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ABSTRACT
Simple graph algorithms such as PageRank have been the target of
numerous hardware accelerators. Yet, there also exist much more
complex graph mining algorithms for problems such as clustering
or maximal clique listing. These algorithms are memory-bound
and thus could be accelerated by hardware techniques such as
Processing-in-Memory (PIM). However, they also come with non-
straightforward parallelism and complicated memory access pat-
terns. In this work, we address this problem with a simple yet
surprisingly powerful observation: operations on sets of vertices,
such as intersection or union, form a large part of many complex
graph mining algorithms, and can offer rich and simple parallelism
at multiple levels. This observation drives our cross-layer design,
in which we (1) expose set operations using a novel programming
paradigm, (2) express and execute these operations efficiently with
carefully designed set-centric ISA extensions called SISA, and (3)
use PIM to accelerate SISA instructions. The key design idea is to
alleviate the bandwidth needs of SISA instructions by mapping set
operations to two types of PIM: in-DRAM bulk bitwise computing
for bitvectors representing high-degree vertices, and near-memory
logic layers for integer arrays representing low-degree vertices.
Set-centric SISA-enhanced algorithms are efficient and outperform
hand-tuned baselines, offering more than 10× speedup over the
established Bron-Kerbosch algorithm for listing maximal cliques.
We deliver more than 10 SISA set-centric algorithm formulations,
illustrating SISA’s wide applicability.
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1 INTRODUCTION
Research on graph analytics in computer architecture has mostly
targeted graph algorithms based on vertex-centric formulations [6,
7, 12, 22, 65, 88, 113, 120, 142, 177, 183]. Some works also focus
on edge-centric or linear algebra paradigms [90, 134, 149, 151].
Such algorithms have complexities described by low-degree poly-
nomials [91], e.g., O(n +m) for Breadth-First Search (BFS) [42] and
O(m · #iterations) for iteration-based PageRank (PR) [21], where n
andm are numbers of vertices and edges, respectively.

Yet, there are numerous important problems and algorithms
in the area of graph mining [23, 39, 84, 137, 156] that received
little or no attention in computer architecture. One large class
is graph pattern matching [84], which focuses on finding cer-
tain specific subgraphs (also called motifs or graphlets). Examples
of such problems are k-clique listing [44, 58], maximal clique list-
ing [26, 29, 51, 158],k-star-clique mining [79], andmany others [39].
Another class is broadly referred to as graph learning [39], with
problems such as unsupervised learning or clustering [81], link
prediction [8, 102, 105, 155], or vertex similarity [98]. All these prob-
lems are used in social sciences [51], bioinformatics [51], computa-
tional chemistry [153], medicine [153], cybersecurity [49], health-
care [157], web graph analysis [85], and many others [30, 39, 74, 84].
These problems often run in time at least quadratic in the number
of vertices, and many problems are NP-complete [26, 39, 44, 159].
Thus, they often differ significantly in their performance properties
from “low-complexity” problems such as BFS or PageRank.

282

https://doi.org/10.1145/3466752.3480133
https://doi.org/10.1145/3466752.3480133
https://doi.org/10.1145/3466752.3480133


MICRO ’21, October 18–22, 2021, Virtual Event, Greece Besta et al.

Importantly, the established vertex-centric model, originally pro-
posed in the Pregel graph processing system [108], does not ef-
fectively express graph mining problems. It exposes only the lo-
cal graph structure: A thread executing a vertex kernel for any
vertex v can only access the neighbors of v . While this suffices
for algorithms such as PageRank, graph mining often requires
non-local knowledge of the graph structure [39]. Obtaining such
knowledge in the vertex-centric paradigm is hard or infeasible,
as noted by Kalavri et al. [88] (“(...) graph algorithms, like trian-
gle counting, are not a good fit for the vertex-centric model” ) and
many others [93, 103, 136, 172]. Similar arguments apply to other
paradigms such as GraphBLAS [90, 134] and to frameworks such
as Ligra [145]. They do not support many graph mining problems,
and we discuss in Table 1 and Section 4.

Several graph mining software frameworks (Peregrine [80] and
others [33, 35, 48, 78, 86, 111, 112, 156, 171, 173, 179]) were proposed.
Unfortunately, they (1) focus exclusively on only a few graph pat-
tern matching problems, and (2) usually do not provide theoretical
guarantees on total work [24] (unlike parallel graph algorithms
for specific mining problems). Overall, there is a need for a graph
mining paradigm that would (1) enable expressing many graph
mining problems, and (2) offer competitive theoretical work guar-
antees [24].

Moreover, past works illustrated that graph mining algorithms
are memory bound [37, 50, 80, 175, 178]. This is because these algo-
rithms generate and heavily use large intermediate structures, but,
similarly to algorithms such as PageRank, they are not compute-
intensive [51, 80, 176]. We show this in Figure 1: When we increase
the number of parallel threads, runtime decrease flattens out and
stalled CPU cycle count increases. This motivates using processing-
in-memory (PIM) to obtain the much needed speedups in graph
mining. While PIM is not the only potential solution for hardware
acceleration of graph mining, we select PIM because it (1) rep-
resents one of the most promising trends to tackle the memory
bottleneck [56, 117] outperforming various other approaches [141],
(2) offers well-understood designs [118], and (3) brings very large
speedups in simple graph algorithms such as BFS or PageRank (see
more than 15 works in Table 7). Yet, graph mining algorithms are
much more complex than PageRank, BFS, and similar: they employ
deep recursion, create many intermediate data structures with non-
trivial inter-dependencies, and have high load imbalance [51, 171].
As we show in Section 10, no existing HW design targets broad graph
mining (i.e., both graph pattern matching and graph learning), or
explores PIM techniques for accelerating broad graph mining.

To address all these issues, we propose a novel design that is high-
performance (empirically and theoretically), applicable to many
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Figure 1: Runtimes and stalled CPU cycle count, for various numbers of parallel threads,
using the Bron-Kerbosch algorithm for listing maximal cliques in different input graphs
(Section 9 describes our evaluation methodology).
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To address all these issues, we propose a novel design that is high-
performance (empirically and theoretically), applicable to many
graph mining problems, and easily amenable to PIM acceleration.
We first observe that large parts of many graph mining algorithms
can be expressed with simple set operations such as intersection
∩ or union ∪, where sets contain vertices or edges. This drives
our set-centric programming paradigm, in which the developer
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Abstraction or
programming model

A? Pattern M. Learning “Low-c.” Remarks
mckc ds si vs lp cl av tc bf cc pr

Vertex-centric (ver-c) é é é é é é é é é ∗    ∗High comm. costs
Edge-centric (edge-c) é é é é é é é é é ∗ ∗ ∗  ∗High work and depth
Array maps é é é  é é é ∗é     ∗Only low-diameter decomp.

GraphBLAS [90]  (L)é é é ∗ é é é é   †

∗The only existing SI scheme
only uses trees as patterns [34]

Neural message passing,
graph networks [13, 62]  (L)é é é †     é é é

†GNNs are as powerful as the
Weisfeiler-Lehman test [170].

Pattern matching é ∗ ∗ ∗ ∗ é é é é ∗é é é ∗No bounds, low performance
Joins [36]  (R)é ∗ ∗é ∗ ∗ ∗é ∗é ∗ ∗ ∗No bounds, low performance

Set-Centric / SISA  (S)          é é é

Table 1: Comparison of the set-centric programming approach and SISA to existing graph
processing abstractions/programmingmodels, focusing on support for selected graphmin-
ing problems (pattern matching, learning), and for “low-complexity” graph problems. A?:
Underlying algebra? L: linear, R: relational, S: set. “”: Support / significant focus. “”: Partial
support / some focus. “é”: no support / no focus. PatternM.: selected graph pattern matching prob-
lems,mc: maximal clique listing, kc:𝑘-clique listing, ds: dense subgraph, si: subgraph isomorphism,
Learning: selected graph learning problems, vs: vertex similarity, lp: link prediction, cl: clustering
or community detection, av: accuracy verification (of link prediction outcomes), “Low-c.”: selected
“low-complexity” problems targeted by vast majority of existing works on graph processing. tc: tri-
angle counting, bf: BFS, cc: connected components, pr: PageRank. The analysis in this table is
extended in Section 10 and Table 7 by detailing specific HW accelerators for graph processing.

identifies sets and set operations in a given algorithm. These set op-
erations are thenmapped to a small and simple yet expressive group
of instructions, offering a rich selection of storage/performance
tradeoffs. These instructions are offloaded to PIM units. We call
these instructions SISA as they form “Set-centric” ISA extensions
that enable a simple interface between numerous graphmining algo-
rithms and PIM hardware. Overall, our cross-layer design consists
of three key elements: a new set-centric programming paradigm
and formulations of graph algorithms (contribution #1), set-centric
ISA extensions with its instructions, implemented set operations,
and set organization (contribution #2), and PIM acceleration (con-
tribution #3).

Overall, we advocate using set algebra as a basis for the design
of graph mining algorithms. Our set-centric paradigm is the first to
use set operations as fundamental general building blocks for both
algorithmic formulations and their execution. Using set algebra
ensures that SISA set-centric algorithms are succinct, applicable to
many problems, and theoretically efficient.

For the in-memory acceleration of SISA, we investigate which
types of PIM are beneficial for which set operations. We process sets
stored as bitvectors using in-situ PIM [57, 118], as offered in Am-
bit [64, 141], ELP2IM [168], DRISA [100], or ComputeDRAM [53],
for highest performance and energy efficiency (“SISA process-
ing using memory” – SISA-PUM). In contrast, while sets stored
as sparse arrays cannot be simply processed in situ with today’s
technology, they can use the high throughput and low latency of
near-memory PIM [57, 104, 118, 122] as offered in the 2D UPMEM
architecture [63, 96] or logic layer of 3D DRAM such as Hybrid
Memory Cube (HMC) [83] (“SISA processing near memory” –
SISA-PNM). For even higher performance, we provide a small
HW controller that selects the best variant of a set instruction to
be executed on-the-fly.

Overall, our results show that graphmining algorithms, although
complex and lacking straightforward parallelism, greatly benefit
from PIM. Our key solution is using parallelism offered by set op-
erations and exposed with the set-centric approach. This solution
harnesses parallelism at the level of bits, DRAM subarrays, and
vaults. We show that SISA-enhanced algorithms are theoretically

Table 1: Comparison of the set-centric programming approach and SISA to existing graph
processing abstractions/programmingmodels, focusing on support for selected graphmin-
ing problems (pattern matching, learning), and for “low-complexity” graph problems. A?:
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many others [93, 103, 136, 172]. Similar arguments apply to other
paradigms such as GraphBLAS [90, 134] and to frameworks such
as Ligra [145]. They do not support many graph mining problems,
and we discuss in Table 1 and Section 4.

Several graph mining software frameworks (Peregrine [80] and
others [33, 35, 48, 78, 86, 111, 112, 156, 171, 173, 179]) were proposed.
Unfortunately, they (1) focus exclusively on only a few graph pat-
tern matching problems, and (2) usually do not provide theoretical
guarantees on total work [24] (unlike parallel graph algorithms
for specific mining problems). Overall, there is a need for a graph
mining paradigm that would (1) enable expressing many graph
mining problems, and (2) offer competitive theoretical work guar-
antees [24].

Moreover, past works illustrated that graph mining algorithms
are memory bound [37, 50, 80, 175, 178]. This is because these algo-
rithms generate and heavily use large intermediate structures, but,
similarly to algorithms such as PageRank, they are not compute-
intensive [51, 80, 176]. We show this in Figure 1: When we increase
the number of parallel threads, runtime decrease flattens out and
stalled CPU cycle count increases. This motivates using processing-
in-memory (PIM) to obtain the much needed speedups in graph
mining. While PIM is not the only potential solution for hardware
acceleration of graph mining, we select PIM because it (1) rep-
resents one of the most promising trends to tackle the memory
bottleneck [56, 117] outperforming various other approaches [141],
(2) offers well-understood designs [118], and (3) brings very large
speedups in simple graph algorithms such as BFS or PageRank (see
more than 15 works in Table 7). Yet, graph mining algorithms are
much more complex than PageRank, BFS, and similar: they employ
deep recursion, create many intermediate data structures with non-
trivial inter-dependencies, and have high load imbalance [51, 171].
As we show in Section 10, no existing HW design targets broad graph
mining (i.e., both graph pattern matching and graph learning), or
explores PIM techniques for accelerating broad graph mining.

