAM organization (§2.1),
major DRAM operations (§2.2), DRAM timing parameters involved
in this work (§2.3), and read-disturb mechanisms in DRAM (§2.4).

2.1 DRAM Organization
Fig. 2 shows the hierarchical organization of modern DRAM-based
main memory. The CPU’s memory controller communicates with
a DRAM module over a memory channel. A module contains one
or multiple DRAM ranks that share the memory channel. A rank is
made up of multiple DRAM chips that are operated in a lock-step
manner (i.e., all chips receive and process the same command at the
same time). Each DRAM chip contains multiple DRAM banks 1
that can be accessed independently.
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Figure 2: Hierarchical organization of modern DRAM.

Inside a DRAM bank, DRAM cells are organized into a two-
dimensional array, addressed by rows and columns. A DRAM cell 2
consists of 1) a capacitor, which stores one bit of information in the
form of electrical charge level, and 2) an access transistor, which
connects the capacitor to a bitline, controlled by a wordline. When
the row decoder (including wordline drivers) drives a wordline high,
the access transistors of all DRAM cells in the row 3 are enabled,
electrically connecting each cell in the row to its corresponding
bitline. DRAM cells in the same column share a bitline, which is
used to read from and write to the cells via the row buffer 4 (which
contains bitline sense amplifiers, BLSA).

2.2 Major DRAM Operations
DRAM Access. Accessing DRAM consists of three steps. First, the
memory controller issues an ACT (activate) command together with
a row address to the bank. The row decoder drives the wordline of
that row to open the row (i.e., enables the access transistors). Data is
then transferred from the DRAM cells in the row to the row buffer
through the bitlines. Second, once the data is in the row buffer, the
memory controller can send RD/WR commands to read/write data
from/to the opened row. Third, the memory controller sends a PRE
(precharge) command to close the opened row before accessing
another row in the same bank.
DRAM Refresh. DRAM cells lose charge over time, risking reten-
tion failure induced bitflips if their charge is not restored in time. To
avoid this, the memory controller periodically restores each DRAM
row’s charge levels by sending REF (refresh) commands. Before
issuing a REF command, the memory controller must send a PRE
command to close any open row to prepare the bank for refresh.

2.3 Key DRAM Timing Parameters
To guarantee correct operation, the memory controller must time
DRAM commands according to certain timing parameters [59, 61,
70, 71]. Fig. 3 shows a timeline of the key DRAM access operations.
We describe four key timing parameters involved in this work:
1) tRAS, 2) tRP, 3) tREFI, and 4) tREFW.

tRAS is the minimum time between opening a row with an ACT
command and closing the row with a PRE command ( 1 in Fig. 3).
tRP is the minimum time between sending a PRE command and
opening a row with an ACT command ( 2 in Fig. 3). tREFI is the
default time interval between consecutive REF commands. tREFW
is the maximum time window between two refresh operations that
target the same row.

Row Open Row Close Time
ACT PRE ACTRD/WR

❶ tRAS ❷ tRP

Figure 3: Timeline of key DRAM access operations.
A majority of DRAM timing parameters define lower bounds for

the time intervals between pairs of DRAM commands. For example,

tRAS is the minimum amount of time that the memory controller
has to wait before issuing a PRE command to close an open(ed)
DRAM row. The memory controller may keep the DRAM row open
longer than tRAS to serve more RD/WR commands (in anticipation
of future requests to the same row [72–75]), depending on the
memory controller’s implementation and the workload’s access
pattern. In general, if the memory controller does not postpone
REF commands, a DRAM row can be open for a duration of tREFI
before it has to be closed to serve a REF command. Otherwise, a
DRAM row can be open for up to 9× tREFI because the JEDEC DDR4
standard [59] allows postponing up to eight REF commands. Under
normal operating conditions (i.e., within the temperature range of
0◦𝐶 to 85◦𝐶), tREFI is 7.8 µs for commodity DDR4 chips.

2.4 Motivation
There are three major causes of bitflips in DRAM cell arrays: 1) soft
errors caused by charged and/or energetic particle strikes [76–79],
2) data retention failures due to the volatile and leaky nature of
DRAM cells [80–84], and 3) read disturbance (e.g., RowHammer [2,
3, 48, 51, 62–67, 85–93]) caused by undesirable interactions between
circuit components. Both retention failures and RowHammer get
worse as DRAM technology scales down to smaller node sizes.

Read disturbance has significant implications for system relia-
bility, security, and safety because it is a widespread issue and can
be exploited to break memory isolation [2, 4–55]. Therefore, it is
important to identify and understand read disturbance mechanisms
in DRAM. Our goal is to 1) rigorously and comprehensively char-
acterize and investigate the read disturbance caused by increased
aggressor row on time (tAggON), and 2) understand its implications
for secure, reliable, and safe operation of DRAM-based systems.

3 Methodology
We describe our DRAM testing infrastructure and the real DDR4
DRAM chips tested. We explain the methodology of our characteri-
zation experiments in their respective sections (under §4).

3.1 DRAM Testing Infrastructure
We test commodityDDR4DRAMchips using an FPGA-basedDRAM
testing infrastructure that consists of four main components (as
Fig. 4 illustrates): 1) a host machine that generates the test program
and collects experiment results, 2) an FPGA development board
(Xilinx Alveo U200 [94]), programmed with DRAM Bender [60, 95]
(based on SoftMC [96, 97]), to execute our test programs, 3) a ther-
mocouple temperature sensor and a pair of heater pads pressed
against the DRAM chips to maintain a target temperature level, and
4) a PID temperature controller (MaxWell FT200 [98]) that controls
the heaters and keeps the temperature at the desired level.
Disabling Interference Sources. To observe RowPress’ effects
at the circuit level, we disable potential sources of interference
following a methodology similar to prior works [3, 44, 66, 88]. First,
we disable periodic refresh during the execution of our test pro-
grams to 1) keep the timings of our test programs precise and
2) disable any existing on-die RowHammer defense mechanisms
(e.g., TRR) [38, 44] so as to observe the DRAM chip’s fundamental
read disturbance behavior at the circuit level. Second, we bound
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Figure 4: Our DDR4 DRAM testing infrastructure.

our test programs’ execution time strictly within a refresh win-
dow (i.e., 64ms tREFW) of the tested DRAM chips to prevent data
retention failures from interfering with read-disturb failures. Third,
we ensure that the tested DRAM modules and chips have neither
rank-level nor on-die ECC. Doing so ensures that we directly ob-
serve and analyze all circuit-level bitflips without interference from
architecture-level correction and mitigation mechanisms.

3.2 Commodity DDR4 DRAM Chips Tested
Table 1 shows the 164 (21) real DDR4DRAM chips (modules) that we
test from all three major DRAMmanufacturers. To demonstrate that
RowPress is intrinsic to the DRAM technology and is a widespread
phenomenon across manufacturers, we test a variety of DRAM
chips spanning different die densities and die revisions from each
DRAM chip manufacturer.5

Table 1: Tested DDR4 DRAM Chips.

Mfr. #DIMMs #Chips Density Die Rev. Org. Date

Mfr. S
(Samsung)

2 8 8Gb B x8 2053
1 8 8Gb C x8 N/A
3 8 8Gb D x8 2110
2 8 4Gb F x8 N/A

Mfr. H
(SK Hynix)

1 8 4Gb A x8 1946
1 8 4Gb X x8 N/A
2 8 16Gb A x8 2051
2 8 16Gb C x8 2136

Mfr. M
(Micron)

1 16 8Gb B x4 N/A
2 4 16Gb B x16 2126
1 16 16Gb E x4 2014
2 4 16Gb E x16 2046
1 4 16Gb F x16 2150

To account for in-DRAM row address mapping [2, 9, 28, 39, 81,
84, 100–107], we reverse-engineer the physical row address layout,
following the methodology of prior works [3, 44, 66, 88].

4 Major RowPress Characterization
We characterize RowPress by analyzing 1) how DRAM’s vulnera-
bility to read disturbance changes as tAggON increases, and 2) prop-
erties of RowPress bitflips that distinguish them from RowHammer
and retention failure bitflips. We evaluate the sensitivity of Row-
Press biflips to temperature, access pattern, and aggressor row off
time (i.e., tAggOFF) in §5.
5The technology node that a DRAM chip is manufactured with is usually not publicly
available. We assume that two DRAM chips from the same manufacturer have the
same technology node only if they share both the same die density and die revision
code. A die revision code of X indicates that there is no public information available
about the die revision (e.g., the original DRAM chip manufacturer’s markings have
been removed by the DRAM module vendor and the DRAM stepping field in the SPD
is 0x00). More details on the tested chips are in Appendix B of [99].

4.1 Experiment Methodology
Metric. To characterize how RowPress amplifies DRAM’s vulnera-
bility to read disturbance, we examine how the minimum number of
total aggressor row activations to cause at least one bitflip (𝐴𝐶𝑚𝑖𝑛)
changes as tAggON increases. A lower 𝐴𝐶𝑚𝑖𝑛 means more vulnera-
bility to read disturbance.
Access Pattern. Fig. 5 illustrates our RowPress access pattern
targeting a single aggressor row (single-sided) to induce bitflips.
We 1) activate (ACT) the aggressor row (R0), 2) keep the aggressor
row on for a certain amount of time (tAggON), and 3) close the row
with a precharge (PRE) command. To respect the timing constraints,
we wait until precharge latency tRP is satisfied before repeating the
same access pattern. We sweep tAggON from the minimum possible
value of 36 ns (i.e., the nominal tRAS value) up to 30ms. Note that
for tAggON = 36 ns, our single-sided RowPress pattern is identical
to a single-sided RowHammer access pattern.6 We test 3072 rows
(the first, the middle, and the last 1024 rows) in bank 1 for each
DRAM module.

ACTCMD

ADDR R0

PRE ACT

R0

tRAS
tAggON

tRAS
tAggON

...tRP

Figure 5: Single-sided RowPress access pattern used to char-
acterize how 𝐴𝐶𝑚𝑖𝑛 changes as tAggON increases.