To address all these issues, we propose a novel design that is high-
performance (empirically and theoretically), applicable to many
graph mining problems, and easily amenable to PIM acceleration.
We first observe that large parts of many graph mining algorithms
can be expressed with simple set operations such as intersection
∩ or union ∪, where sets contain vertices or edges. This drives
our set-centric programming paradigm, in which the developer
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using the Bron-Kerbosch algorithm for listing maximal cliques in different input graphs
(Section 9 describes our evaluation methodology).

Abstraction or
programming model

A? Pattern M. Learning “Low-c.” Remarks
mckc ds si vs lp cl av tc bf cc pr

Vertex-centric (ver-c) é é é é é é é é é ∗    ∗High comm. costs
Edge-centric (edge-c) é é é é é é é é é ∗ ∗ ∗  ∗High work and depth
Array maps é é é  é é é ∗é     ∗Only low-diameter decomp.

GraphBLAS [90]  (L)é é é ∗ é é é é   †

∗The only existing SI scheme
only uses trees as patterns [34]

Neural message passing,
graph networks [13, 62]  (L)é é é †     é é é

†GNNs are as powerful as the
Weisfeiler-Lehman test [170].

Pattern matching é ∗ ∗ ∗ ∗ é é é é ∗é é é ∗No bounds, low performance
Joins [36]  (R)é ∗ ∗é ∗ ∗ ∗é ∗é ∗ ∗ ∗No bounds, low performance

Set-Centric / SISA  (S)          é é é

Table 1: Comparison of the set-centric programming approach and SISA to existing graph
processing abstractions/programmingmodels, focusing on support for selected graphmin-
ing problems (pattern matching, learning), and for “low-complexity” graph problems. A?:
Underlying algebra? L: linear, R: relational, S: set. “”: Support / significant focus. “”: Partial
support / some focus. “é”: no support / no focus. PatternM.: selected graph pattern matching prob-
lems,mc: maximal clique listing, kc:𝑘-clique listing, ds: dense subgraph, si: subgraph isomorphism,
Learning: selected graph learning problems, vs: vertex similarity, lp: link prediction, cl: clustering
or community detection, av: accuracy verification (of link prediction outcomes), “Low-c.”: selected
“low-complexity” problems targeted by vast majority of existing works on graph processing. tc: tri-
angle counting, bf: BFS, cc: connected components, pr: PageRank. The analysis in this table is
extended in Section 10 and Table 7 by detailing specific HW accelerators for graph processing.

identifies sets and set operations in a given algorithm. These set op-
erations are thenmapped to a small and simple yet expressive group
of instructions, offering a rich selection of storage/performance
tradeoffs. These instructions are offloaded to PIM units. We call
these instructions SISA as they form “Set-centric” ISA extensions
that enable a simple interface between numerous graphmining algo-
rithms and PIM hardware. Overall, our cross-layer design consists
of three key elements: a new set-centric programming paradigm
and formulations of graph algorithms (contribution #1), set-centric
ISA extensions with its instructions, implemented set operations,
and set organization (contribution #2), and PIM acceleration (con-
tribution #3).

Overall, we advocate using set algebra as a basis for the design
of graph mining algorithms. Our set-centric paradigm is the first to
use set operations as fundamental general building blocks for both
algorithmic formulations and their execution. Using set algebra
ensures that SISA set-centric algorithms are succinct, applicable to
many problems, and theoretically efficient.

For the in-memory acceleration of SISA, we investigate which
types of PIM are beneficial for which set operations. We process sets
stored as bitvectors using in-situ PIM [57, 118], as offered in Am-
bit [64, 141], ELP2IM [168], DRISA [100], or ComputeDRAM [53],
for highest performance and energy efficiency (“SISA process-
ing using memory” – SISA-PUM). In contrast, while sets stored
as sparse arrays cannot be simply processed in situ with today’s
technology, they can use the high throughput and low latency of
near-memory PIM [57, 104, 118, 122] as offered in the 2D UPMEM
architecture [63, 96] or logic layer of 3D DRAM such as Hybrid
Memory Cube (HMC) [83] (“SISA processing near memory” –
SISA-PNM). For even higher performance, we provide a small
HW controller that selects the best variant of a set instruction to
be executed on-the-fly.

Overall, our results show that graphmining algorithms, although
complex and lacking straightforward parallelism, greatly benefit
from PIM. Our key solution is using parallelism offered by set op-
erations and exposed with the set-centric approach. This solution
harnesses parallelism at the level of bits, DRAM subarrays, and
vaults. We show that SISA-enhanced algorithms are theoretically

”: Support / significant focus. “

vertex 𝑣 can only access the neighbors of 𝑣 . While this suffices
for algorithms such as PageRank, graph mining often requires
non-local knowledge of the graph structure [39]. Obtaining such
knowledge in the vertex-centric paradigm is hard or infeasible,
as noted by Kalavri et al. [88] (“(...) graph algorithms, like trian-
gle counting, are not a good fit for the vertex-centric model” ) and
many others [93, 103, 136, 172]. Similar arguments apply to other
paradigms such as GraphBLAS [90, 134] and to frameworks such
as Ligra [145]. They do not support many graph mining problems,
and we discuss in Table 1 and Section 4.

Several graph mining software frameworks (Peregrine [80] and
others [33, 35, 48, 78, 86, 111, 112, 156, 171, 173, 179]) were proposed.
Unfortunately, they (1) focus exclusively on only a few graph pat-
tern matching problems, and (2) usually do not provide theoretical
guarantees on total work [24] (unlike parallel graph algorithms
for specific mining problems). Overall, there is a need for a graph
mining paradigm that would (1) enable expressing many graph
mining problems, and (2) offer competitive theoretical work guar-
antees [24].

Moreover, past works illustrated that graph mining algorithms
are memory bound [37, 50, 80, 175, 178]. This is because these algo-
rithms generate and heavily use large intermediate structures, but,
similarly to algorithms such as PageRank, they are not compute-
intensive [51, 80, 176]. We show this in Figure 1: When we increase
the number of parallel threads, runtime decrease flattens out and
stalled CPU cycle count increases. This motivates using processing-
in-memory (PIM) to obtain the much needed speedups in graph
mining. While PIM is not the only potential solution for hardware
acceleration of graph mining, we select PIM because it (1) rep-
resents one of the most promising trends to tackle the memory
bottleneck [56, 117] outperforming various other approaches [141],
(2) offers well-understood designs [118], and (3) brings very large
speedups in simple graph algorithms such as BFS or PageRank (see
more than 15 works in Table 7). Yet, graph mining algorithms are
much more complex than PageRank, BFS, and similar: they employ
deep recursion, create many intermediate data structures with non-
trivial inter-dependencies, and have high load imbalance [51, 171].
As we show in Section 10, no existing HW design targets broad graph
mining (i.e., both graph pattern matching and graph learning), or
explores PIM techniques for accelerating broad graph mining.

To address all these issues, we propose a novel design that is high-
performance (empirically and theoretically), applicable to many
graph mining problems, and easily amenable to PIM acceleration.
We first observe that large parts of many graph mining algorithms
can be expressed with simple set operations such as intersection
∩ or union ∪, where sets contain vertices or edges. This drives
our set-centric programming paradigm, in which the developer

●
●

●
● ● ●0

10

20

30

40

50

1 2 4 8 16 32Number of threads

R
un

tim
e 

[s
]

Input graph
● int−authorship

int−citations
social−Flx
social−Pok

●

●

●

●

●

●

0.1

0.2

0.3

0.4

0.5

1 2 4 8 16 32Number of threads

St
al

le
d 

C
PU

 c
yc

le
s 

[ra
tio

]

Legend:
on the left

Flattening
of speedups Increasing

counts of stalled
CPU cycles

Figure 1: Runtimes and stalled CPU cycle count, for various numbers of parallel threads,
using the Bron-Kerbosch algorithm for listing maximal cliques in different input graphs
(Section 9 describes our evaluation methodology).

Abstraction or
programming model

A? Pattern M. Learning “Low-c.” Remarks
mckc ds si vs lp cl av tc bf cc pr

Vertex-centric (ver-c) é é é é é é é é é ∗    ∗High comm. costs
Edge-centric (edge-c) é é é é é é é é é ∗ ∗ ∗  ∗High work and depth
Array maps é é é  é é é ∗é     ∗Only low-diameter decomp.

GraphBLAS [90]  (L)é é é ∗ é é é é   †

∗The only existing SI scheme
only uses trees as patterns [34]

Neural message passing,
graph networks [13, 62]  (L)é é é †     é é é

†GNNs are as powerful as the
Weisfeiler-Lehman test [170].

Pattern matching é ∗ ∗ ∗ ∗ é é é é ∗é é é ∗No bounds, low performance
Joins [36]  (R)é ∗ ∗é ∗ ∗ ∗é ∗é ∗ ∗ ∗No bounds, low performance

Set-Centric / SISA  (S)          é é é

Table 1: Comparison of the set-centric programming approach and SISA to existing graph
processing abstractions/programmingmodels, focusing on support for selected graphmin-
ing problems (pattern matching, learning), and for “low-complexity” graph problems. A?:
Underlying algebra? L: linear, R: relational, S: set. “”: Support / significant focus. “”: Partial
support / some focus. “é”: no support / no focus. PatternM.: selected graph pattern matching prob-
lems,mc: maximal clique listing, kc:𝑘-clique listing, ds: dense subgraph, si: subgraph isomorphism,
Learning: selected graph learning problems, vs: vertex similarity, lp: link prediction, cl: clustering
or community detection, av: accuracy verification (of link prediction outcomes), “Low-c.”: selected
“low-complexity” problems targeted by vast majority of existing works on graph processing. tc: tri-
angle counting, bf: BFS, cc: connected components, pr: PageRank. The analysis in this table is
extended in Section 10 and Table 7 by detailing specific HW accelerators for graph processing.

identifies sets and set operations in a given algorithm. These set op-
erations are thenmapped to a small and simple yet expressive group
of instructions, offering a rich selection of storage/performance
tradeoffs. These instructions are offloaded to PIM units. We call
these instructions SISA as they form “Set-centric” ISA extensions
that enable a simple interface between numerous graphmining algo-
rithms and PIM hardware. Overall, our cross-layer design consists
of three key elements: a new set-centric programming paradigm
and formulations of graph algorithms (contribution #1), set-centric
ISA extensions with its instructions, implemented set operations,
and set organization (contribution #2), and PIM acceleration (con-
tribution #3).

Overall, we advocate using set algebra as a basis for the design
of graph mining algorithms. Our set-centric paradigm is the first to
use set operations as fundamental general building blocks for both
algorithmic formulations and their execution. Using set algebra
ensures that SISA set-centric algorithms are succinct, applicable to
many problems, and theoretically efficient.

For the in-memory acceleration of SISA, we investigate which
types of PIM are beneficial for which set operations. We process sets
stored as bitvectors using in-situ PIM [57, 118], as offered in Am-
bit [64, 141], ELP2IM [168], DRISA [100], or ComputeDRAM [53],
for highest performance and energy efficiency (“SISA process-
ing using memory” – SISA-PUM). In contrast, while sets stored
as sparse arrays cannot be simply processed in situ with today’s
technology, they can use the high throughput and low latency of
near-memory PIM [57, 104, 118, 122] as offered in the 2D UPMEM
architecture [63, 96] or logic layer of 3D DRAM such as Hybrid
Memory Cube (HMC) [83] (“SISA processing near memory” –
SISA-PNM). For even higher performance, we provide a small
HW controller that selects the best variant of a set instruction to
be executed on-the-fly.

Overall, our results show that graphmining algorithms, although
complex and lacking straightforward parallelism, greatly benefit
from PIM. Our key solution is using parallelism offered by set op-
erations and exposed with the set-centric approach. This solution
harnesses parallelism at the level of bits, DRAM subarrays, and
vaults. We show that SISA-enhanced algorithms are theoretically

”: Partial
support / some focus. “

vertex 𝑣 can only access the neighbors of 𝑣 . While this suffices
for algorithms such as PageRank, graph mining often requires
non-local knowledge of the graph structure [39]. Obtaining such
knowledge in the vertex-centric paradigm is hard or infeasible,
as noted by Kalavri et al. [88] (“(...) graph algorithms, like trian-
gle counting, are not a good fit for the vertex-centric model” ) and
many others [93, 103, 136, 172]. Similar arguments apply to other
paradigms such as GraphBLAS [90, 134] and to frameworks such
as Ligra [145]. They do not support many graph mining problems,
and we discuss in Table 1 and Section 4.

Several graph mining software frameworks (Peregrine [80] and
others [33, 35, 48, 78, 86, 111, 112, 156, 171, 173, 179]) were proposed.
Unfortunately, they (1) focus exclusively on only a few graph pat-
tern matching problems, and (2) usually do not provide theoretical
guarantees on total work [24] (unlike parallel graph algorithms
for specific mining problems). Overall, there is a need for a graph
mining paradigm that would (1) enable expressing many graph
mining problems, and (2) offer competitive theoretical work guar-
antees [24].

Moreover, past works illustrated that graph mining algorithms
are memory bound [37, 50, 80, 175, 178]. This is because these algo-
rithms generate and heavily use large intermediate structures, but,
similarly to algorithms such as PageRank, they are not compute-
intensive [51, 80, 176]. We show this in Figure 1: When we increase
the number of parallel threads, runtime decrease flattens out and
stalled CPU cycle count increases. This motivates using processing-
in-memory (PIM) to obtain the much needed speedups in graph
mining. While PIM is not the only potential solution for hardware
acceleration of graph mining, we select PIM because it (1) rep-
resents one of the most promising trends to tackle the memory
bottleneck [56, 117] outperforming various other approaches [141],
(2) offers well-understood designs [118], and (3) brings very large
speedups in simple graph algorithms such as BFS or PageRank (see
more than 15 works in Table 7). Yet, graph mining algorithms are
much more complex than PageRank, BFS, and similar: they employ
deep recursion, create many intermediate data structures with non-
trivial inter-dependencies, and have high load imbalance [51, 171].
As we show in Section 10, no existing HW design targets broad graph
mining (i.e., both graph pattern matching and graph learning), or
explores PIM techniques for accelerating broad graph mining.

To address all these issues, we propose a novel design that is high-
performance (empirically and theoretically), applicable to many
graph mining problems, and easily amenable to PIM acceleration.
We first observe that large parts of many graph mining algorithms
can be expressed with simple set operations such as intersection
∩ or union ∪, where sets contain vertices or edges. This drives
our set-centric programming paradigm, in which the developer

●
●

●
● ● ●0

10

20

30

40

50

1 2 4 8 16 32Number of threads

R
un

tim
e 

[s
]

Input graph
● int−authorship

int−citations
social−Flx
social−Pok

●

●

●

●

●

●

0.1

0.2

0.3

0.4

0.5

1 2 4 8 16 32Number of threads

St
al

le
d 

C
PU

 c
yc

le
s 

[ra
tio

]

Legend:
on the left

Flattening
of speedups Increasing

counts of stalled
CPU cycles

Figure 1: Runtimes and stalled CPU cycle count, for various numbers of parallel threads,
using the Bron-Kerbosch algorithm for listing maximal cliques in different input graphs
(Section 9 describes our evaluation methodology).

Abstraction or
programming model

A? Pattern M. Learning “Low-c.” Remarks
mckc ds si vs lp cl av tc bf cc pr

Vertex-centric (ver-c) é é é é é é é é é ∗    ∗High comm. costs
Edge-centric (edge-c) é é é é é é é é é ∗ ∗ ∗  ∗High work and depth
Array maps é é é  é é é ∗é     ∗Only low-diameter decomp.

GraphBLAS [90]  (L)é é é ∗ é é é é   †

∗The only existing SI scheme
only uses trees as patterns [34]

Neural message passing,
graph networks [13, 62]  (L)é é é †     é é é

†GNNs are as powerful as the
Weisfeiler-Lehman test [170].

Pattern matching é ∗ ∗ ∗ ∗ é é é é ∗é é é ∗No bounds, low performance
Joins [36]  (R)é ∗ ∗é ∗ ∗ ∗é ∗é ∗ ∗ ∗No bounds, low performance

Set-Centric / SISA  (S)          é é é

Table 1: Comparison of the set-centric programming approach and SISA to existing graph
processing abstractions/programmingmodels, focusing on support for selected graphmin-
ing problems (pattern matching, learning), and for “low-complexity” graph problems. A?:
Underlying algebra? L: linear, R: relational, S: set. “”: Support / significant focus. “”: Partial
support / some focus. “é”: no support / no focus. PatternM.: selected graph pattern matching prob-
lems,mc: maximal clique listing, kc:𝑘-clique listing, ds: dense subgraph, si: subgraph isomorphism,
Learning: selected graph learning problems, vs: vertex similarity, lp: link prediction, cl: clustering
or community detection, av: accuracy verification (of link prediction outcomes), “Low-c.”: selected
“low-complexity” problems targeted by vast majority of existing works on graph processing. tc: tri-
angle counting, bf: BFS, cc: connected components, pr: PageRank. The analysis in this table is
extended in Section 10 and Table 7 by detailing specific HW accelerators for graph processing.

identifies sets and set operations in a given algorithm. These set op-
erations are thenmapped to a small and simple yet expressive group
of instructions, offering a rich selection of storage/performance
tradeoffs. These instructions are offloaded to PIM units. We call
these instructions SISA as they form “Set-centric” ISA extensions
that enable a simple interface between numerous graphmining algo-
rithms and PIM hardware. Overall, our cross-layer design consists
of three key elements: a new set-centric programming paradigm
and formulations of graph algorithms (contribution #1), set-centric
ISA extensions with its instructions, implemented set operations,
and set organization (contribution #2), and PIM acceleration (con-
tribution #3).

Overall, we advocate using set algebra as a basis for the design
of graph mining algorithms. Our set-centric paradigm is the first to
use set operations as fundamental general building blocks for both
algorithmic formulations and their execution. Using set algebra
ensures that SISA set-centric algorithms are succinct, applicable to
many problems, and theoretically efficient.

For the in-memory acceleration of SISA, we investigate which
types of PIM are beneficial for which set operations. We process sets
stored as bitvectors using in-situ PIM [57, 118], as offered in Am-
bit [64, 141], ELP2IM [168], DRISA [100], or ComputeDRAM [53],
for highest performance and energy efficiency (“SISA process-
ing using memory” – SISA-PUM). In contrast, while sets stored
as sparse arrays cannot be simply processed in situ with today’s
technology, they can use the high throughput and low latency of
near-memory PIM [57, 104, 118, 122] as offered in the 2D UPMEM
architecture [63, 96] or logic layer of 3D DRAM such as Hybrid
Memory Cube (HMC) [83] (“SISA processing near memory” –
SISA-PNM). For even higher performance, we provide a small
HW controller that selects the best variant of a set instruction to
be executed on-the-fly.

Overall, our results show that graphmining algorithms, although
complex and lacking straightforward parallelism, greatly benefit
from PIM. Our key solution is using parallelism offered by set op-
erations and exposed with the set-centric approach. This solution
harnesses parallelism at the level of bits, DRAM subarrays, and
vaults. We show that SISA-enhanced algorithms are theoretically

”: no support / no focus. PatternM.: selected graph pattern matching prob-
lems,mc: maximal clique listing, kc: k -clique listing, ds: dense subgraph, si: subgraph isomorphism,
Learning: selected graph learning problems, vs: vertex similarity, lp: link prediction, cl: clustering
or community detection, av: accuracy verification (of link prediction outcomes), “Low-c.”: selected
“low-complexity” problems targeted by vast majority of existing works on graph processing. tc: tri-
angle counting, bf: BFS, cc: connected components, pr: PageRank. The analysis in this table is
extended in Section 10 and Table 7 by detailing specific HW accelerators for graph processing.

graph mining problems, and easily amenable to PIM acceleration.
We first observe that large parts of many graph mining algorithms
can be expressed with simple set operations such as intersection ∩
or union∪, where sets contain vertices or edges. This drives our set-
centric programming paradigm, in which the developer identi-
fies sets and set operations in a given algorithm. These set opera-
tions are then mapped to a small and simple yet expressive group of
instructions, offering a rich selection of storage/performance trade-
offs. These instructions are offloaded to PIM units. We call these
instructions SISA as they form “Set-centric” ISA extensions that en-
able a simple interface between numerous graph mining algorithms
and PIM hardware. Overall, our cross-layer design consists of three
key elements: a new set-centric programming paradigm and formu-
lations of graph algorithms (contribution #1), set-centric ISA exten-
sionswith its instructions, implemented set operations, and set orga-
nization (contribution #2), and PIM acceleration (contribution #3).

Overall, we advocate using set algebra as a basis for the design
of graph mining algorithms. Our set-centric paradigm is the first to
use set operations as fundamental general building blocks for both
algorithmic formulations and their execution. Using set algebra
ensures that SISA set-centric algorithms are succinct, applicable to
many problems, and theoretically efficient.

For the in-memory acceleration of SISA, we investigate which
types of PIM are beneficial for which set operations. We process sets
stored as bitvectors using in-situ PIM [57, 118], as offered in Am-
bit [64, 141], ELP2IM [168], DRISA [100], or ComputeDRAM [53],
for highest performance and energy efficiency (“SISA process-
ing using memory” – SISA-PUM). In contrast, while sets stored
as sparse arrays cannot be simply processed in situ with today’s
technology, they can use the high throughput and low latency of
near-memory PIM [57, 104, 118, 122] as offered in the 2D UPMEM
architecture [63, 96] or logic layer of 3D DRAM such as Hybrid
Memory Cube (HMC) [83] (“SISA processing near memory” –
SISA-PNM). For even higher performance, we provide a small HW
controller that selects the best variant of a set instruction to be
executed on-the-fly.

Overall, our results show that graphmining algorithms, although
complex and lacking straightforward parallelism, greatly benefit
from PIM. Our key solution is using parallelism offered by set op-
erations and exposed with the set-centric approach. This solution
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harnesses parallelism at the level of bits, DRAM subarrays, and
vaults. We show that SISA-enhanced algorithms are theoretically
efficient (contribution #4) and empirically outperform tuned par-
allel baselines (contribution #5), for example offering more than
10× speedup for many real-world graphs over the established Bron-
Kerbosch algorithm for listing maximal cliques [51]. Finally, for
usability, we integrate SISA with the RISC-V ISA [166].
2 NOTATION AND BACKGROUND
Graphs We model an undirected graph G as a tuple (V ,E); V
and E ⊆ V × V are sets of vertices and edges; |V | = n, |E | = m.
Vertices are modeled with integers (V = {1, ...,n}). N (v) denote the
neighbors of v ∈ V ; d and d(v) denote G’s maximum degree and a
degree ofv . In some cases, we consider labeled graphsG = (V ,E,L);
L is a labeling function that maps a vertex or an edge to a label.

Set Representations SISA heavily uses sets. Consider a set of
k vertices S = {v1, ...,vk } ⊆ V (we focus on vertex sets, but SISA
also works with edges). One can represent S as a simple contiguous
sparse array (SA) with integers from S (“sparse” means that only
non-zero elements are explicitly stored). SA’s size isW |S | [bits]
whereW is the memory word size (we assume that the maximum
vertex ID fits in one word). One can also represent S with a dense
bitvector (DB) of sizen [bits]: the i-th set bit indicates that a vertex
i ∈ S (“dense” means that all zero bits are explicitly stored).
3 OVERVIEW & CROSS-LAYER DESIGN
We now overview SISA’s cross-level design, see Figure 2.