Algorithm. For every tAggON value we evaluate, we find the𝐴𝐶𝑚𝑖𝑛

for each tested row using amodified version of the bisection-method
algorithm used by prior works [66, 88]. Instead of a fixed 𝐴𝐶𝑚𝑖𝑛

accuracy (e.g., 100 in [66] and 512 in [88]), we enable an accuracy
of 1%, rounded up to the next integer (i.e., we terminate the search
for 𝐴𝐶𝑚𝑖𝑛 when the difference between the current and previous
measurements of 𝐴𝐶𝑚𝑖𝑛 is no larger than 1% of the previous mea-
surements). We report that we could not induce any bitflip if the test
program’s execution time exceeds 60ms (which is strictly smaller
than the refresh window of 64ms in DDR4 [59]). For every tested
row, we repeat the𝐴𝐶𝑚𝑖𝑛 search five times and report the minimum
𝐴𝐶𝑚𝑖𝑛 value we observe.
Data Pattern.We use a checkerboard data pattern [108] where we
fill the aggressor row with 0xAA and victim rows with 0x55. We
consider three adjacent rows on each side of the aggressor row as
victim rows. We use this data pattern for all our characterization
and sensitivity studies. We study the data pattern sensitivity of
RowPress bitflips in an extended version of our paper [99].
Temperature. We maintain the DRAM chip temperature at a nor-
mal operating condition of 50◦𝐶 .

4.2 Vulnerability to Read Disturbance
Fig. 6 shows the𝐴𝐶𝑚𝑖𝑛 distribution (y-axis) of different die revisions
for all three major DRAM manufacturers as we sweep tAggON (x-
axis) from 36 ns to 30ms in log-log scale. For eachmanufacturer (i.e.,
each plot), we group the data based on the die revision (different
colors) and aggregate the 𝐴𝐶𝑚𝑖𝑛 values from all the rows we test
in all chips with the same die revision. Each data point shows the
mean 𝐴𝐶𝑚𝑖𝑛 value and the error band shows the minimum and
maximum of 𝐴𝐶𝑚𝑖𝑛 values across all tested rows. We highlight the
6The RowHammer access pattern activates an aggressor row as frequently as possible,
and thus closes the row (i.e., precharges the bank) as soon as it can, which is 36 ns (=
tRAS) after the row is opened.

4



RowPress: Amplifying Read Disturbance in Modern DRAM Chips ISCA ’23, June 17–21, 2023, Orlando, FL, USA

tAggON values of 7.8 µs (tREFI) and 70.2 µs (9×tREFI) on the x-axis,
as they are the two potential upper bounds of tAggON, as dictated
by the JEDEC DDR4 standard [59].7 We mark 𝐴𝐶𝑚𝑖𝑛 = 1 on the
y-axis. We make three major observations from Fig. 6.
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Figure 6: 𝐴𝐶𝑚𝑖𝑛 as tAggON increases; single-sided RowPress
at 50◦𝐶.

Obsv. 1. RowPress significantly reduces 𝐴𝐶𝑚𝑖𝑛 as tAggON in-
creases.
For example, for almost all (10 of 12) die revisions from all three

DRAM manufacturers,8 we observe that 𝐴𝐶𝑚𝑖𝑛 reduces by 21× on
average when tAggON increases from 36 ns to 7.8 µs. For modules
with 8Gb B-Dies fromMfr. S, the reduction inmean𝐴𝐶𝑚𝑖𝑛 can reach
up to 59×. If tAggON increases from 36 ns to 70.2 µs, the reduction
in mean 𝐴𝐶𝑚𝑖𝑛 is 190×, and the maximum reduction reaches 537×,
as observed in modules with 8Gb B-Dies from Mfr. S.
Obsv. 2. In extreme cases, RowPress causes bitflips with only
one aggressor row activation (i.e., 𝐴𝐶𝑚𝑖𝑛= 1).
We observe that for almost all die revisions from all three manu-

facturers, 1) we can always induce bitflips as we continue to increase
tAggON until 30ms, and 2) for 13.1% of the tested rows that expe-
rience bitflips, only a single activation of an aggressor row (i.e.,
𝐴𝐶𝑚𝑖𝑛= 1), is needed to induce bitflips when tAggON is 30ms at
50◦𝐶 . We conclude that, unlike RowHammer, RowPress does not
have to rely on repeatedly accessing the aggressor row many times
to induce bitflips.
Obsv. 3. RowPress is a common DRAM vulnerability across all
three major DRAM manufacturers.
We observe that the𝐴𝐶𝑚𝑖𝑛 trends across almost all die revisions

from all three major DRAM manufacturers follow a consistent pat-
tern. First, 𝐴𝐶𝑚𝑖𝑛 decreases slowly as tAggON starts to increase.
For example, when tAggON increases by 5.17× from 36 ns to 186 ns,
𝐴𝐶𝑚𝑖𝑛 reduces on average by only 1.17×, 1.04×, and 1.08× for Mfr.
S, H, and M, respectively. Second, as tAggON continues to increase
(e.g., beyond 7.8 µs),𝐴𝐶𝑚𝑖𝑛 decreases drastically for all three manu-
facturers, following an approximately straight line in log-log scale.
We find that the 𝐴𝐶𝑚𝑖𝑛 trend lines when tAggON ≥ 7.8 µs for all
three manufacturers have very similar slopes: −1.020, −1.013, and
−1.013 for Mfr. S, H, and M, respectively. Given the similarity in
𝐴𝐶𝑚𝑖𝑛 reduction with increasing tAggON across all tested die revi-
sions from all three major manufacturers spanning 164 chips, we
conclude that RowPress is an intrinsic read-disturb phenomenon
to the DRAM technology. Note that a slope close to −1 in log-log
7Whether 7.8 µs or 70.2 µs is the upper bound for tAggON depends on the memory
controller’s implementation. If the memory controller does not allow any refresh
commands to be postponed, the upper bound is 7.8 µs. Otherwise, because the JEDEC
DDR4 standard [59] allows up to eight refresh commands to be postponed (Section
4.26 in [59]), the upper bound can be as high as 70.2 µs.
8The only exceptions are Mfr. H’s 4Gb A-Dies and Mfr. M’s 8Gb B-Dies, none of which
exhibit any bitflips when tAggON is larger than 336 ns with the single-sided RowPress
pattern at 50◦𝐶 .

scale does not mean that𝐴𝐶𝑚𝑖𝑛 reduces linearly as tAggON reduces.
Our extended paper [99] provides a more detailed analysis.

Fig. 7 shows the fraction of the tested rows that have at least one
RowPress bitflip (y-axis) as we sweep tAggON (x-axis). Each plot
corresponds to a different manufacturer. Each curve represents a
different DRAM module and is colored by its die revision.

36
ns

25
6n

s
7.8

μs
70

.2μ
s

30
ms

0.00
0.25
0.50
0.75
1.00

Fr
ac

ti
on

 o
f R

ow
s

w
/ B

it
 F

lip
s

Mfr. S

4Gb F-Die
8Gb B-Die

8Gb C-Die
8Gb D-Die

36
ns

25
6n

s
7.8

μs
70

.2μ
s

30
ms

Mfr. H

4Gb A-Die
4Gb X-Die

16Gb A-Die
16Gb C-Die

36
ns

25
6n

s
7.8

μs
70

.2μ
s

30
ms

Mfr. M

8Gb B-Die
16Gb B-Die

16Gb E-Die
16Gb F-Die

Aggressor row on time (tAggON)

Figure 7: The fraction of rows that experience at least one
bitflip; single-sided RowPress at 50◦𝐶.

Obsv. 4. RowPress worsens as DRAM technology node scales
down.
In general, the more advanced the technology node9 (as indicated

by the die revision), the more rows are vulnerable to RowPress. For
example, for the three 8Gb Dies from Mfr. S, as tAggON increases,
almost 100% of the tested rows of the D-Dies experience RowPress
bitflips, which drops to below 80% for the C-Dies and below 60%
for the B-Dies.
Takeaway 1. RowPress 1) is a common read-disturb phenome-
non in DRAM chips that exacerbates DRAM’s vulnerability to
read disturbance and 2) gets worse as DRAM technology scales
down to smaller node sizes.

To further understand the relationship between tAggON and ag-
gressor row activation count (𝐴𝐶) of RowPress, we examine the
minimum tAggON (tAggONmin) to induce at least one bitflip for a
given activation count using the single-sided RowPress pattern.
Fig. 8 shows how tAggONmin changes as we sweep activation count
from 1 to 10K. The error band shows the minimum and maximum
tAggONmin values. We highlight the two potential upper-bound
tAggON values of 7.8 µs (tREFI) and 70.2 µs (9×tREFI) on the y-axis.
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Figure 8: tAggONmin as aggressor row activation count (AC)
increases; single-sided RowPress at 50◦𝐶.

Obsv. 5. tAggONmin significantly decreases as 𝐴𝐶 increases.
As 𝐴𝐶 increases from 1 to 10000, the average tAggONmin de-

creases from 43.3ms to 4.3 µs, from 48.3ms to 4.8 µs, and from
44.5ms to 4.5 µs for Mfr. S, H, and M, respectively.10 The decreasing

9For a given manufacturer and die density, the later in the alphabetical order the die
revision code is, the more likely the chip has a more advanced technology node.
10We observe no bitflips in modules with Mfr. H 4Gb A-Die and Mfr. M 8Gb B-Die in
this experiment.
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tAggONmin trend lines are very similar across all three manufactur-
ers. Their slopes are -1.000, -0.999, and -1.000 for Mfr. S, H, and M,
respectively, in Fig. 8.11

Obsv. 6. In extreme cases, RowPress can induce bitflips for
tAggON values less than 10ms with only a single aggressor row
activation (i.e., 𝐴𝐶 = 1).
We observe that, for the Mfr. S 8Gb D-Dies, the Mfr. H 16Gb

C-Dies, and the Mfr. M 16Gb E-Dies, there are one, two, and two
rows out of the 3072 rows we test experience bitflips with 𝐴𝐶 = 1
at a tAggONmin value less than 10ms (highlighted with dashed red
lines). The minimum tAggONmin observed for these three dies are
9.2ms, 9.8ms, and 9.0ms, respectively.