(a) Set-Centric Formulations [Section 5 & 5.1] SISA relies
on set-centric formulations of algorithms in graph mining. While
some algorithms (e.g., Bron-Kerbosch [51]) by default use rich set
notation, many others, such as k-clique listing by Danisch et al. [44],
do not. In such cases, we develop such formulations. Details on
deriving set-centric formulations are in Section 5.1; the key common
step is to express two nested loops, commonly used to identify
connections between two sets of vertices, with a single intersection
of these sets.

A set can be represented in different ways, and a set operation can
be executed using different set algorithms. A set-centric formulation
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Figure 2: The overview of SISA with a summary of new introduced architecture and graph
representation elements (green) and advantages (brown).

hides these details, focusing on what a given graph algorithm does,
and not how it is done.

(b.1) Set-Centric ISA (Instructions) [Section 6] Our ISA ex-
tension implements set operations. These instructions support all
variants of operations, for example there is an instruction for both
merge and galloping set intersection (details in Section 6). We also
provide a thin software layer: iterators over sets and C-style wrap-
pers for SISA instructions. For programmability and performance,
many SISA instructions automatize selecting the best set operation
variant on-the-fly.

(b.2) Set-Centric ISA (Organization of Sets) [Section 6] We
represent sets as DBs or SAs. The former are processed by bulk
bitwise in-situ PIM, harnessing huge internal DRAM bandwidth
(SISA-PUM). The latter use near-memory PIM, for example DRAM
cores in the UPMEM architecture, or logic layers in 3D stacked
DRAM, harnessing the large through-silicon via (TSV) bandwidth
(SISA-PNM).

(c) HW Implementation Details [Section 8] For maximum
programmability and performance, we use hardware to automati-
cally decide between SISA-PUM and SISA-PNM, or a set algorithm
variant (merge vs. galloping). For this, we use a dedicated unit called
the SISA Controller Unit (SCU).

4 GENERAL & FAST GRAPH MINING
The set-centric approach is superior to other graph programming
paradigms in that (1) it supports many graph mining problems and
(2) it enables algorithms with competitive theoretical bounds on
performance (we discuss (2) in Section 7; this is often a key to low
runtimes [46, 91]). The analysis results for (1) are in Table 1.

To illustrate the above points, we first extensively examined the
related literature to identify representative graph mining prob-
lems and important graph processing paradigms [4, 9, 30, 52,
84, 97, 98, 102, 105, 126, 128, 130, 154, 163]. For the former, we pick
four problems from both graph pattern matching and graph learn-
ing areas (maximal clique listing [26], k-clique listing [38], dense
subgraph discovery [61, 97], subgraph isomorphism [159], vertex
similarity [98, 131], link prediction [8, 102, 105, 155], graph cluster-
ing [81, 137], verification of prediction accuracy [162]). For fairness,
we also consider four popular “low-complexity” problems, targeted
bymany past works (triangle counting, BFS, connected components,
and PageRank). For the latter, we first select vertex-centric [108]
and edge-centric [134], two established graph processing paradigms
implemented in the Pregel and X-Stream systems. Second, we pick
vertex/edge array maps from Ligra [145], an approach for develop-
ing graph algorithms based on transforming arrays of vertices or
edges according to a specified map. Third, we consider GraphBLAS
and its linear algebraic approach [90], where graph algorithms are
expressed with linear algebra building blocks such as matrix-vector
products. Moreover, we consider pattern matching frameworks [52]
that usually employ some form of exploring neighbors of each ver-
tex, combined with user-specified filtering, to search for specified
graph patterns. For completeness, we also consider recent attempts
at solving graph problems with novel deep learning [15] paradigms
such as graph neural networks (GNN) [17, 167] and others [59],
as well as joins and principles from relational databases and the
associated algebra [180].

The analysis results are in Table 1. Overall, no single paradigm,
except for the set-centric approach, enables efficient graph mining
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Problem Algorithm Used set operations

Maximal clique list. Bron-Kerbosch [51] A ∪ B , A ∩ B , A \ B
k -clique listing Danisch et al. [44] + [This work] A ∩ B
4-clique counting [This work] A ∩ B , |A ∩ B |
Triangle counting [well-known] |A ∩ B |
k -clique-star listing Jabbour et al. [79] A ∩ B , A ∪ B
k -clique-star listing [This work] A ∩ B
Subgr. isomorphism [This work] A ∩ B , |A ∩ B |, A ∪ B , A \ B
Vertex similarity Jaccard coeff., others [19, 131] |A ∩ B |, |A ∪ B |
Clustering Jarvis-Patrick [81] |A ∩ B |, |A ∪ B |
Link prediction (LP) Jaccard coeff., others [131] |A ∩ B |, |A ∪ B |
LP accuracy testing Wang et al. [162] A \ B , |A ∩ B |
Approx. degeneracy Besta et al. [16] A \ B
Table 2: Overview of set-centric graph algorithms. In maximal clique listing, subgraph
isomorphism, and clustering, one also uses variants of union and difference where one set
is always a single-element set (i.e.,A∪ {b },A\ {b }). Bolded text indicates algorithms with
set-centric formulations derived in this work.

algorithms for the considered problems. Some paradigms, such as
the vertex-centric or the edge-centric model, do not focus on such
problems at all. Other paradigms, for example array maps or GNNs,
address only certain problems. Finally, graph pattern matching or
RDBMS can solve different graph mining problems, but they do not
offer formal guarantees, as indicated by past work.

5 SET-CENTRIC GRAPH ALGORITHMS
We now present set-centric formulations of graph mining algo-
rithms. The used set operations are in Table 2.

Notes on Listings Set operations accelerated by SISA are
marked with the

Problem Algorithm Used set operations

Maximal clique list. Bron-Kerbosch [51] 𝐴 ∪ 𝐵,𝐴 ∩ 𝐵,𝐴 \ 𝐵
𝑘-clique listing Danisch et al. [44] + [This work] 𝐴 ∩ 𝐵
4-clique counting [This work] 𝐴 ∩ 𝐵, |𝐴 ∩ 𝐵 |
Triangle counting [well-known] |𝐴 ∩ 𝐵 |
𝑘-clique-star listing Jabbour et al. [79] 𝐴 ∩ 𝐵,𝐴 ∪ 𝐵
𝑘-clique-star listing [This work] 𝐴 ∩ 𝐵
Subgr. isomorphism [This work] 𝐴 ∩ 𝐵, |𝐴 ∩ 𝐵 |,𝐴 ∪ 𝐵,𝐴 \ 𝐵
Vertex similarity Jaccard coeff., others [19, 131] |𝐴 ∩ 𝐵 |, |𝐴 ∪ 𝐵 |
Clustering Jarvis-Patrick [81] |𝐴 ∩ 𝐵 |, |𝐴 ∪ 𝐵 |
Link prediction (LP) Jaccard coeff., others [131] |𝐴 ∩ 𝐵 |, |𝐴 ∪ 𝐵 |
LP accuracy testing Wang et al. [162] 𝐴 \ 𝐵, |𝐴 ∩ 𝐵 |
Approx. degeneracy Besta et al. [16] 𝐴 \ 𝐵

Table 2: Overview of set-centric graph algorithms. In maximal clique listing, subgraph
isomorphism, and clustering, one also uses variants of union and difference where one set
is always a single-element set (i.e.,𝐴∪ {𝑏 },𝐴\ {𝑏 }). Bolded text indicates algorithms with
set-centric formulations derived in this work.

the vertex-centric or the edge-centric model, do not focus on such
problems at all. Other paradigms, for example array maps or GNNs,
address only certain problems. Finally, graph pattern matching or
RDBMS can solve different graph mining problems, but they do not
offer formal guarantees, as indicated by past work.

5 SET-CENTRIC GRAPH ALGORITHMS
We now present set-centric formulations of graph mining algo-
rithms. The used set operations are in Table 2.

Notes onListings Set operations accelerated by SISA aremarked
with the gray color. “[in par]” indicates that in a given loop one
can issue set operations in parallel. We ensure that the paralleliza-
tion does not involve conflicting memory accesses. We now focus
on formulations and we discuss set representations, instructions,
and parallelization later. For clarity, we exclude unrelated optimiza-
tions from the listings.

Maximal Cliques Listing A clique is a fully-connected sub-
graph of an input graph; a maximal clique is a clique not con-
tained in a larger clique. Finding all maximal cliques is an im-
portant NP-hard problem [45, 129, 150, 164]. Algorithm 1 shows
the widely used recursive backtracking Bron-Kerbosch algorithm
(BK) [26, 29, 51]. The main recursive function BKPivot (Line 4)
has three arguments that are dynamic sets containing vertices. 𝑅
is a partially constructed, non-maximal clique 𝑐 , 𝑃 are candidate
vertices that may belong to 𝑐 but are yet to be tried, and 𝑋 are ver-
tices that definitely do not belong to 𝑐 . The algorithm recursively
calls BKPivot for each new candidate vertex, checks if this gives a
clique, and updates accordingly 𝑃 and 𝑋 . Some optimizations need
more set operations, but they reduce the search space of potential
cliques [158]. For example, the set of candidates (for extending a
clique 𝑐) is 𝑃 \ 𝑁 (𝑢) instead of 𝑃 , where 𝑢 ∈ 𝑃 ∪ 𝑋 . Overall, BK
is non-trivial, with many different set operations, including non
anti-monotonic ones such as union. Thus, it shows SISA’s ability to
accelerate complex algorithms.

1 /* Input: A graph 𝐺. Output: Maximal clique 𝑅 (𝑅 ⊆ 𝑉 ).*/
2 𝑃 = 𝑉 ; 𝑅 = ∅; 𝑋 = ∅; //Init sets appropriately.
3 for 𝑣 ∈ 𝑉 [in par] do: BKPivot( {𝑣 }, 𝑃 , 𝑋 );
4 function BKPivot(𝑅, 𝑃 , 𝑋 ):

5 if |𝑃 | == 0 and |𝑋 | == 0: return 𝑅; //Found a maximal clique

6 𝑢 = /* Choose a pivot vertex from 𝑃 ∪𝑋 */

7 for 𝑣 ∈ 𝑃 \ 𝑁 (𝑢) do: BKPivot( 𝑅 ∪ {𝑣 } , 𝑃 ∩ 𝑁 (𝑣) , 𝑋 ∩ 𝑁 (𝑣) )

8 𝑃 = 𝑃 \ {𝑣 } ; 𝑋 = 𝑋 ∪ {𝑣 }
Algorithm 1: Maximal Clique Listing (Bron-Kerbosch) [26, 29].

𝑘-Clique-Star Listing A 𝑘-clique-star is a 𝑘-clique with addi-
tional adjacent vertices that are connected to all the vertices in
the clique. 𝑘-clique-stars relax the restrictive nature of cliques [79].
Algorithm 2 shows the scheme. We first find 𝑘-cliques. Then, for
each 𝑘-clique, one finds additional vertices that form stars with
intersections and a union.

1 /* Input: A graph 𝐺. Output: All 𝑘-clique-stars, 𝑆.*/
2 𝐶 = /* First , find 𝑘 -cliques (e.g., with Table 3)*/
3 𝑆 = ∅ //𝑆 is a set with identified 𝑘 -clique -stars.
4 foreach 𝑐 = (𝑉𝑐 , 𝐸𝑐 ) ∈ 𝐶 do: //For each 𝑘 -clique ...

5 𝑋 =
⋂
𝑢∈𝑉𝑐 𝑁 (𝑢) // Intersect all 𝑁 (𝑢) such that 𝑢 ∈ 𝑉𝑐

6 𝐺𝑠 = 𝑋 ∪𝑉𝑐 // Derive the actual 𝑘 -clique -star

7 𝑆 = 𝑆 ∪ {𝐺𝑠 } //Add an identified 𝑘 -clique -star to 𝑆
8 //At the end , remove duplicates from 𝑆

Algorithm 2: 𝑘-clique-star listing [79].

Subgraph Isomorphism Subgraph isomorphism (SI) is a key
graph problem where one checks whether a given (usually small)
graph 𝐺2 is a subgraph of a graph 𝐺1. Here, we consider an estab-
lished VF2 algorithm [41]. Due to its complexity, in Algorithm 3, we
only provide the most important part that recursively constructs
a candidate set of vertices from 𝐺1, and verifies if it matches the
pattern 𝐺2.

We use SI as an example of how SISA supports labeled graphs.
In VF2 [41], for each transition between states, one first verifies if
the structure of𝐺2 matches that of𝐺1 (Line 11). Then, label match-
ing is verified independently (Lines 12-13). Checking if vertex labels
match, i.e., if 𝐿(𝑣1) equals 𝐿(𝑣2), is trivial. Yet, a graph may also
contain edge labels that need to be matched. This could be done
with a standard approach without set operations [41]. However,
the generality of set notation also enables supporting label verifica-
tion. For this, we first identify all edges in𝐺1 where one endpoint
is the newly matched vertex 𝑣1 and the other endpoint 𝑣 ′1 is al-
ready matched (i.e., 𝑣 ′1 ∈ 𝑀1 (𝑠)). This is done with an intersection
𝑁1 (𝑣1) ∩𝑀1 (𝑠). Then, we find the vertex with which 𝑣 ′1 is matched,
see the second loop in Line 17. Finally, we verify that the respective
labels match (Line 18).

For Frequent Subgraph Mining (FSM), we use an established
Apriori-based scheme [5],[84, Algorithm 3.1]. We show it in Algo-
rithm 4. It first generates candidate subgraphs𝐶𝑘 (Line 6) and then
checks their counts cnt in the input graph (Line 8) using subgraph
isomorphism (SI) as a fundamental kernel [84] (combining candi-
date generation and occurrence verification is a very popular FSM
approach [5, 66, 94, 95], also see other references in [84]). If the
count is above a certain user selected threshold (𝜎 · 𝑛), a candidate
is added as a found frequent subgraph (Line 9). VF2, an SI algo-
rithm covered in this section, was found to be an efficient kernel
for FSM; all SISA operations in SI are reused. Generation of can-
didate subgraphs (candidate_gen) is less time-consuming than
SI [84]. Still, it also benefits from set operations; for example, join-
ing trees that represent candidates, a key operation in a kernel by
Hido and Kawano [72], is done using set union [84]. These trees
can be implemented with either 𝑛-bit dense bitvectors or sparse
arrays, benefiting from SISA-PUM or PNM (user’s choice).

Vertex Similarity & Clustering Various measures assess how
similar two vertices 𝑣 and 𝑢 are, see Algorithm 5. They can be
used on their own, or as a main building block of more complex

color. “[in par]” indicates that in a given
loop one can issue set operations in parallel. We ensure that the
parallelization does not involve conflicting memory accesses. 1111
We now focus on formulations and we discuss set representations,
instructions, and parallelization later. For clarity, we exclude unre-
lated optimizations from the listings.

Maximal Cliques Listing A clique is a fully-connected sub-
graph of an input graph; a maximal clique is a clique not con-
tained in a larger clique. Finding all maximal cliques is an im-
portant NP-hard problem [45, 129, 150, 164]. Algorithm 1 shows
the widely used recursive backtracking Bron-Kerbosch algorithm
(BK) [26, 29, 51]. The main recursive function BKPivot (Line 4)
has three arguments that are dynamic sets containing vertices. R
is a partially constructed, non-maximal clique c , P are candidate
vertices that may belong to c but are yet to be tried, and X are ver-
tices that definitely do not belong to c . The algorithm recursively
calls BKPivot for each new candidate vertex, checks if this gives a
clique, and updates accordingly P and X . Some optimizations need
more set operations, but they reduce the search space of potential
cliques [158]. For example, the set of candidates (for extending a
clique c) is P \ N (u) instead of P , where u ∈ P ∪ X . Overall, BK
is non-trivial, with many different set operations, including non
anti-monotonic ones such as union. Thus, it shows SISA’s ability to
accelerate complex algorithms.

Problem Algorithm Used set operations

Maximal clique list. Bron-Kerbosch [51] 𝐴 ∪ 𝐵,𝐴 ∩ 𝐵,𝐴 \ 𝐵
𝑘-clique listing Danisch et al. [44] + [This work] 𝐴 ∩ 𝐵
4-clique counting [This work] 𝐴 ∩ 𝐵, |𝐴 ∩ 𝐵 |
Triangle counting [well-known] |𝐴 ∩ 𝐵 |
𝑘-clique-star listing Jabbour et al. [79] 𝐴 ∩ 𝐵,𝐴 ∪ 𝐵
𝑘-clique-star listing [This work] 𝐴 ∩ 𝐵
Subgr. isomorphism [This work] 𝐴 ∩ 𝐵, |𝐴 ∩ 𝐵 |,𝐴 ∪ 𝐵,𝐴 \ 𝐵
Vertex similarity Jaccard coeff., others [19, 131] |𝐴 ∩ 𝐵 |, |𝐴 ∪ 𝐵 |
Clustering Jarvis-Patrick [81] |𝐴 ∩ 𝐵 |, |𝐴 ∪ 𝐵 |
Link prediction (LP) Jaccard coeff., others [131] |𝐴 ∩ 𝐵 |, |𝐴 ∪ 𝐵 |
LP accuracy testing Wang et al. [162] 𝐴 \ 𝐵, |𝐴 ∩ 𝐵 |
Approx. degeneracy Besta et al. [16] 𝐴 \ 𝐵

Table 2: Overview of set-centric graph algorithms. In maximal clique listing, subgraph
isomorphism, and clustering, one also uses variants of union and difference where one set
is always a single-element set (i.e.,𝐴∪ {𝑏 },𝐴\ {𝑏 }). Bolded text indicates algorithms with
set-centric formulations derived in this work.

the vertex-centric or the edge-centric model, do not focus on such
problems at all. Other paradigms, for example array maps or GNNs,
address only certain problems. Finally, graph pattern matching or
RDBMS can solve different graph mining problems, but they do not
offer formal guarantees, as indicated by past work.

5 SET-CENTRIC GRAPH ALGORITHMS
We now present set-centric formulations of graph mining algo-
rithms. The used set operations are in Table 2.

Notes onListings Set operations accelerated by SISA aremarked
with the gray color. “[in par]” indicates that in a given loop one
can issue set operations in parallel. We ensure that the paralleliza-
tion does not involve conflicting memory accesses. We now focus
on formulations and we discuss set representations, instructions,
and parallelization later. For clarity, we exclude unrelated optimiza-
tions from the listings.

Maximal Cliques Listing A clique is a fully-connected sub-
graph of an input graph; a maximal clique is a clique not con-
tained in a larger clique. Finding all maximal cliques is an im-
portant NP-hard problem [45, 129, 150, 164]. Algorithm 1 shows
the widely used recursive backtracking Bron-Kerbosch algorithm
(BK) [26, 29, 51]. The main recursive function BKPivot (Line 4)
has three arguments that are dynamic sets containing vertices. 𝑅
is a partially constructed, non-maximal clique 𝑐 , 𝑃 are candidate
vertices that may belong to 𝑐 but are yet to be tried, and 𝑋 are ver-
tices that definitely do not belong to 𝑐 . The algorithm recursively
calls BKPivot for each new candidate vertex, checks if this gives a
clique, and updates accordingly 𝑃 and 𝑋 . Some optimizations need
more set operations, but they reduce the search space of potential
cliques [158]. For example, the set of candidates (for extending a
clique 𝑐) is 𝑃 \ 𝑁 (𝑢) instead of 𝑃 , where 𝑢 ∈ 𝑃 ∪ 𝑋 . Overall, BK
is non-trivial, with many different set operations, including non
anti-monotonic ones such as union. Thus, it shows SISA’s ability to
accelerate complex algorithms.

1 /* Input: A graph 𝐺. Output: Maximal clique 𝑅 (𝑅 ⊆ 𝑉 ).*/
2 𝑃 = 𝑉 ; 𝑅 = ∅; 𝑋 = ∅; //Init sets appropriately.
3 for 𝑣 ∈ 𝑉 [in par] do: BKPivot( {𝑣 }, 𝑃 , 𝑋 );
4 function BKPivot(𝑅, 𝑃 , 𝑋 ):

5 if |𝑃 | == 0 and |𝑋 | == 0: return 𝑅; //Found a maximal clique

6 𝑢 = /* Choose a pivot vertex from 𝑃 ∪𝑋 */

7 for 𝑣 ∈ 𝑃 \ 𝑁 (𝑢) do: BKPivot( 𝑅 ∪ {𝑣 } , 𝑃 ∩ 𝑁 (𝑣) , 𝑋 ∩ 𝑁 (𝑣) )

8 𝑃 = 𝑃 \ {𝑣 } ; 𝑋 = 𝑋 ∪ {𝑣 }
Algorithm 1: Maximal Clique Listing (Bron-Kerbosch) [26, 29].

𝑘-Clique-Star Listing A 𝑘-clique-star is a 𝑘-clique with addi-
tional adjacent vertices that are connected to all the vertices in
the clique. 𝑘-clique-stars relax the restrictive nature of cliques [79].
Algorithm 2 shows the scheme. We first find 𝑘-cliques. Then, for
each 𝑘-clique, one finds additional vertices that form stars with
intersections and a union.

1 /* Input: A graph 𝐺. Output: All 𝑘-clique-stars, 𝑆.*/
2 𝐶 = /* First , find 𝑘 -cliques (e.g., with Table 3)*/
3 𝑆 = ∅ //𝑆 is a set with identified 𝑘 -clique -stars.
4 foreach 𝑐 = (𝑉𝑐 , 𝐸𝑐 ) ∈ 𝐶 do: //For each 𝑘 -clique ...

5 𝑋 =
⋂
𝑢∈𝑉𝑐 𝑁 (𝑢) // Intersect all 𝑁 (𝑢) such that 𝑢 ∈ 𝑉𝑐

6 𝐺𝑠 = 𝑋 ∪𝑉𝑐 // Derive the actual 𝑘 -clique -star

7 𝑆 = 𝑆 ∪ {𝐺𝑠 } //Add an identified 𝑘 -clique -star to 𝑆
8 //At the end , remove duplicates from 𝑆

Algorithm 2: 𝑘-clique-star listing [79].

Subgraph Isomorphism Subgraph isomorphism (SI) is a key
graph problem where one checks whether a given (usually small)
graph 𝐺2 is a subgraph of a graph 𝐺1. Here, we consider an estab-
lished VF2 algorithm [41]. Due to its complexity, in Algorithm 3, we
only provide the most important part that recursively constructs
a candidate set of vertices from 𝐺1, and verifies if it matches the
pattern 𝐺2.

We use SI as an example of how SISA supports labeled graphs.
In VF2 [41], for each transition between states, one first verifies if
the structure of𝐺2 matches that of𝐺1 (Line 11). Then, label match-
ing is verified independently (Lines 12-13). Checking if vertex labels
match, i.e., if 𝐿(𝑣1) equals 𝐿(𝑣2), is trivial. Yet, a graph may also
contain edge labels that need to be matched. This could be done
with a standard approach without set operations [41]. However,
the generality of set notation also enables supporting label verifica-
tion. For this, we first identify all edges in𝐺1 where one endpoint
is the newly matched vertex 𝑣1 and the other endpoint 𝑣 ′1 is al-
ready matched (i.e., 𝑣 ′1 ∈ 𝑀1 (𝑠)). This is done with an intersection
𝑁1 (𝑣1) ∩𝑀1 (𝑠). Then, we find the vertex with which 𝑣 ′1 is matched,
see the second loop in Line 17. Finally, we verify that the respective
labels match (Line 18).