4.3 Distinguishing Characteristics of RowPress
Cells Vulnerable to RowPress vs. RowHammer and Reten-
tion Failure.We compare the set of DRAM cells that experience
bitflips from our search for 𝐴𝐶𝑚𝑖𝑛 as we sweep tAggON beyond
36 ns with two other sets of cells: 1) the set of cells that experi-
ence RowHammer bitflips (i.e., when tAggON equals tRAS 36 ns),
and 2) the set of cells that exhibit bitflips in a data retention failure
test.12 Fig. 9 shows how increasing tAggON (x-axis) changes the
fraction of RowPress-vulnerable cells (y-axis) that also experience
RowHammer (retention) failure in the first (second) row of subplots.
Similar to Fig. 7, each curve represents a different DRAM module,
color-coded based on its die revision.
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Figure 9: Overlap ratio of RowPress-vulnerable cells with
RowHammer (first row) and retention failures (second row).

Obsv. 7. An overwhelming majority of the DRAM cells vulner-
able to RowPress are not vulnerable to RowHammer or data
retention failures.
For tAggON ≥ 7.8 µs, on average, only less than 0.013% of DRAM

cells vulnerable to RowPress overlap with those vulnerable to
RowHammer, and less than 0.34% overlap with retention failures.
Therefore, an overwhelming majority of RowPress bitflips are dif-
ferent from those caused by RowHammer and retention failures.13
These results suggest that different failure mechanisms lead to
RowPress and RowHammer bitflips.
Bitflip Direction. Fig. 10 shows the fraction of 1 to 0 bitflips across
all the bitflips we observe (y-axis) as we sweep tAggON (x-axis).
11Note that for Mfr. M’s 16Gb F-Die (colored red), when 𝐴𝐶 = 104 , we observe a
minimum tAggONmin of only 66 ns (cropped in Fig. 8).
12We initialize the DRAM rows with the same checkerboard data pattern as in §4.2,
and disable auto-refresh for four seconds at 80 ◦C to induce retention-failure bitflips,
similar to prior work [82].
13Prior works [2, 3] already show that RowHammer bitflips have little overlap with
retention failure bitflips.

Similar to Fig. 7, each curve represents a different DRAM module,
color-coded based on its die revision.
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Figure 10: Fraction of 1 to 0 bitflips.

Obsv. 8. RowPress and RowHammer bitflips have opposite di-
rections.
With the checkerboard data pattern we test, the dominant bitflip

direction for RowHammer (i.e., when tAggON is 36 ns) is 0 to 1. As
tAggON increases (i.e., for RowPress), for almost all die revisions
from Mfr. S and H (except for Mfr. H’s 4Gb A-Die chips that do not
show any bitflip), the dominant bitflip direction changes to 1 to 0.
For example, the fraction of 1 to 0 bitflips reaches 100% for tAggON
≥ 7.8 µs. Similarly, the fraction of 1 to 0 bitflips in Mfr. M’s 16Gb
B-Die and F-Die chips reaches 75% in this region of tAggON.14 As an
exception, Mfr. M’s 16Gb E-Die chips show an opposite trend: the
fraction of 1 to 0 bitflips decreases as tAggON increases. The reason
for this opposite behavior could be a different layout of true- and
anti-cells compared to that in other chips.15

Takeaway 2. RowPress has a different failure mechanism from
RowHammer and data retention failures in DRAM. There is
almost no overlap between RowPress, RowHammer, and data
retention bitflips, and the directionality of RowHammer and
RowPress bitflips show opposite trends.

5 RowPress Sensitivity Study
We examine the sensitivity of RowPress bitflips to 1) temperature,
2) access pattern, and 3) aggressor row off time (tAggOFF).

5.1 Temperature
Methodology. To investigate how RowPress bitflips change as
DRAMchip temperature changes, we repeat the𝐴𝐶𝑚𝑖𝑛 experiments
(as described in 4.1) except we increase the temperature from 50◦𝐶
to 80◦𝐶 . Fig. 11 shows the mean 𝐴𝐶𝑚𝑖𝑛 values we observe at 80◦𝐶
normalized to 50◦𝐶 as we sweep tAggON at 80◦𝐶 in linear (y-axis) -
log (x-axis) scale.
Obsv. 9. As temperature increases, RowPress reduces 𝐴𝐶𝑚𝑖𝑛

more.
We observe that for all die revisions vulnerable to RowPress,

𝐴𝐶𝑚𝑖𝑛 consistently reduces for the same tAggON value as temper-
ature increases from 50◦𝐶 to 80◦𝐶 . For example, when tAggON is
7.8 µs, the average 𝐴𝐶𝑚𝑖𝑛 at 80◦𝐶 is only 0.55×, 0.32×, and 0.59×
14In a concurrent work [58], DRAM engineers from Samsung claim that the bitflips
caused by RowHammer and the passing gate effect (caused by increased tAggON) have
opposite directionality because RowHammer injects electrons into the victim cell while
the passing gate effect attracts electrons from the victim cell. We call for more detailed
device-level modeling and analysis on this topic.
15A fully charged (discharged) DRAM cell does not necessarily imply that the stored
value is 1 (0). A cell is called true (anti) cell if a fully charged state represents a value
of 1 (0) [81].
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Figure 11: 𝐴𝐶𝑚𝑖𝑛 at 80◦𝐶 normalized to 50◦𝐶; single-sided
RowPress.

of that at 50◦𝐶 , for Mfr. S, H, and M, respectively. Across all manu-
facturers, 𝐴𝐶𝑚𝑖𝑛 reduces by 48× on average (up to 122×, observed
in 8Gb B-Dies from Mfr. S) when tAggON increases from 36 ns to
7.8 µs at 80◦𝐶 . When tAggON increases from 36 ns to 70.2 µs,𝐴𝐶𝑚𝑖𝑛

reduces by 438× on average (up to 1106×) at 80◦𝐶 . In contrast, at
50◦𝐶 , the reduction in 𝐴𝐶𝑚𝑖𝑛 is only 21× on average (up to 59×)
when tAggON increases from 36 ns to 7.8 µs and 190× (up to 537×)
when tAggON increases from 36 ns to 70.2 µs. For a tAggON of 30ms,
82.8% of the rows with bitflips experience an 𝐴𝐶𝑚𝑖𝑛 of only one
(not shown in Fig. 11) at 80◦𝐶 (only 13.1% at 50◦𝐶).

Fig. 12 shows the fraction of rows that have at least one RowPress
bitflip as we sweep tAggON at 80◦𝐶 .
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Figure 12: Fraction of rows that experience at least one bitflip
at 80◦𝐶; single-sided RowPress.

Obsv. 10. Fraction of rows that have at least one RowPress
bitflip significantly increases as temperature increases.
We observe that almost all die revisions from all three manufac-

turers that are vulnerable to RowPress have their fractions of rows
with at least one bitflip increase to almost 100% at 80◦𝐶 . Note that,
for 4Gb A-Die from Mfr. H where we observe no bitflips at all for
tAggON > 336 ns at 50◦𝐶 , we are able to observe bitflips in a small
fraction of rows (on average, 0.86% of all tested rows) with larger
tAggON values up to 30ms at 80◦𝐶 .

To study the effect of increasing temperature on tAggON𝑚𝑖𝑛 (i.e.,
the minimum tAggON to induce at least one bitflip) when 𝐴𝐶 = 1,
we sweep temperature from 50◦𝐶 to 80◦𝐶 with a step size of 5◦𝐶
and show the results in Fig. 13.16 The error band shows the standard
deviation of tAggON𝑚𝑖𝑛 .
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Figure 13: tAggON𝑚𝑖𝑛 when 𝐴𝐶 = 1 as we sweep temperature
from 50◦𝐶 to 80◦𝐶 with 5◦𝐶 steps; single-sided RowPress.

Obsv. 11. As temperature increases, tAggONmin significantly
decreases.

16We do not sweep the temperature with the fine-grained step size 5◦𝐶 for the other
experiments because of the prohibitively long experiment times.

We observe that tAggON𝑚𝑖𝑛 significantly decreases as we grad-
ually increase temperature from 50◦𝐶 to 80◦𝐶 . For Mfr. S, H, and
M, the average (minimum) tAggON𝑚𝑖𝑛 reduces by 1.78× (1.90×),
2.84× (3.24×), and 1.64× (1.95×), respectively, going from 50◦𝐶 to
80◦𝐶 . For example, for 16Gb A-Dies from Mfr. H, across all tested
rows, the average (minimum) tAggON𝑚𝑖𝑛 is 47.4ms (14.3ms) at
50◦𝐶 , and reduces to only 13.0ms (3.0ms) at 80◦𝐶 . Note that for
Mfr. H’s 4Gb A-Die, where we could not induce any bitflip even
when 𝐴𝐶 = 10000 at 50◦𝐶 (Fig. 8), we are able to induce RowPress
bitflips when 𝐴𝐶 = 1 at temperatures ≥ 65◦𝐶 .
Takeaway 3. RowPress gets significantly worse as temperature
increases. This behavior is very different from how RowHammer
bitflips change with temperature [2, 88].

5.2 Access Pattern
Methodology. To investigate how the bitflips induced by RowPress
change as access pattern changes, we repeat the𝐴𝐶𝑚𝑖𝑛 experiments
(described in §4.1) except we use a double-sided RowPress pattern
involving two aggressor rows, as shown in Fig. 14. In the double-
sided RowPress pattern, we replace the row address of every other
aggressor row activation in the single-sided access pattern (shown
in Fig. 5) from R0 to R2. We treat the row R1 between R0 and R2
and three adjacent rows before R0 (i.e., R-1, R-2, R-3) and after R2
(i.e., R3, R4, R5) as the victim rows. We conduct the test at both
50◦𝐶 and 80◦𝐶 .

ACTCMD

ADDR R0

PRE ACT

R2

tAggON tRP
PRE ACT

tAggON tRP

R0

tAggON ...