For Frequent Subgraph Mining (FSM), we use an established
Apriori-based scheme [5],[84, Algorithm 3.1]. We show it in Algo-
rithm 4. It first generates candidate subgraphs𝐶𝑘 (Line 6) and then
checks their counts cnt in the input graph (Line 8) using subgraph
isomorphism (SI) as a fundamental kernel [84] (combining candi-
date generation and occurrence verification is a very popular FSM
approach [5, 66, 94, 95], also see other references in [84]). If the
count is above a certain user selected threshold (𝜎 · 𝑛), a candidate
is added as a found frequent subgraph (Line 9). VF2, an SI algo-
rithm covered in this section, was found to be an efficient kernel
for FSM; all SISA operations in SI are reused. Generation of can-
didate subgraphs (candidate_gen) is less time-consuming than
SI [84]. Still, it also benefits from set operations; for example, join-
ing trees that represent candidates, a key operation in a kernel by
Hido and Kawano [72], is done using set union [84]. These trees
can be implemented with either 𝑛-bit dense bitvectors or sparse
arrays, benefiting from SISA-PUM or PNM (user’s choice).

Vertex Similarity & Clustering Various measures assess how
similar two vertices 𝑣 and 𝑢 are, see Algorithm 5. They can be
used on their own, or as a main building block of more complex

k-Clique-Star Listing A k-clique-star is a k-clique with addi-
tional adjacent vertices that are connected to all the vertices in
the clique. k-clique-stars relax the restrictive nature of cliques [79].
Algorithm 2 shows the scheme. We first find k-cliques. Then, for
each k-clique, one finds additional vertices that form stars with
intersections and a union.

Problem Algorithm Used set operations

Maximal clique list. Bron-Kerbosch [51] 𝐴 ∪ 𝐵,𝐴 ∩ 𝐵,𝐴 \ 𝐵
𝑘-clique listing Danisch et al. [44] + [This work] 𝐴 ∩ 𝐵
4-clique counting [This work] 𝐴 ∩ 𝐵, |𝐴 ∩ 𝐵 |
Triangle counting [well-known] |𝐴 ∩ 𝐵 |
𝑘-clique-star listing Jabbour et al. [79] 𝐴 ∩ 𝐵,𝐴 ∪ 𝐵
𝑘-clique-star listing [This work] 𝐴 ∩ 𝐵
Subgr. isomorphism [This work] 𝐴 ∩ 𝐵, |𝐴 ∩ 𝐵 |,𝐴 ∪ 𝐵,𝐴 \ 𝐵
Vertex similarity Jaccard coeff., others [19, 131] |𝐴 ∩ 𝐵 |, |𝐴 ∪ 𝐵 |
Clustering Jarvis-Patrick [81] |𝐴 ∩ 𝐵 |, |𝐴 ∪ 𝐵 |
Link prediction (LP) Jaccard coeff., others [131] |𝐴 ∩ 𝐵 |, |𝐴 ∪ 𝐵 |
LP accuracy testing Wang et al. [162] 𝐴 \ 𝐵, |𝐴 ∩ 𝐵 |
Approx. degeneracy Besta et al. [16] 𝐴 \ 𝐵

Table 2: Overview of set-centric graph algorithms. In maximal clique listing, subgraph
isomorphism, and clustering, one also uses variants of union and difference where one set
is always a single-element set (i.e.,𝐴∪ {𝑏 },𝐴\ {𝑏 }). Bolded text indicates algorithms with
set-centric formulations derived in this work.

the vertex-centric or the edge-centric model, do not focus on such
problems at all. Other paradigms, for example array maps or GNNs,
address only certain problems. Finally, graph pattern matching or
RDBMS can solve different graph mining problems, but they do not
offer formal guarantees, as indicated by past work.

5 SET-CENTRIC GRAPH ALGORITHMS
We now present set-centric formulations of graph mining algo-
rithms. The used set operations are in Table 2.

Notes onListings Set operations accelerated by SISA aremarked
with the gray color. “[in par]” indicates that in a given loop one
can issue set operations in parallel. We ensure that the paralleliza-
tion does not involve conflicting memory accesses. We now focus
on formulations and we discuss set representations, instructions,
and parallelization later. For clarity, we exclude unrelated optimiza-
tions from the listings.

Maximal Cliques Listing A clique is a fully-connected sub-
graph of an input graph; a maximal clique is a clique not con-
tained in a larger clique. Finding all maximal cliques is an im-
portant NP-hard problem [45, 129, 150, 164]. Algorithm 1 shows
the widely used recursive backtracking Bron-Kerbosch algorithm
(BK) [26, 29, 51]. The main recursive function BKPivot (Line 4)
has three arguments that are dynamic sets containing vertices. 𝑅
is a partially constructed, non-maximal clique 𝑐 , 𝑃 are candidate
vertices that may belong to 𝑐 but are yet to be tried, and 𝑋 are ver-
tices that definitely do not belong to 𝑐 . The algorithm recursively
calls BKPivot for each new candidate vertex, checks if this gives a
clique, and updates accordingly 𝑃 and 𝑋 . Some optimizations need
more set operations, but they reduce the search space of potential
cliques [158]. For example, the set of candidates (for extending a
clique 𝑐) is 𝑃 \ 𝑁 (𝑢) instead of 𝑃 , where 𝑢 ∈ 𝑃 ∪ 𝑋 . Overall, BK
is non-trivial, with many different set operations, including non
anti-monotonic ones such as union. Thus, it shows SISA’s ability to
accelerate complex algorithms.

1 /* Input: A graph 𝐺. Output: Maximal clique 𝑅 (𝑅 ⊆ 𝑉 ).*/
2 𝑃 = 𝑉 ; 𝑅 = ∅; 𝑋 = ∅; //Init sets appropriately.
3 for 𝑣 ∈ 𝑉 [in par] do: BKPivot( {𝑣 }, 𝑃 , 𝑋 );
4 function BKPivot(𝑅, 𝑃 , 𝑋 ):

5 if |𝑃 | == 0 and |𝑋 | == 0: return 𝑅; //Found a maximal clique

6 𝑢 = /* Choose a pivot vertex from 𝑃 ∪𝑋 */

7 for 𝑣 ∈ 𝑃 \ 𝑁 (𝑢) do: BKPivot( 𝑅 ∪ {𝑣 } , 𝑃 ∩ 𝑁 (𝑣) , 𝑋 ∩ 𝑁 (𝑣) )

8 𝑃 = 𝑃 \ {𝑣 } ; 𝑋 = 𝑋 ∪ {𝑣 }
Algorithm 1: Maximal Clique Listing (Bron-Kerbosch) [26, 29].

𝑘-Clique-Star Listing A 𝑘-clique-star is a 𝑘-clique with addi-
tional adjacent vertices that are connected to all the vertices in
the clique. 𝑘-clique-stars relax the restrictive nature of cliques [79].
Algorithm 2 shows the scheme. We first find 𝑘-cliques. Then, for
each 𝑘-clique, one finds additional vertices that form stars with
intersections and a union.

1 /* Input: A graph 𝐺. Output: All 𝑘-clique-stars, 𝑆.*/
2 𝐶 = /* First , find 𝑘 -cliques (e.g., with Table 3)*/
3 𝑆 = ∅ //𝑆 is a set with identified 𝑘 -clique -stars.
4 foreach 𝑐 = (𝑉𝑐 , 𝐸𝑐 ) ∈ 𝐶 do: //For each 𝑘 -clique ...

5 𝑋 =
⋂
𝑢∈𝑉𝑐 𝑁 (𝑢) // Intersect all 𝑁 (𝑢) such that 𝑢 ∈ 𝑉𝑐

6 𝐺𝑠 = 𝑋 ∪𝑉𝑐 // Derive the actual 𝑘 -clique -star

7 𝑆 = 𝑆 ∪ {𝐺𝑠 } //Add an identified 𝑘 -clique -star to 𝑆
8 //At the end , remove duplicates from 𝑆

Algorithm 2: 𝑘-clique-star listing [79].

Subgraph Isomorphism Subgraph isomorphism (SI) is a key
graph problem where one checks whether a given (usually small)
graph 𝐺2 is a subgraph of a graph 𝐺1. Here, we consider an estab-
lished VF2 algorithm [41]. Due to its complexity, in Algorithm 3, we
only provide the most important part that recursively constructs
a candidate set of vertices from 𝐺1, and verifies if it matches the
pattern 𝐺2.

We use SI as an example of how SISA supports labeled graphs.
In VF2 [41], for each transition between states, one first verifies if
the structure of𝐺2 matches that of𝐺1 (Line 11). Then, label match-
ing is verified independently (Lines 12-13). Checking if vertex labels
match, i.e., if 𝐿(𝑣1) equals 𝐿(𝑣2), is trivial. Yet, a graph may also
contain edge labels that need to be matched. This could be done
with a standard approach without set operations [41]. However,
the generality of set notation also enables supporting label verifica-
tion. For this, we first identify all edges in𝐺1 where one endpoint
is the newly matched vertex 𝑣1 and the other endpoint 𝑣 ′1 is al-
ready matched (i.e., 𝑣 ′1 ∈ 𝑀1 (𝑠)). This is done with an intersection
𝑁1 (𝑣1) ∩𝑀1 (𝑠). Then, we find the vertex with which 𝑣 ′1 is matched,
see the second loop in Line 17. Finally, we verify that the respective
labels match (Line 18).

For Frequent Subgraph Mining (FSM), we use an established
Apriori-based scheme [5],[84, Algorithm 3.1]. We show it in Algo-
rithm 4. It first generates candidate subgraphs𝐶𝑘 (Line 6) and then
checks their counts cnt in the input graph (Line 8) using subgraph
isomorphism (SI) as a fundamental kernel [84] (combining candi-
date generation and occurrence verification is a very popular FSM
approach [5, 66, 94, 95], also see other references in [84]). If the
count is above a certain user selected threshold (𝜎 · 𝑛), a candidate
is added as a found frequent subgraph (Line 9). VF2, an SI algo-
rithm covered in this section, was found to be an efficient kernel
for FSM; all SISA operations in SI are reused. Generation of can-
didate subgraphs (candidate_gen) is less time-consuming than
SI [84]. Still, it also benefits from set operations; for example, join-
ing trees that represent candidates, a key operation in a kernel by
Hido and Kawano [72], is done using set union [84]. These trees
can be implemented with either 𝑛-bit dense bitvectors or sparse
arrays, benefiting from SISA-PUM or PNM (user’s choice).

Vertex Similarity & Clustering Various measures assess how
similar two vertices 𝑣 and 𝑢 are, see Algorithm 5. They can be
used on their own, or as a main building block of more complex

Subgraph Isomorphism Subgraph isomorphism (SI) is a key
graph problem where one checks whether a given (usually small)
graph G2 is a subgraph of a graph G1. Here, we consider an estab-
lished VF2 algorithm [41]. Due to its complexity, in Algorithm 3, we
only provide the most important part that recursively constructs
a candidate set of vertices from G1, and verifies if it matches the
pattern G2.

We use SI as an example of how SISA supports labeled graphs.
In VF2 [41], for each transition between states, one first verifies if
the structure ofG2 matches that ofG1 (Line 11). Then, label match-
ing is verified independently (Lines 12-13). Checking if vertex labels
match, i.e., if L(v1) equals L(v2), is trivial. Yet, a graph may also
contain edge labels that need to be matched. This could be done
with a standard approach without set operations [41]. However,
the generality of set notation also enables supporting label verifica-
tion. For this, we first identify all edges inG1 where one endpoint
is the newly matched vertex v1 and the other endpoint v ′

1 is al-
ready matched (i.e., v ′

1 ∈ M1(s)). This is done with an intersection
N1(v1) ∩M1(s). Then, we find the vertex with whichv ′

1 is matched,
see the second loop in Line 17. Finally, we verify that the respective
labels match (Line 18).