Figure 14: Double-sided RowPress access pattern.

We show how 𝐴𝐶𝑚𝑖𝑛 changes with the double-sided RowPress
pattern at 50◦𝐶 as we sweep tAggON in Fig. 15. The error band
shows the minimum and maximum 𝐴𝐶𝑚𝑖𝑛 values.
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Figure 15: 𝐴𝐶𝑚𝑖𝑛 of double-sided RowPress; 50◦𝐶.

Obsv. 12. As tAggON increases, double-sided RowPress exhibits
a similar decreasing 𝐴𝐶𝑚𝑖𝑛 trend as single-sided.
As tAggON increases, 𝐴𝐶𝑚𝑖𝑛 significantly decreases with the

double-sided RowPress pattern. The slopes of the overlapping𝐴𝐶𝑚𝑖𝑛

trend lines in Fig. 15 for tAggON ≥ 7.8 µs of Mfr. S, H, M are −1.015,
−1.010, and −1.011, respectively. Compared to the single-sided
RowPress pattern, the decrease in 𝐴𝐶𝑚𝑖𝑛 is much larger with the
double-sided RowPress pattern. For example, on average, when
tAggON increases from 36 ns to 186 ns, 𝐴𝐶𝑚𝑖𝑛 reduces by 1.62×,
1.56×, and 1.64× for Mfr. S, H, and M, respectively, with the double-
sided pattern, compared to only 1.17×, 1.04×, and 1.08× of the
single-sided pattern.

To comprehensively investigate how the access pattern and the
temperature of the DRAM chip affect 𝐴𝐶𝑚𝑖𝑛 , we plot the differ-
ence between single- and double-sided 𝐴𝐶𝑚𝑖𝑛 (i.e., 𝐴𝐶𝑚𝑖𝑛 (𝑠𝑖𝑛𝑔𝑙𝑒) -
𝐴𝐶𝑚𝑖𝑛 (𝑑𝑜𝑢𝑏𝑙𝑒)) at 50◦𝐶 (first row) and 80◦𝐶 (second row) in Fig. 16.
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A data point below 0 means that the single-sided RowPress pattern
needs fewer aggressor row activations in total to induce a bitflip
compared to double-sided.
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Figure 16: Single-sided 𝐴𝐶𝑚𝑖𝑛 minus double-sided 𝐴𝐶𝑚𝑖𝑛 at
50◦𝐶 (first row) and 80◦𝐶 (second row).

Obsv. 13. Single-sided RowPress becomes more effective at
inducing bitflips as tAggON increases beyond a certain value
compared to double-sided RowPress.
We observe that, as tAggON increases, double-sided RowPress is

initially more effective compared to single-sided at 50◦𝐶 (e.g., the
single-sided pattern requires at least 104 more aggressor row acti-
vations to cause bitflips for almost all die revisions when tAggON <

1536 ns). However, as tAggON continues to increase beyond 1536 ns,
single-sided RowPress becomes more effective compared to double-
sided for some die revisions. For example, for tAggON = 1536 ns,
single-sided RowPress requires 4210 less aggressor row activations
on average to induce bitflips compared to double-sided for the
8Gb B-Dies from Mfr. S at 50◦𝐶 . As temperature increases from
50◦𝐶 to 80◦𝐶 , we observe that: 1) single-sided RowPress becomes
even more effective, for example, for the 8Gb B-Dies from Mfr. S,
the single-sided RowPress pattern needs 8699 less aggressor row
activations on average for𝐴𝐶𝑚𝑖𝑛 = 1536 ns compared to the double-
sided RowPress pattern, and 2) for almost all die revisions from
all manufacturers, single-sided 𝐴𝐶𝑚𝑖𝑛 is consistently smaller than
double-sided for tAggON values larger than 7.8 µs.

Note that this behavior is very different from RowHammer,
where double-sided RowHammer is strictly more effective at in-
ducing bitflips than single-sided [2]. Fig. 1 summarizes the 𝐴𝐶𝑚𝑖𝑛

results we observe for single-sided and double-sided patterns for
RowHammer and RowPress at 80◦𝐶 .
Takeaway 4. RowPress behaves very differently from RowHam-
mer as we change the access pattern from single-sided to double-
sided. As tAggON increases beyond a certain value, RowPress
needs fewer aggressor row activations to induce bitflips with
the single-sided pattern compared to the double-sided pattern.

5.3 tAggON vs tAggOFF
Prior works on device-level mechanisms of RowHammer [62, 109]
show that increasing tAggON has little impact on DRAM read dis-
turbance, while doing the opposite, increasing tAggOFF (i.e., the
aggressor row off time), worsens read disturbance. This seems to
contradict our results in §4.2 and §5.2. However, the methodology
of those prior works [62, 109] is limited because they only test 1) a
very small range of tAggON and tAggOFF values (up to 50 ns in [62]
and 72.5 ns in [109]), and 2) a single-sided access pattern.

Access Pattern. To compare RowPress to the read-disturb mecha-
nisms discussed in prior works [62, 109], we design the RowPress-
ONOFF access pattern shown in Fig. 17, based on the pattern pro-
posed in [109]. In this pattern, we can adjust tAggON and tAggOFF by
changing: 1) when we issue the PRE command to close the aggressor
row, and 2) when we issue the ACT command to open the aggressor
row. We denote the time interval between two consecutive ACT
commands as tA2A. Notice that since tA2A = tAggON + tAggOFF, the
minimum possible value of tA2A is min(tAggON) + min(tAggOFF) =
tRAS + tRP = tRC.

ACTCMD ACT
tAggON

tA2A
...tAggOFF

PRE
tAggON

tA2A

PRE
tAggOFF

Figure 17: The RowPress-ONOFF pattern.

Methodology.We fix the activation frequency of a row by fixing
tA2A. We increase tA2A beyond tRC by Δ𝑡A2A = {240, 600, 1200,
2400, 6000} ns. For each tA2A value, we sweep the fraction of Δ𝑡A2A
that contributes to tAggON from 0% to 100% (with a step size of 25%).
For example, 25% means tAggON = 25% Δ𝑡A2A + tRAS, and tAggOFF =
75% Δ𝑡A2A + tRP. For all configurations, we activate the aggressor
row(s) as many times as possible to induce the most number of
bitflips without exceeding the experiment time limit of 60ms. We
conduct the experiments at 50◦𝐶 and 80◦𝐶 .
Metric. We measure the bit error rate (𝐵𝐸𝑅), i.e., the fraction of
DRAM cells in a DRAM row that experience bitflips. We repeat the
experiment five times and report the highest 𝐵𝐸𝑅 to evaluate the
worst-case scenario.

Fig. 18 shows the 𝐵𝐸𝑅 (y-axis) for both single-sided (top row)
and double-sided (bottom row) RowPress-ONOFF pattern for a
representative17 die revision (8Gb D-Die from Mfr. S). We sweep
Δ𝑡A2A (different lines in each plot) and the percentage of Δ𝑡A2A
that contributes to tAggON (x-axis) at 50◦𝐶 (left column) and 80◦𝐶
(right column). The error band shows the standard deviation of
𝐵𝐸𝑅. We make the following three observations.
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Figure 18: BER of the representative Mfr. S 8Gb D-Die; single-
(top row) and double-sided (bottom row) RowPress-ONOFF
pattern at 50◦𝐶 (left column) and 80◦𝐶 (right column).

Obsv. 14. For the single-sided access pattern, increasing tAggON
(i.e., decreasing tAggOFF) with small (large) Δ𝑡A2A values miti-
gates (exacerbates) read disturbance.

17We observe a similar trend for almost all other die revisions (see [99] for more details).
We show only one representative die revision to illustrate the results more clearly.
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For Δ𝑡A2A values ≤ 1200 ns (i.e., the upper three lines in the top
two plots), we observe that BER decreases as we increase tAggON
(and thus decrease tAggOFF) with the single-sided pattern. This
agrees with prior device-level works [62, 64]18 that test a small
range of tAggON/tAggOFF values (up to 50 ns in [62] and 72.5 ns
in [109], respectively). As Δ𝑡A2A takes larger values (e.g., 2400 ns
and 6000 ns), we observe an opposite trend to what we observe with
smaller tA2A values: BER increases as we increase tAggON (and thus
decrease tAggOFF). This is neither observed nor explained by prior
device-level works [62, 64].
Obsv. 15. For the single-sided access pattern, increasing temper-
ature exacerbates read disturbance for large ΔtA2A and tAggON
values.
For the single-sided pattern, we observe that as temperature

increases from 50◦𝐶 to 80◦𝐶 , BER significantly increases (remains
almost unchanged) for large (small) ΔtA2A and tAggON values. For
example, the average BER increases by 7.5× (only 1.04×) from
50◦𝐶 to 80◦𝐶 when ΔtA2A = 6000 ns (240 ns) and 100% of ΔtA2A
contributes to tAggON. At the inflection point of ΔtA2A = 1200 ns,
when 50% to 100% of ΔtA2A contributes to tAggON, BER decreases
at 80◦𝐶 , in contrast to increasing at 50◦𝐶 . This observation is not
fully explained by prior device-level works [62, 64] because they
do not change ΔtA2A, tAggON, and tAggOFF when investigating the
effect of temperature on read disturbance.
Obsv. 16. For the double-sided pattern, read disturbance consis-
tently worsens as tAggON increases and tAggOFF decreases.
For all Δ𝑡A2A values we test with the double-sided access pattern,

we observe that BER consistently increases as tAggON increases (i.e.,
as tAggOFF decreases), unlike the single-sided casewherewe observe
opposite trends for small and large Δ𝑡A2A values. Such a difference
in the bit error rate behavior of single-sided and double-sided access
patterns is not covered by prior device-level works [62, 64]. Our
observations indicate that access pattern plays an important role
in RowPress’s device-level failure mechanisms and further device-
level investigation is necessary to develop a better understanding
of RowPress.
Takeaway 5. RowPress is a read-disturb phenomenon that
existing device-level studies do not fully explain. We call for
more device-level research to provide fundamental lower-level
understanding of the RowPress phenomenon.

6 Real System Demonstration of RowPress
We experimentally demonstrate that a simple user-level C++ pro-
gram can induce RowPress bitflips on a real DDR4-based system
despite the existence of periodic auto-refresh and in-DRAM target
row refresh (TRR) mechanisms employed by the manufacturer.

6.1 Experimental Setup
System Configuration. We use an Ubuntu 18.04 system (Linux
kernel 5.4.0-131-generic [110]) with an Intel i5-10400 (Comet Lake)
processor [111] and a 16GB dual rank DDR4 DRAM module [112]
from Mfr. S (Samsung). This DRAM module has target row refresh
18Injected charge (from diffused channel electrons [64] and charge traps [62]) needs
sufficient amount of time to be recombined at the victim cell and fully exhausted after
the row is closed (i.e., longer tAggOFF)

(TRR) [38, 44], a widely adopted in-DRAM RowHammer mitigation
mechanism employed by DRAM manufacturers.
Memory Address Mapping. We reverse engineer the proces-
sor’s address mapping from physical memory addresses to DRAM
rank, bank, row, and column addresses using DRAMA [18], similar
to prior works (e.g., [38, 43, 45]). We allocate a 1GB page using
hugepage support [113] to directly manipulate the least significant
30 physical address bits that contain all of the DRAM rank and
bank address bits and part of the row address bits. We carefully
generate pointers to aggressor and victim rows within the 1GB
page to precisely place them in physically adjacent DRAM rows.19

6.2 RowPress on Real Systems
Challenges. We face two challenges in inducing RowPress bitflips
in a real system. First, TRR can detect aggressor rows in a RowPress
access pattern and prevent us from inducing bitflips by refreshing
the victim rows. However, TRR mechanisms typically keep track of
only a few aggressor rows [38, 44] and these mechanisms can be
bypassed by certain access patterns that access many other dummy
aggressor rows (called dummy rows [38, 44]) besides the real ag-
gressor rows. Such access patterns aim to trick a TRR mechanism
into detecting only the dummy rows and allow the real aggressor
rows to remain undetected.

Second, the memory controller needs to keep the aggressor row
on for a long duration (i.e., large tAggON) such that we can perform
RowPress. Ensuring that a DRAM row remains open for a large
tAggON value is not straightforward because we do not have fine-
grained control over the timing parameters used and the command
sequences scheduled by the memory controller in a real system (in
contrast to our real chip characterization setup in §3.1). However,
carefully-designed access patterns can make the memory controller
keep the DRAM row open for a long duration. For example, if a
DRAM row is open, the memory controller can serve memory re-
quests that target different cache blocks in the row at high data
transfer rates [59]. Therefore, if an access pattern issues memory
requests to different cache blocks in the same DRAM row, we hy-
pothesize that the memory controller will keep the DRAM row
open to serve subsequent memory requests in the access pattern
(we verify this hypothesis in §6.3).
Test Program. Algorithm 1 shows the key part of our test pro-
gram. We mark the input parameters of the program in red. To
overcome the first challenge, the program is based on an access
pattern described in [44], which can induce RowHammer bitflips
in the presence of TRR. This access pattern uses 16 dummy rows
that are activated shortly after the aggressor rows20 to prevent the
in-DRAM TRR mechanism from detecting the aggressor row activa-
tions [38, 43–45]. To overcome the second challenge and use large
tAggON values, we access multiple (i.e., NUM_READS) cache blocks
in each aggressor row. In every iteration, the access pattern 1) ac-
tivates the two aggressor rows adjacent to a victim row multiple
(i.e., NUM_AGGR_ACTS in line 7) times (i.e., performs double-sided
19Although we leverage a 1GB hugepage for this real-system demonstration of Row-
Press, hugepages are not necessary for allocating physically adjacent DRAM rows and
inducing bitflips, as prior works [30, 37, 41, 47] on system-level RowHammer attacks
experimentally demonstrate. One can extend our real-system demonstration program
to avoid using hugepages.
20Dummy rows are placed at least 100 rows away from the victim row [44] to ensure
that activating them does not cause bitflips on the victim row.
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RowPress with varying tAggON), and 2) activates each of the 16
dummy rows four times (line 17) [44].

1 // find two neighboring aggressor rows based on physical address mapping
2 AGGRESSOR1, AGGRESSOR2 = find_aggressor_rows(VICTIM);
3 // initialize the aggressor and the victim rows
4 initialize(VICTIM, 0x55555555);
5 initialize(AGGRESSOR1, AGGRESSOR2, 0xAAAAAAAA);
6 for (iter = 0 ; iter < NUM_ITER ; iter++):
7 for (i = 0 ; i < NUM_AGGR_ACTS ; i++):
8 // access multiple cache blocks in each aggressor row
9 // to keep the aggressor row open longer
10 for (j = 0 ; j < NUM_READS ; j++): ∗AGGRESSOR1[j];
11 for (j = 0 ; j < NUM_READS ; j++): ∗AGGRESSOR2[j];
12 // flush the cache blocks of each aggressor row
13 for (j = 0 ; j < NUM_READS ; j++):
14 clflushopt (AGGRESSOR1[j]);
15 clflushopt (AGGRESSOR2[j]);
16 mfence ();
17 activate_dummy_rows();
18 record_bitflips[VICTIM] = check_bitflips(VICTIM);

Algorithm 1: RowPress test program.

The test program first initializes the victim and the aggressor
rows using the same checkerboard data pattern we evaluated in our
DRAM chip characterization studies (lines 4–5). We use this data
pattern as it is reported [3] to have the highest average read distur-
bance error coverage across DDR4 chips from three manufacturers.
Second, the test program executes one or multiple (depending on
the NUM_READS parameter) memory load instructions targeting dif-
ferent cache blocks of each aggressor row (lines 10, 11). Executing
multiple memory load instructions to different cache blocks keeps
an aggressor row open for a long time, whereas switching between
different aggressor rows opens and closes the two aggressor rows
as they are in the same bank (§2). Third, the program executes
one or multiple clflushopt instructions to flush the cache blocks
of each aggressor row to DRAM (lines 13–15). Doing so ensures
that subsequent memory accesses (i.e., using load instructions) to
the aggressor rows will access DRAM instead of processor caches.
Fourth, the program executes an mfence instruction (line 16) to
ensure that the data is fully flushed before any subsequent memory
load instruction is executed [2]. Fifth, the program accesses the 16
dummy rows, four times each, to bypass TRR (line 17). For every
victim row, we execute this access pattern for 800K iterations (i.e.,
NUM_ITER=800K in line 6) to gather statistically significant results
and record the bitflips in the victim row (line 18).
Methodology.We run our programusing NUM_AGGR_ACTS={1,2,3,
4}, and NUM_READS={1,2,4,16,32,48,64,80,128}21 on 1500 ar-
bitrarily selected victim rows. To reduce experiment time, we do
not test NUM_READS>48(80) for NUM_AGGR_ACTS=4(3) because the
access pattern would not fit in a tREFI window. We synchronize
our access pattern with the refresh commands, similarly to prior
works [43, 45], to increase the chance of bypassing TRR.
Results. Fig. 19 shows the total number of bitflips (left) and the
number of rows with bitflips (right) for different number of cache
blocks read per aggressor row activation (NUM_READS; x-axis) when
we activate each aggressor row four (top plots), three (middle plots),
and two (bottom plots) times per iteration. We do not plot NUM_-
AGGR_ACTS=1 because we do not observe any bitflips for all NUM_-
READS we test. The leftmost bar in each graph shows the number
of conventional RowHammer-induced bitflips, where we read only a
21A DRAM row in the module we test has 128 cache blocks.

single cache block per aggressor row activation, as done in prior
works that induce RowHammer bitflips (e.g., via proof-of-concept
programs [2] and RowHammer attacks [4–55]), such that the ag-
gressor row is kept open for a short time. Remaining bars in each
graph show results for RowPress-induced bitflips (with an increas-
ing number of cache block reads from left to right, such that the
aggressor row is kept open for an increasing amount of time).

1 2 4 8 16 32 48
0

50
100
150
200
250
300

N
U

M
_A

G
G

R_
AC

TS
 =

 4

8 10 13 32

258

18 2

Ro
wH

am
m
er RowPress

Total Number of Bitflips

1 2 4 8 16 32 48
0

50
100
150
200
250

8 10 13 31

191

18 2

Ro
wH

am
m
er RowPress

Number of Rows with Bitflips

1 2 4 8 16 32 48 64 80
0

100
200
300
400
500

N
U

M
_A

G
G

R_
AC

TS
 =

 3

0 0 1 2 22

436

1 1 0

Ro
wH

am
m
er RowPress

1 2 4 8 16 32 48 64 80
0

50
100
150
200
250
300
350

0 0 1 2 21

285

1 1 0

Ro
wH

am
m
er RowPress

1 2 4 8 16 32 48 64 80 128
Number of Cache Block Reads

Per Aggressor Row Activation (NUM_READS)

0
20
40
60
80

100

N
U

M
_A

G
G

R_
AC

TS
 =

 2
0 0 0 0 0

11

60

83

0 0

Ro
wH

am
m
er RowPress

1 2 4 8 16 32 48 64 80 128
Number of Cache Block Reads

Per Aggressor Row Activation (NUM_READS)

0
20
40
60
80

100

0 0 0 0 0
11

59
79

0 0

Ro
wH

am
m
er RowPress

Figure 19: Number of RowHammer vs. RowPress bitflips (left)
and number of rows with bitflips (right) we observe after
running our test program with four (top), three (middle), and
two (bottom) activations per aggressor row per iteration.

Obsv. 17.Our test program leveraging RowPress induces bitflips
when RowHammer cannot.

Obsv. 18. Our test program leveraging RowPress induces many
more bitflips compared to RowHammer, at the same aggressor
row activation count.
Our test program leveraging RowPress induces a significant

number of bitflips in many DRAM rows while RowHammer cannot
induce any bitflip when NUM_AGGR_ACTS={2,3} (i.e., the program
activates each aggressor row two/three times per iteration). The
program induces up to 83 bitflips in 79 rows when NUM_AGGR_-
ACTS=2 and NUM_READS=64 (i.e., the program reads 64 cache blocks
per aggressor row activation), and up to 436 bitflips in 285 rows
when NUM_AGGR_ACTS=3 and NUM_READS=32.