1 /* Input: target graph 𝐺1, pattern 𝐺2. Output: mapping between graphs.*/
2 𝑠0 = {}; 𝑀 (𝑠0) = ∅; // Initial state
3 Match(𝑠0); // Algorithm start
4 function Match(𝑠):

5 if 𝑀 (𝑠) covers all nodes in pattern graph: output 𝑀 (𝑠); return;

6 𝑃 (𝑠) = /* compute set of candidate pairs to be added to 𝑀 (𝑠) */

7 for (𝑣1, 𝑣2) ∈ 𝑃 (𝑠) do:

8 𝑐ℎ𝑒𝑐𝑘𝐶𝑜𝑟𝑒 = /* original 𝑅𝑐𝑜𝑟𝑒 rule */

9 𝑐ℎ𝑒𝑐𝑘𝑇𝑒𝑟𝑚 = |𝑁1 (𝑣1) ∩𝑇1 (𝑠) | ≥ |𝑁2 (𝑣2) ∩𝑇2 (𝑠) |
10 𝑐ℎ𝑒𝑐𝑘𝑁𝑒𝑤 = |𝑁1 (𝑣1) \ (𝑀1 (𝑠) ∪𝑇1 (𝑠)) | ≥ |𝑁2 (𝑣2) \ (𝑀2 (𝑠) ∪𝑇2 (𝑠)) |
11 𝑐ℎ𝑒𝑐𝑘𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑐ℎ𝑒𝑐𝑘𝐶𝑜𝑟𝑒 ∧ 𝑐ℎ𝑒𝑐𝑘𝑇𝑒𝑟𝑚 ∧ 𝑐ℎ𝑒𝑐𝑘𝑁𝑒𝑤

12 𝑐ℎ𝑒𝑐𝑘𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 = verify_labels(𝑣1, 𝑣2, 𝑠) //If we use labels.
13 𝑐ℎ𝑒𝑐𝑘𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑐ℎ𝑒𝑐𝑘𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ∧ 𝑐ℎ𝑒𝑐𝑘𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 //If we use

labels.
14 if 𝑐ℎ𝑒𝑐𝑘𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 : 𝑠′ = NewState(𝑠, 𝑣1 , 𝑣2); Match(𝑠′)
15 //Check if labeling of 𝑣1 and 𝑣2 and their neighborhoods matches:
16 bool verify_labels(𝑣1 , 𝑣2 , 𝑠):

17 forall 𝑣′1 ∈ 𝑁1 (𝑣1) ∩𝑀1 (𝑠) : forall (𝑣′1, 𝑣′2) ∈ 𝑀 (𝑠):
18 if (𝐿 (𝑣1) != 𝐿 (𝑣2)) or (𝐿 (𝑣1, 𝑣′1) != 𝐿 (𝑣2, 𝑣′2)): return false

19 return true

Algorithm 3: Subgraph isomorphism [41].𝑀1 and𝑀2 denote the current partial mappings
associated with𝐺1 and𝐺2 , respectively. 𝑇1 and 𝑇2 denote sets of vertices adjacent to the
ones in 𝑀1 and 𝑀2 , respectively. 𝑁1 and 𝑁2 denote neighborhoods within 𝐺1 and 𝐺2 ,
respectively. verify_labels is used if graphs are labeled.

1 /* Input: target graph (𝐺), minimum support / count of a found pattern (𝜎).
2 * Output: sets of frequent subgraphs of sizes 1, 2, ..., 𝑘 (𝐹1, 𝐹2, ..., 𝐹𝑘 ).*/
3 𝐹1 = 𝑉 ; 𝑘 = 2 //𝑘 = 2 means we start recursion from edges.
4 //Use all subgraphs in 𝐹𝑘−1 to generate candidates of size 𝑘:
5 while 𝐹𝑘−1 ≠ ∅ do: //𝐶𝑘 (below) are candidate subgraphs of size 𝑘
6 𝐹𝑘 = ∅; 𝐶𝑘 = candidate_gen(𝐹𝑘−1) //Use any selected kernel[84]
7 foreach 𝑔 ∈ 𝐶𝑘 do:
8 cnt = SI(𝑔, 𝐺) //For set operations in SI, see Algorithm 3
9 if cnt ≥ 𝜎𝑛 and 𝑔 ∉ 𝐹𝑘 : 𝐹𝑘 ∪= 𝑔
10 k++

Algorithm 4: Frequent subgraph mining [84].

algorithms such as clustering. In clustering, one iterates over all
adjacent vertex pairs, and uses their similarity to decide if the pair
belongs to a cluster.

1 /* Input: A graph 𝐺. Output: Similarity 𝑆 ∈ R of neighborhoods
2 * 𝑁 (𝑢) and 𝑁 (𝑣) of some vertices 𝑢 and 𝑣. */

3 𝑆 𝐽 (𝑣,𝑢) = |𝑁 (𝑣) ∩ 𝑁 (𝑢) | / |𝑁 (𝑣) ∪ 𝑁 (𝑢) | /* Jaccard Similarity */

Algorithm 5: Vertex similarity measures.

Finally, SISA does not target the “low-complexity” algorithms,
as they offer few opportunities for set-centric acceleration [20, 25,
42, 60, 114, 115, 144, 147, 148, 152, 172]. For example, in PageRank,
one updates vertex ranks in two nested loops, which is not easily
expressible with set operations. Our work is already more gen-
eral than other pattern matching accelerators / frameworks, as it
supports many more problems beyond simple pattern matching.

5.1 Deriving a Set-Centric Formulation
Often, algorithms use set notation, and one may simply pick opera-
tions for memory acceleration. This is the case with, for example,
Jarvis-Patrick clustering. Still, one may need to apply more complex
changes to “expose” set instructions. The general rule is to asso-
ciate used data structures with sets, and then identify respective
set operations. As an example, we compare a traditional snippet for
deriving the count of all 4-cliques cnt, a derived set-centric algo-
rithmic formulation, and the corresponding SISA snippet in Table 3.
The key algorithmic change is using set intersections instead of
explicitly verifying if vertices are connected. For example, instead
of iterating over all neighbors of 𝑣1-𝑣3 (Lines 4-6, the top snippet),
in SISA, we intersect neighborhoods of 𝑣1-𝑣3 (Line 4 & 6, the middle
snippet) to filter 4-cliques.

1 //Non set-centric code:
2 CSR_Graph g(𝐺); // Standard codes often use some form of CSR
3 #pragma omp parallel for
4 for (auto v1: g.V()) //For all vertices in parallel.
5 for (auto v2: g.N_out(v1)) // Explore neighborhoods of v1-v4...
6 for (auto v3: g.N_out(v2)) //... searching for a 4-clique
7 for (auto v4: g.N_out(v3)) //If v1 -v4 are connected pairwise
8 if(g.edge(v1,v3) && g.edge(v1,v4) && g.edge(v2,v4)) ++cnt;

1 //A set-centric algorithmic formulation:
2 for 𝑣1 ∈ 𝑉 in parallel do: //For all vertices in parallel.
3 for 𝑣2 ∈ 𝑁 + (𝑣1) do: //For each neighbor of 𝑣1 ...
4 𝑆1 = 𝑁 + (𝑣1) ∩ 𝑁 + (𝑣2) //Find common neighbors of 𝑣1 and 𝑣2.
5 for 𝑣3 ∈ 𝑆1 do: cnt += |𝑆1 ∩ 𝑁 + (𝑣3) |

1 //SISA (simplified) set-centric code:
2 SetGraph g = SetGraph(𝐺);
3 #pragma omp parallel for
4 for (auto v1: g.V()) for (auto v2: g.N_out(v1)) {
5 auto S1 = intersect(g.N_out(v1), g.N_out(v2));
6 for (auto v3: S1) cnt += intersect_card(S1 , g.N_out(v3)); }

Table 3: Finding all 4-cliques: a traditional (non-set-centric) snippet, a set-centric algorith-
mic formulation derived in this work, and a SISA set-centric snippet.

Algorithmic Formulations
 SISA set-centric

formulations

Example corresponding syntax:

SISA software: 
thin abstraction

+ wrappers

SISA HW units SCU Cache

SISA drivers

for (Vertex v : set) { ... }                       // Set iterators
VertexSet A = ..., B = ...;                       // Sets
VertexSet union = A.SISA_Union(B);      // Set operations 

 

SetId create(Vertex* vs, size_t count);
void delete(SetId id); SetId clone(SetId id);
void insert(SetId id, Vertex v, ...);
void remove(SetId id, Vertex v, ...);
SetId union(SetId A, SetId B, ...);
SetId intersect(SetId A, SetId B, ...);
SetId difference(SetId A, SetId B, ...);
size_t intersect_count(SetId A, SetId B, ...);
size_t cardinality(SetId id, ...);
bool is_member(SetId id, Vertex v, ...);
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Figure 3: Overview of SISA instructions and syntax at different levels of abstraction.

6 SISA: DESIGN, SYNTAX, SEMANTICS
We now detail SISA’s design, see Figure 3.

6.1 Representation of Sets
The first key question is how to represent sets: SISA’s “first-class
citizens”. We observe that – in each graph algorithm – there are
two fundamentally different classes of data structures. One class
are (1) vertex neighborhoods 𝑁 (𝑣) that maintain the structure
of the input graph. There are 𝑛 such sets, their total size is 𝑂 (𝑚),
and each single neighborhood is static (we currently focus on static
graphs) and sorted (following the established practice in graph
processing [109]). Another class are (2) auxiliary structures, for
example 𝑃 in Bron-Kerbosch (Listing 1). These sets are used to
maintain some algorithmic state. They are usually dynamic, they
may be unsorted, their number (in a given algorithm) is usually a
(small) constant, and their total size is 𝑂 (𝑛). While SISA enables
using any set representation for any specific set, we offer certain
recommendations to maximize performance.

SAs should be used for small neighborhoods and DBs for the
large ones (in the evaluation, we vary the threshold so that 5%-30%
largest neighborhoods use DBs). This approach is memory efficient.

For Frequent Subgraph Mining (FSM), we use an established
Apriori-based scheme [5],[84, Algorithm 3.1]. We show it in Algo-
rithm 4. It first generates candidate subgraphsCk (Line 6) and then
checks their counts cnt in the input graph (Line 8) using subgraph
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isomorphism (SI) as a fundamental kernel [84] (combining candi-
date generation and occurrence verification is a very popular FSM
approach [5, 66, 94, 95], also see other references in [84]). If the
count is above a certain user selected threshold (σ · n), a candidate
is added as a found frequent subgraph (Line 9). VF2, an SI algo-
rithm covered in this section, was found to be an efficient kernel
for FSM; all SISA operations in SI are reused. Generation of can-
didate subgraphs (candidate_gen) is less time-consuming than
SI [84]. Still, it also benefits from set operations; for example, join-
ing trees that represent candidates, a key operation in a kernel by
Hido and Kawano [72], is done using set union [84]. These trees
can be implemented with either n-bit dense bitvectors or sparse
arrays, benefiting from SISA-PUM or PNM (user’s choice).

1 /* Input: target graph 𝐺1, pattern 𝐺2. Output: mapping between graphs.*/
2 𝑠0 = {}; 𝑀 (𝑠0) = ∅; // Initial state
3 Match(𝑠0); // Algorithm start
4 function Match(𝑠):

5 if 𝑀 (𝑠) covers all nodes in pattern graph: output 𝑀 (𝑠); return;

6 𝑃 (𝑠) = /* compute set of candidate pairs to be added to 𝑀 (𝑠) */

7 for (𝑣1, 𝑣2) ∈ 𝑃 (𝑠) do:

8 𝑐ℎ𝑒𝑐𝑘𝐶𝑜𝑟𝑒 = /* original 𝑅𝑐𝑜𝑟𝑒 rule */

9 𝑐ℎ𝑒𝑐𝑘𝑇𝑒𝑟𝑚 = |𝑁1 (𝑣1) ∩𝑇1 (𝑠) | ≥ |𝑁2 (𝑣2) ∩𝑇2 (𝑠) |
10 𝑐ℎ𝑒𝑐𝑘𝑁𝑒𝑤 = |𝑁1 (𝑣1) \ (𝑀1 (𝑠) ∪𝑇1 (𝑠)) | ≥ |𝑁2 (𝑣2) \ (𝑀2 (𝑠) ∪𝑇2 (𝑠)) |
11 𝑐ℎ𝑒𝑐𝑘𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑐ℎ𝑒𝑐𝑘𝐶𝑜𝑟𝑒 ∧ 𝑐ℎ𝑒𝑐𝑘𝑇𝑒𝑟𝑚 ∧ 𝑐ℎ𝑒𝑐𝑘𝑁𝑒𝑤

12 𝑐ℎ𝑒𝑐𝑘𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 = verify_labels(𝑣1, 𝑣2, 𝑠) //If we use labels.
13 𝑐ℎ𝑒𝑐𝑘𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑐ℎ𝑒𝑐𝑘𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ∧ 𝑐ℎ𝑒𝑐𝑘𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 //If we use

labels.
14 if 𝑐ℎ𝑒𝑐𝑘𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 : 𝑠′ = NewState(𝑠, 𝑣1 , 𝑣2); Match(𝑠′)
15 //Check if labeling of 𝑣1 and 𝑣2 and their neighborhoods matches:
16 bool verify_labels(𝑣1 , 𝑣2 , 𝑠):

17 forall 𝑣′1 ∈ 𝑁1 (𝑣1) ∩𝑀1 (𝑠) : forall (𝑣′1, 𝑣′2) ∈ 𝑀 (𝑠):
18 if (𝐿 (𝑣1) != 𝐿 (𝑣2)) or (𝐿 (𝑣1, 𝑣′1) != 𝐿 (𝑣2, 𝑣′2)): return false

19 return true

Algorithm 3: Subgraph isomorphism [41].𝑀1 and𝑀2 denote the current partial mappings
associated with𝐺1 and𝐺2 , respectively. 𝑇1 and 𝑇2 denote sets of vertices adjacent to the
ones in 𝑀1 and 𝑀2 , respectively. 𝑁1 and 𝑁2 denote neighborhoods within 𝐺1 and 𝐺2 ,
respectively. verify_labels is used if graphs are labeled.