When NUM_AGGR_ACTS=4, our test program leveraging RowPress
induces significantly more bitflips compared to RowHammer. For
example, the program induces up to 258 bitflips in 191 rows when
NUM_READS=16. In comparison, RowHammer induces only 8 bitflips
in 8 rows with the same aggressor row activation count.
Takeaway 6. Leveraging RowPress, a user-level program 1)
induces bitflips when RowHammer cannot, and 2) induces many
more bitflips compared to RowHammer, at the same aggressor
row activation count.

Obsv. 19. In a real system, our test program does not always
induce more bitflips as the number of cache blocks read per
aggressor row activation increases.
We observe that the number of bitflips and DRAM rows with

bitflips first increases significantly as we increase NUM_READS, but
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then decreases significantly after NUM_READS reaches a certain point.
For example, when NUM_AGGR_ACTS=4, the number of bitflips (rows
with bitflips) keeps increasing from 8 (8) to 258 (191) as NUM_READS
increases from 1 to 16, but then decreases to 18 (18) when NUM_-
READS is 32, and only 2 (2) when NUM_READS is 48.

We attribute the increase in the number of bitflips and rows with
bitflipswhen NUM_READS increases to two reasons. First, the increase
in NUM_READS causes the memory controller keep the DRAM row
open for a longer period of time, which leads to an increase in
tAggON. Second, the increase of NUM_READS reduces the activation
frequency of the real aggressor rows compared to the dummy rows,
which reduces the probability of real aggressor rows being detected
by the TRR mechanism. We hypothesize that the reasons for the
decrease in the number of bitflips and rows with bitflips after NUM_-
READS increases beyond a certain value are that 1) the access pattern
becomes too long, making it difficult to synchronize with the refresh
commands, and 2) the activation frequency of the aggressor rows
becomes too low to induce a large number of bitflips.

We conclude that, with a user-level program on a real DDR4-
based Intel systemwith TRR protection, 1) RowPress induces bitflips
when RowHammer cannot, 2) RowPress induces many more bitflips
than RowHammer, and 3) increasing tAggON up to a certain value
increases RowPress-induced bitflips and number of rows with such
bitflips. Thus, read-disturb-based attacks on real systems (e.g., [38,
45]) can leverage RowPress to be more effective.

6.3 Verifying tAggON Increase
We assumed in our real system experiment in the previous section
that accessing different cache blocks in a DRAM row can keep the
row open for a long time. We now briefly describe how we verify
that this is indeed the case. We develop a simple program that 1)
flushes all cache blocks of a tested DRAM row from the processor’s
caches using clflushopt instructions22, 2) accesses a different row
in the same bank as the tested row to ensure that the memory
controller sends a precharge command to close the open row, and
3) records how many processor cycles it takes to access each cache
block in the tested DRAM row. We run this program 100K times to
collect statistically significant results.

Fig. 20 shows the frequency histogram of latency values (ob-
served using Intel time stamp counter [114]) for 1) accessing the
first cache block (green bars) and 2) accessing the subsequent (i.e.,
the remaining 127) cache blocks (blue bars). We mark the median
latency values for these two types of accesses with dashed red lines.

≤ 190 200 210 220 230 240 250 ≥ 260
Latency (Cycles)

0.00
0.05
0.10
0.15
0.20

Fr
eq

ue
nc

y 30 cycles

Subsequent Accesses to Remaining Cache Blocks Access to First Cache Block

Figure 20: Histogram of the latency of the first and remaining
cache block accesses to the same DRAM row.
22We disable all hardware prefetchers of the processor by modifying model-specific
register values [114] before running the verification program. Doing so, together with
the clflushopt instructions that flushes all cache blocks in the tested DRAM row in
the program, makes sure subsequent accesses to the remaining cache blocks (i.e., after
accessing the first cache block) of the row are served from DRAM.

We observe that the median latency values of accessing the first
cache block and the other cache blocks are 30 cycles apart. Access-
ing the first cache block takes significantly longer than accessing
other cache blocks. This happens because the first access requires
activation of the DRAM row but the remaining ones do not. We
conclude that, in the system we test, accessing consecutive cache
blocks in an activated row causes the memory controller to keep the
DRAM row open. Thus, existing memory controllers that behave
similarly (e.g., using adaptive row buffer management policies [72–
74, 115–121]) can facilitate future attacks leveraging RowPress.

7 Mitigating RowPress
We examine four potential ways to mitigate RowPress bitflips: 1) us-
ing error correcting codes (ECC), 2) decoupling the row buffer from
the opened DRAM row, 3) limiting the maximum row-open time,
and 4) adapting existing RowHammer mitigations to account for
RowPress. We believe the fourth way is the most effective among
the four. §7.1, §7.2, and §7.3 explain why the first three approaches
are either ineffective or undesirable mitigations for RowPress. §7.4
describes and evaluates our proposed adaptations of RowHammer
mitigations, using Graphene [68] and PARA [2] as examples.

7.1 Error Correcting Codes (ECC)
We examine the capability of ECC, which is widely used in modern
memory systems to correct memory errors, in mitigating RowPress.
We analyze the number of bitflips in every 64-bit word for both
single- and double-sided RowPress for a tAggON of 7.8 µs. To maxi-
mize the number of bitflips at this tAggON, we activate the aggressor
row(s) as many times as possible within 60ms at 80◦𝐶 . Fig. 21 is a
box-and-whiskers plot that shows the distribution of the number of
erroneous 64-bit words with 1) at most two bitflips (1–2), 2) at least
three and at most eight bitflips (3–8), and 3) more than eight bitflips
(>8) across all tested modules from every manufacturer (x-axis).
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Figure 21: Number of 64-bit words with different bitflip
counts for single-sided (left) and double-sided (right) Row-
Press.

We make two key observations from our analysis. First, there
are up to 25 RowPress bitflips (not shown) in a 64-bit data word. ECC
schemes that arewidely used inmemory systems (e.g., SECDED [122]
and Chipkill [123–125]23) cannot correct or detect all RowPress
bitflips we observe, which can lead to silent data corruption [126–
128]. Even a (7, 4) Hamming code (correcting one bitflip in a 4-bit
data word) [122] with 75% DRAM storage overhead (3 parity bits
for every 4 data bits), is not capable of correcting 25 bitflips in a
64-bit data word. Other ECC schemes that can correct all RowPress
23Chipkill [123–125] can correct one-symbol errors and detect two-symbol errors.
Because we observe up to 25 bitflips in a 64-bit data word, at least seven (four, two),
symbols (i.e., data from seven, four, two DRAM chips, for x4, x8, and x16 chips, respec-
tively) will be erroneous. Therefore, Chipkill cannot provide guaranteed mitigation
against RowPress.
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bitflips require prohibitively large storage overheads. Thus, relying
on ECC alone to prevent all RowPress bitflips is a very expensive
solution. Second, for all three manufacturers (Mfrs. A, B, and C), a
significant fraction (up to 0.99%, 35.77%, and 10.08% for tAggON =

7.8 µs, respectively) of 64-bit data words exhibit at least three Row-
Press bitflips. This makes RowPress bitflips costly to prevent using
techniques like memory page retirement (where erroneous DRAM
rows are not used in the system) [129, 130] since such techniques
could render up to 35.77% of storage capacity useless.

7.2 Decoupling the Row Buffer from the Row
Prior works [131, 132] on improving DRAM performance and en-
ergy efficiency propose to decouple the row buffer from the DRAM
row by disconnecting the DRAM row from the row buffer and
de-asserting the wordline once the charge restoration process is
completed after row activation. Doing so can potentially aid with
RowPress mitigation because it limits tAggON to the minimum pos-
sible value (tRAS) regardless of the number of read requests sent
to the DRAM row. However, there are at least three issues with
this solution. First, it requires non-trivial changes in cost-sensitive
DRAM chips. Second, to prevent write requests from increasing
tAggON, the row needs to be reconnected to the row buffer (by
re-asserting the wordline) only for the last write request, which fur-
ther complicates DRAM chip design and memory controller request
scheduling [132]. Third, row buffer decoupling does not provide
mitigation against RowHammer . We leave a detailed evaluation of
using row buffer decoupling to mitigate RowPress to future works.

7.3 Limiting the Maximum Row-Open Time
Since RowPress is caused by keeping a DRAM row open for a long
period of time, limiting themaximum row-open time (𝑡𝑚𝑟𝑜 ) by modi-
fying the memory controller’s row policy (i.e., forcing the closing of
a row after 𝑡𝑚𝑟𝑜 even if there are requests in the memory controller
ready to be served from the opened row) may appear to be a mitiga-
tion for RowPress. However, it is not effective because closing the
row does not mitigate the read disturbance already caused by the
longer activation, unless 𝑡𝑚𝑟𝑜 is set to its minimum possible value,
tRAS (as we show in Fig. 15, 𝐴𝐶𝑚𝑖𝑛 decreases as soon as tAggON
is higher than tRAS). Having such a row policy that immediately
closes an opened row after tRAS causes two issues. First, it may
turn a benign workload with high row-buffer locality to a poten-
tial RowHammer attack as the same DRAM row may have to be
activated more times. Second, it can cause large slowdown as it
increases the average memory access latency by reducing the row
buffer hit rate (our results show up to 34.1% performance degra-
dation24). We show in §7.4 that mitigating RowPress is possible
by co-designing a row policy that enforces 𝑡𝑚𝑟𝑜 together with an
enhanced RowHammer mitigation technique.

Some existing row policy proposals adapt 𝑡𝑚𝑟𝑜 based on row
access patterns (e.g., keep the row open for longer when the row is
predicted to be accessed soon in the future) [115–121]. Such row
policies cannot mitigate RowPress as 𝑡𝑚𝑟𝑜 can be controlled by an
attacker to be set to larger values than tRAS, as we show in §6.
24Compared to the open-row baseline, observed in 462.libquantum from [133]. Our
extended paper [99] provides detailed results.

7.4 Adapting Existing RowHammer Mitigations
Adaptation Methodology. We propose a simple yet effective
methodology to adapt existing RowHammer mitigation mecha-
nisms to also mitigate RowPress with low additional area overhead.
The key idea is, based on device characterization (§4, §5), to 1) quan-
tify the worst-case (across different temperatures, access patterns,
and data patterns) read disturbance caused by longer row-open
time and translate it into an equivalent reduction in the RowHam-
mer threshold (𝑇𝑅𝐻 ), defined as the minimum number of aggressor
row activations needed to cause a RowHammer bitflip, and 2) also
limit the maximum row-open time (𝑡𝑚𝑟𝑜 ). For example, if the device
characterization shows that for a tAggON of 𝑋ns, 𝐴𝐶𝑚𝑖𝑛 reduces by
a maximum of 𝑌%, then the adapted RowHammer mitigation mech-
anism will have 𝑇

′
𝑅𝐻

= (1 − 𝑌%)𝑇𝑅𝐻 , and the memory controller
must close the opened row after 𝑋ns even if there are requests
ready to be served by the row.
Security Analysis.Assuming the original RowHammer mitigation
is secure (i.e., it issues preventive refreshes to the victim rows before
any DRAM row is activated 𝑇𝑅𝐻 times within the refresh window)
and the DRAM device is properly characterized to uncover the
worst-case RowPress vulnerability, our adapted mitigation mecha-
nism 1) still mitigates RowHammer because the adapted mitigation
is more aggressive than the original mitigation (i.e., 𝑇

′
𝑅𝐻

is strictly
smaller than 𝑇𝑅𝐻 ), and 2) mitigates RowPress because the limited
maximum row-open time ensures that at least 𝑇

′
𝑅𝐻

activations to
a DRAM row are needed to induce RowPress bitflips, which the
adapted mitigation already properly prevents (i.e., a preventive
refresh is issued before a row is activated 𝑇

′
𝑅𝐻

times).
Configuration and Evaluation. Our adaptation methodology is
applicable to a wide range of RowHammer mitigations. We demon-
strate this by applying it to two major ones: Graphene [68], a low
performance overhead mechanism, and PARA [2], a low area over-
head mechanism. We denote the adapted versions of Graphene
and PARA as Graphene-RowPress (RP) and PARA-RowPress (RP),
respectively. We use the characterization results of the 8Gb B-Die
fromMfr. S to configure Graphene-RP and PARA-RP with a baseline
𝑇𝑅𝐻 of 1K using the methodology provided in [2, 68], as shown in
Table 2. We perform a sensitivity study of their respective perfor-
mance overheads over Graphene and PARA25 with these configu-
rations using Ramulator [136, 137] with a realistic baseline system
configuration26 and show the results in Table 2.

Table 2: Graphene-RP and PARA-RP evaluations.

𝑡𝑚𝑟𝑜 (ns) 36 (=tRAS) 66 96 186 336 636
𝑇 ′
𝑅𝐻

1000 (=𝑇𝑅𝐻 ) 809 724 619 555 419

Graphene-RP𝑇 333 269 241 206 185 139
Avg. Perf. Overhead 1.3% -0.43% -0.63% -0.49% -0.14% 0.60%
Max. Perf. Overhead 10.2% 6.6% 6.4% 5.0% 5.0% 4.6%

PARA-RP 𝑝 0.034 0.042 0.047 0.054 0.061 0.079
Avg. Perf. Overhead 3.2% 3.6% 4.5% 6.0% 7.9% 12.9%
Max. Perf. Overhead 23.8% 13.4% 13.1% 14.7% 19.4% 31.6%

25Measured by theweighted speedup [134, 135] of Graphene-RP (PARA-RP) normalized
to Graphene (PARA).
264GHz out-of-order core, dual-rank DDR4 DRAM [59], FR-FCFS [73, 74] scheduling,
open-row policy. 58 four-core multiprogrammed workloads from SPEC CPU2017 [133],
TPC-H [138], and YCSB [139]. We find similar performance results for single-core
workloads, as shown in our extended version [99].
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We make two major observations from the results. First, Graphene-
RP and PARA-RP can mitigate RowPress at low additional per-
formance overhead. Compared to Graphene (PARA), Graphene-
RP (PARA-RP) has an average slowdown of only −0.63% (3.2%)
when 𝑡𝑚𝑟𝑜 is 96ns (36ns). When 𝑡𝑚𝑟𝑜 is 636ns (96ns), Graphene-RP
(PARA-RP) causes a maximum slowdown of only 4.6% (13.1%) over
Graphene (PARA). The reason for the small negative slowdowns
(i.e., speedups) is that some 𝑡𝑚𝑟𝑜 values improve fairness between
cores in a way that increases weighted speedups (similar to [72, 75]).
Second, the performance overheads of Graphene-RP and PARA-RP
change differently with different 𝑡𝑚𝑟𝑜 configurations. For Graphene-
RP, having a 𝑡𝑚𝑟𝑜 value that is either smaller or larger than 96ns
increases the performance overhead. This is because row-buffer
locality reduces at a smaller 𝑡𝑚𝑟𝑜 , and more preventive refreshes
are issued at a larger 𝑡𝑚𝑟𝑜 . For PARA-RP, any 𝑡𝑚𝑟𝑜 value larger
than 36ns increases the performance overhead. The reason is that
PARA’s performance overhead does not scale well with smaller
𝑇 ′
𝑅𝐻

[3, 68, 140], and thus the benefit of longer row-open time is
outweighed by the performance overhead of more preventive re-
freshes. We conclude that existing RowHammer mitigations can be
relatively easily adapted to mitigate RowPress at low additional per-
formance overhead. We provide more evaluations of our proposed
mitigation mechanisms in an extended version of this paper [99].
We expect future work to introduce new mitigation mechanisms,
as it has been happening analogously for RowHammer.

8 Related Work
To our knowledge, this is the first work to experimentally demon-
strate and characterize RowPress, a widespread read-disturb phenom-
enon in real DRAM chips. Our analysis of RowPress (especially in
§4.3, §5.1 and §5.2) shows that RowPress is different from RowHam-
mer. This section highlights the most relevant works.
RowHammer with Increased tAggON. A recent experimental
characterization of real DRAM chips [88] and prior device-level
studies [62, 64] provide preliminary results on how increasing
tAggON by small amounts affects RowHammer bitflips. These works
treat this phenomenon the same as RowHammer and do not iden-
tify a DRAM read-disturb phenomenon different from RowHammer
because they do not: 1) test a wide range of tAggON values (only up
to 154.5 ns in [88], 50 ns in [62], and 72.5 ns in in [64], as opposed
to up to 30ms in our work), 2) study sensitivity of increased tAggON
to temperature and access pattern, and 3) study the properties of
the bitflips they induce. As such, these works attribute the bitflips
to RowHammer. In contrast, our work clearly shows that RowPress
bitflips have almost no overlap with RowHammer bitflips and thus
RowPress is a different phenomenon from RowHammer.
RAS Clobber. Two patents from Micron [56, 57] very briefly men-
tion a “RAS Clobber” effect similar to RowPress. They only describe
RAS Clobber as “the selected word line is driven to the active
level continuously for a considerably long period” [56], and “stress
applied to adjacent word lines by a word line being on for an ex-
tended duration” [57]. These patents do not provide any evaluation,
analysis or demonstration of this effect, and they do not clearly
distinguish this effect from RowHammer. We show through de-
tailed real DRAM chip characterization that RowPress is different
from RowHammer (§4, §5), and demonstrate that RowPress can be

leveraged to induce bitflips in a real system (§6). [56] describes a
sampling-based read disturbance mitigation mechanism which they
claim can handle both RowHammer and RAS Clobber. We introduce
a general methodology that adapts existing RowHammer mitiga-
tion mechanisms to also mitigate RowPress (§7.4). [57] proposes to
lower the wordline voltage after row activation and charge restora-
tion to mitigate RAS Clobber. However, it does not demonstrate
that reduced wordline voltage eliminates the read disturbance effect
of increased tAggON. Neither patent [56, 57] evaluates or analyzes
its proposed mitigation mechanisms at the system-level.
Other DRAMRead Disturbance Mitigation Techniques.Many
works (e.g., [2, 24, 31, 59, 68, 86, 140–166]) propose techniques to
mitigate RowHammer bitflips. None of these take RowPress into
account.27 We describe a methodology to adapt such techniques to
mitigate both RowHammer and RowPress and evaluate it on two
example prior works [2, 68] (§7.4).

9 Conclusion
We demonstrated and experimentally analyzed a widespread read-
disturb phenomenon called RowPress inmodern DRAM chips: keep-
ing a row open for a long time disturbs physically nearby rows
enough to cause bitflips. Our experimental characterization of 164
real DRAM chips reveals that RowPress 1) has a different underly-
ing mechanism from the well-studied RowHammer phenomenon,
2) greatly amplifies DRAM’s vulnerability to read disturbance by
reducing the number of activations to induce a bitflip by one to
two orders of magnitude (and in extreme cases to only a single
activation), and 3) becomes worse as DRAM technology node size
reduces. We demonstrate that a user-level program causes Row-
Press bitflips in a real system, even in the presence of in-DRAM
read-disturb mitigation mechanisms, much more so than the bit-
flips RowHammer can induce. We describe a methodology to adapt
existing read-disturb mitigation mechanisms that only consider
RowHammer to also mitigate RowPress, enabling strong protec-
tion against RowPress with low additional performance overhead.
We hope that the findings reported in this work lead to further
examination of and new solutions to the RowPress phenomenon at
multiple levels of the computing stack. To this end, we open source
all our infrastructure, test programs, and raw data at [69].
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A Artifact Description Appendix
A.1 Abstract
Our artifact [69, 169] contains the data, source code, and scripts
needed to reproduce our results, including all figures in the paper.
We provide: 1) original characterization data from our real-chip
characterization (§4, §5) and source code of the DRAM Bender [60,
95] program used to perform the characterization, 2) the source code
of our real-system demonstration (§6), and 3) the source code of the
Ramulator [136, 137] implementation of our proposed RowPress
mitigation (§7.4). We provide Python scripts and Jupyter Notebooks
to analyze and plot the results for all three parts (referred to as
Characterization, Demonstration, and Mitigation, respectively).

A.2 Artifact Check-list (Meta-information)
Parameter Value

Program
C++ program
Python3 scripts/Jupyter Notebooks
Shell scripts

Compilation C++17 compiler (tested with GCC 9)

Run-time environment

Ubuntu 20.04 (or similar) Linux
Ubuntu 18.04 (with Linux kernel 5.4.0-131-generic [110]), used for
reproducing Demonstration results
Python 3.9+
DRAM Bender [60]
Boost 1.71+
Xilinx Vivado 2020.2+
Slurm 20+

Hardware

x86 machine w/ PCIe 3.0 x16 slot
FPGA development board supported by DRAM Bender
(e.g., Xilinx Alveo U200)
Temperature control setup for DRAM modules under test
(e.g., Maxwell FT200)

Output Data and execution logs in plain text and plots in pdf and png format

Experiment workflow Perform characterizations (simulations), aggregate results, and
run analysis scripts on the results

Experiment Customization Possible. See §A.7.1 for details
Disk space requirement ≈ 1TB
Workflow preparation time ≈ 1 day

Experiment completion time

≈ 3 hours (Reproduce characterization figures with provided raw data)
3 to 4 weeks per DRAM module (Replicate characterization results)
≈ 5 days (Demonstration)
≈ 1 day (Mitigation)

Publicly available? Zenodo (https://doi.org/10.5281/zenodo.7750890)
Github (https://github.com/CMU-SAFARI/RowPress)

Code licenses MIT

A.3 Description
A.3.1 How to Access
The artifact is available on Zenodowith DOI https://doi.org/10.5281/
zenodo.7750890. The live repository is at https://github.com/CMU-
SAFARI/RowPress.

A.3.2 Hardware Dependencies
Characterization. To reproduce our real-DRAM characterization
results (figures) using the provided raw data from our experiments,
a Linux workstation with 1TB free disk space is required (the data
size is about 800GB before compression). To replicate our results,
the reader needs a similar setup as shown in Fig. 4:

• A host x86 machine with a PCIe 3.0 x16 slot.
• An FPGA board with a DIMM/SODIMM slot supported by
DRAM Bender [60, 95] (e.g., Xilinx Alveo U200 [94]).

• Heater pads attached to the DRAM module under test.
• A temperature controller (e.g., MaxWell FT200 [98]) con-
nected to the heater pads and programmable by the host
machine.

Demonstration. To reproduce our real-system demonstration of
RowPress, the reader needs a system with an Intel Core i5 10400
(Comet Lake-S) [111] processor and a Samsung M378A2K43CB1-CTD
DDR4DRAMmodulewith the 8GbC-Dies fromMfr. S (K4A8G085WC-
BCTD) [112]. We describe how to adapt our demonstration program
to replicate our results on systems with a different processor and
DRAM module in §A.7.2.
Mitigation. The Ramulator [136, 137] implementation of our pro-
posed RowPress mitigation can be run on a Linux workstation. We
recommend using a machine or a compute cluster with many CPU
cores and large main memory to parallelize the simulation tasks.

A.3.3 Software Dependencies
• GNU Make, CMake 3.10+
• C++17 build toolchain (tested with GCC 9)
• boost 1.71+
• Xilinx Vivado 2020.2+
• pigz for fast decompression of raw characterization data
• Python 3.9+ with Jupyter Notebook
• pip packages: pandas, scipy, matplotlib, and seaborn
• Slurm 20+
• Ubuntu 18.04 (Linux kernel 5.4.0-131-generic [110]) for re-
producing Demonstration

A.4 Installation
To reproduce our results, no system-level installation is needed for
Characterization and Mitigation. For Demonstration, 1GB hugepage
support is required to simplify the process of finding neighboring
DRAM rows in a real system.

To replicate our real-DRAM characterization, please follow the
instructions in DRAM Bender’s Github repository [95] to install all
dependencies to run DRAM Bender programs.

A.5 Experiment Workflow
A.5.1 Characterization (Reproducing Figures)
We describe how to reproduce all figures related to our real-DRAM
characterization using the raw data from the artifact. For readers
who wish to replicate our characterization results using their own
infrastructure and DRAM modules, please see §A.7.1 for details.

(1) Extract raw characterization data (≈ 800GB):
$ tar -I pigz -pxvf rowpress_characterization_data.tar.gz

(2) Process the raw data into pandas dataframes:
$ cd characterization/analysis/scripts

$ DATA_ROOT=<path-to-data>

$ ./process_data_slurm.sh ${DATA_ROOT}

The processed characterization data will be placed at character-
ization/analysis/processed_data/. To reproduce all figures
related to Characterization, open characterization/analysis/-
plots/paper_plots.ipynb and run all code blocks. We use Mark-
down blocks in the notebook to clearly mark and explain all figures.
The generated figures can be viewed both in the notebook and in
characterization/analysis/plots/output/.
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A.5.2 Demonstration
(1) Build the demonstration program:

$ cd demonstration/

$ make

(2) Run the program with root privilege (required only for ac-
cessing the hugepage) and analyze the bitflip results:
$ sudo ./mount_hugepage.sh # Should print 1 if successful

$ sudo demo --num_victims 1500 > bitflips.txt

$ python3 analyze.py bitflips.txt > parsed_results.txt

Open real_system_bitflips.ipynb and run all code blocks
to analyze the results and reproduce Fig. 19.

(3) Verify that tAggON increases (§6.3):
$ sudo ./disable_prefetching.sh

$ sudo demo --verify

Open real_system_access.ipynb and run all code blocks
to reproduce Fig. 20.

A.5.3 Mitigation
Our artifact contains: 1) a modified version of Ramulator where
we implement our proposed RowPress mitigation, 2) traces used to
form workloads, and 3) scripts that automatically generate simula-
tion configurations. The following instructions assume the reader
is using Slurm to schedule a large number of parallelizable sim-
ulation jobs. Alternatively, readers can find the command lines
for individual simulation jobs in the form of mitigation/run_-
cmds/<config>-<workload>.sh after executing step 2 to be used
for their own job scheduler.

(1) Build ramulator:
$ cd mitigation/ramulator/

$ ./build.sh

(2) Generate simulation configurations and submit jobs:
$ python3 gen_jobs.py

$ ./run.sh

Executing the above generates Ramulator statistics files from the
simulations in mitigation/results. The reader can then open the
mitigation/analyze.ipynb Jupyter notebook and run all code
blocks to reproduce our results in Table 2.

A.6 Evaluation and Expected Results
Running each of the experiments described in §A.5 is sufficient to re-
produce all of 1) our real-chip characterization results (Fig. 1, Fig. 6
to Fig. 13, Fig. 15, Fig. 16, Fig. 18, and Fig. 21), 2) real-system demon-
stration of RowPress (Fig. 19 and Fig. 20), and 3) simulation results
of our proposed RowPress mitigation (Table 2).

A.7 Experiment Customization
A.7.1 Characterization
The source code of our RowPress characterization program is at
characterization/DRAM-Bender/sources/apps/RowPress/. A
python script characterization/run.py automates the experi-
ments. Note that this script is tightly coupled to our internal DRAM
testing infrastructure to provide ad-hoc functionalities (e.g., ex-
periment and infrastructure status book-keeping, communicating
with the temperature controller). Readers who wish to replicate

our characterization on their own infrastructure can modify char-
acterization/run_bare.py, which includes the infrastructure-
independent experiment parameters, with characterization/run.py
as a reference to perform the experiments on their own testing in-
frastructure. Performing all experiments for a single DRAMmodule
takes about three to four weeks.

Our RowPress characterization program is highly configurable
to test different DRAMmodules, data and access patterns, aggressor
row activation counts, tAggON/tAggOFF values, etc. Note that it is
the responsibility of the reader’s own DRAM testing infrastructure,
not our characterization program, to control the temperature of
the DRAM chips. We explain some key options in Table 3, and
encourage the reader to refer to the help messages of the program
for all options and their explanations.

Table 3: Key Options of RowPress Characterization Program
Option Explanation

--help Print all available options and their explanations.

--experiment

0 (Bitflips for given access pattern and activation count)
1 (ACmin for given access pattern)
3 (Retention failures for given refresh-idle time)
5 (Bitflips for given RowPress-ONOFF pattern and activation count)

--pattern_file Path to a file specifying the data pattern and
spatial layout of the aggressor and victim rows.

--hammer_count The number of activations per aggressor row.

--RAS_scale The increase in tAggON beyond tRAS (1 unit = 30ns).

--extra_cycles Δ tA2A for the RowPress-ONOFF pattern (1 unit = 6ns).

--RAS_ratio Fraction of Δ tA2A that contributes to tAggON

A.7.2 Demonstration
On the system described in §A.3.2, the reader can change the num-
ber of victim rows to be tested using the demonstration program
with the command line option --num_victims. The number of
cache blocks accessed per aggressor row activation can be config-
ured bymodifying the no_reads_arr array in line 635 of main.cpp.

To successfully run the demonstration program on a different
system (i.e., different processor and/or DRAM module) from that
described in §A.3.2, the reader needs to perform the following:

(1) Reverse engineer the DRAM address mapping of the memory
controller of the processor.

(2) Obtain a baseline access pattern (e.g., using U-TRR [44])
that can bypass the existing on-die RowHammer mitigation
mechanism.

(3) Profile the system to obtain a threshold memory access la-
tency that can be used to decide whether a DRAM refresh
is happening (used to synchronize the access pattern with
DRAM refresh).

We explain these steps and how to modify the demonstration pro-
gram in demonstration/README.md.

A.7.3 Mitigation
The provided configurations can be evaluated with user-provided
Ramulator traces. To includemore traces in the job generation script,
please modify the list of traces in mitigation/gen_jobs.py.
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