1 /* Input: target graph (𝐺), minimum support / count of a found pattern (𝜎).
2 * Output: sets of frequent subgraphs of sizes 1, 2, ..., 𝑘 (𝐹1, 𝐹2, ..., 𝐹𝑘 ).*/
3 𝐹1 = 𝑉 ; 𝑘 = 2 //𝑘 = 2 means we start recursion from edges.
4 //Use all subgraphs in 𝐹𝑘−1 to generate candidates of size 𝑘:
5 while 𝐹𝑘−1 ≠ ∅ do: //𝐶𝑘 (below) are candidate subgraphs of size 𝑘
6 𝐹𝑘 = ∅; 𝐶𝑘 = candidate_gen(𝐹𝑘−1) //Use any selected kernel[84]
7 foreach 𝑔 ∈ 𝐶𝑘 do:
8 cnt = SI(𝑔, 𝐺) //For set operations in SI, see Algorithm 3
9 if cnt ≥ 𝜎𝑛 and 𝑔 ∉ 𝐹𝑘 : 𝐹𝑘 ∪= 𝑔
10 k++

Algorithm 4: Frequent subgraph mining [84].

algorithms such as clustering. In clustering, one iterates over all
adjacent vertex pairs, and uses their similarity to decide if the pair
belongs to a cluster.

1 /* Input: A graph 𝐺. Output: Similarity 𝑆 ∈ R of neighborhoods
2 * 𝑁 (𝑢) and 𝑁 (𝑣) of some vertices 𝑢 and 𝑣. */

3 𝑆 𝐽 (𝑣,𝑢) = |𝑁 (𝑣) ∩ 𝑁 (𝑢) | / |𝑁 (𝑣) ∪ 𝑁 (𝑢) | /* Jaccard Similarity */

Algorithm 5: Vertex similarity measures.

Finally, SISA does not target the “low-complexity” algorithms,
as they offer few opportunities for set-centric acceleration [20, 25,
42, 60, 114, 115, 144, 147, 148, 152, 172]. For example, in PageRank,
one updates vertex ranks in two nested loops, which is not easily
expressible with set operations. Our work is already more gen-
eral than other pattern matching accelerators / frameworks, as it
supports many more problems beyond simple pattern matching.

5.1 Deriving a Set-Centric Formulation
Often, algorithms use set notation, and one may simply pick opera-
tions for memory acceleration. This is the case with, for example,
Jarvis-Patrick clustering. Still, one may need to apply more complex
changes to “expose” set instructions. The general rule is to asso-
ciate used data structures with sets, and then identify respective
set operations. As an example, we compare a traditional snippet for
deriving the count of all 4-cliques cnt, a derived set-centric algo-
rithmic formulation, and the corresponding SISA snippet in Table 3.
The key algorithmic change is using set intersections instead of
explicitly verifying if vertices are connected. For example, instead
of iterating over all neighbors of 𝑣1-𝑣3 (Lines 4-6, the top snippet),
in SISA, we intersect neighborhoods of 𝑣1-𝑣3 (Line 4 & 6, the middle
snippet) to filter 4-cliques.

1 //Non set-centric code:
2 CSR_Graph g(𝐺); // Standard codes often use some form of CSR
3 #pragma omp parallel for
4 for (auto v1: g.V()) //For all vertices in parallel.
5 for (auto v2: g.N_out(v1)) // Explore neighborhoods of v1-v4...
6 for (auto v3: g.N_out(v2)) //... searching for a 4-clique
7 for (auto v4: g.N_out(v3)) //If v1 -v4 are connected pairwise
8 if(g.edge(v1,v3) && g.edge(v1,v4) && g.edge(v2,v4)) ++cnt;

1 //A set-centric algorithmic formulation:
2 for 𝑣1 ∈ 𝑉 in parallel do: //For all vertices in parallel.
3 for 𝑣2 ∈ 𝑁 + (𝑣1) do: //For each neighbor of 𝑣1 ...
4 𝑆1 = 𝑁 + (𝑣1) ∩ 𝑁 + (𝑣2) //Find common neighbors of 𝑣1 and 𝑣2.
5 for 𝑣3 ∈ 𝑆1 do: cnt += |𝑆1 ∩ 𝑁 + (𝑣3) |

1 //SISA (simplified) set-centric code:
2 SetGraph g = SetGraph(𝐺);
3 #pragma omp parallel for
4 for (auto v1: g.V()) for (auto v2: g.N_out(v1)) {
5 auto S1 = intersect(g.N_out(v1), g.N_out(v2));
6 for (auto v3: S1) cnt += intersect_card(S1 , g.N_out(v3)); }

Table 3: Finding all 4-cliques: a traditional (non-set-centric) snippet, a set-centric algorith-
mic formulation derived in this work, and a SISA set-centric snippet.

Algorithmic Formulations
 SISA set-centric

formulations

Example corresponding syntax:

SISA software: 
thin abstraction

+ wrappers

SISA HW units SCU Cache

SISA drivers

for (Vertex v : set) { ... }                       // Set iterators
VertexSet A = ..., B = ...;                       // Sets
VertexSet union = A.SISA_Union(B);      // Set operations 

 

SetId create(Vertex* vs, size_t count);
void delete(SetId id); SetId clone(SetId id);
void insert(SetId id, Vertex v, ...);
void remove(SetId id, Vertex v, ...);
SetId union(SetId A, SetId B, ...);
SetId intersect(SetId A, SetId B, ...);
SetId difference(SetId A, SetId B, ...);
size_t intersect_count(SetId A, SetId B, ...);
size_t cardinality(SetId id, ...);
bool is_member(SetId id, Vertex v, ...);
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Figure 3: Overview of SISA instructions and syntax at different levels of abstraction.

6 SISA: DESIGN, SYNTAX, SEMANTICS
We now detail SISA’s design, see Figure 3.

6.1 Representation of Sets
The first key question is how to represent sets: SISA’s “first-class
citizens”. We observe that – in each graph algorithm – there are
two fundamentally different classes of data structures. One class
are (1) vertex neighborhoods 𝑁 (𝑣) that maintain the structure
of the input graph. There are 𝑛 such sets, their total size is 𝑂 (𝑚),
and each single neighborhood is static (we currently focus on static
graphs) and sorted (following the established practice in graph
processing [109]). Another class are (2) auxiliary structures, for
example 𝑃 in Bron-Kerbosch (Listing 1). These sets are used to
maintain some algorithmic state. They are usually dynamic, they
may be unsorted, their number (in a given algorithm) is usually a
(small) constant, and their total size is 𝑂 (𝑛). While SISA enables
using any set representation for any specific set, we offer certain
recommendations to maximize performance.

SAs should be used for small neighborhoods and DBs for the
large ones (in the evaluation, we vary the threshold so that 5%-30%
largest neighborhoods use DBs). This approach is memory efficient.

Vertex Similarity & Clustering Various measures assess how
similar two vertices v and u are, see Algorithm 5. They can be
used on their own, or as a main building block of more complex
algorithms such as clustering. In clustering, one iterates over all
adjacent vertex pairs, and uses their similarity to decide if the pair
belongs to a cluster.

1 /* Input: target graph 𝐺1, pattern 𝐺2. Output: mapping between graphs.*/
2 𝑠0 = {}; 𝑀 (𝑠0) = ∅; // Initial state
3 Match(𝑠0); // Algorithm start
4 function Match(𝑠):

5 if 𝑀 (𝑠) covers all nodes in pattern graph: output 𝑀 (𝑠); return;

6 𝑃 (𝑠) = /* compute set of candidate pairs to be added to 𝑀 (𝑠) */

7 for (𝑣1, 𝑣2) ∈ 𝑃 (𝑠) do:

8 𝑐ℎ𝑒𝑐𝑘𝐶𝑜𝑟𝑒 = /* original 𝑅𝑐𝑜𝑟𝑒 rule */

9 𝑐ℎ𝑒𝑐𝑘𝑇𝑒𝑟𝑚 = |𝑁1 (𝑣1) ∩𝑇1 (𝑠) | ≥ |𝑁2 (𝑣2) ∩𝑇2 (𝑠) |
10 𝑐ℎ𝑒𝑐𝑘𝑁𝑒𝑤 = |𝑁1 (𝑣1) \ (𝑀1 (𝑠) ∪𝑇1 (𝑠)) | ≥ |𝑁2 (𝑣2) \ (𝑀2 (𝑠) ∪𝑇2 (𝑠)) |
11 𝑐ℎ𝑒𝑐𝑘𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑐ℎ𝑒𝑐𝑘𝐶𝑜𝑟𝑒 ∧ 𝑐ℎ𝑒𝑐𝑘𝑇𝑒𝑟𝑚 ∧ 𝑐ℎ𝑒𝑐𝑘𝑁𝑒𝑤

12 𝑐ℎ𝑒𝑐𝑘𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 = verify_labels(𝑣1, 𝑣2, 𝑠) //If we use labels.
13 𝑐ℎ𝑒𝑐𝑘𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑐ℎ𝑒𝑐𝑘𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ∧ 𝑐ℎ𝑒𝑐𝑘𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 //If we use

labels.
14 if 𝑐ℎ𝑒𝑐𝑘𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 : 𝑠′ = NewState(𝑠, 𝑣1 , 𝑣2); Match(𝑠′)
15 //Check if labeling of 𝑣1 and 𝑣2 and their neighborhoods matches:
16 bool verify_labels(𝑣1 , 𝑣2 , 𝑠):

17 forall 𝑣′1 ∈ 𝑁1 (𝑣1) ∩𝑀1 (𝑠) : forall (𝑣′1, 𝑣′2) ∈ 𝑀 (𝑠):
18 if (𝐿 (𝑣1) != 𝐿 (𝑣2)) or (𝐿 (𝑣1, 𝑣′1) != 𝐿 (𝑣2, 𝑣′2)): return false

19 return true

Algorithm 3: Subgraph isomorphism [41].𝑀1 and𝑀2 denote the current partial mappings
associated with𝐺1 and𝐺2 , respectively. 𝑇1 and 𝑇2 denote sets of vertices adjacent to the
ones in 𝑀1 and 𝑀2 , respectively. 𝑁1 and 𝑁2 denote neighborhoods within 𝐺1 and 𝐺2 ,
respectively. verify_labels is used if graphs are labeled.

1 /* Input: target graph (𝐺), minimum support / count of a found pattern (𝜎).
2 * Output: sets of frequent subgraphs of sizes 1, 2, ..., 𝑘 (𝐹1, 𝐹2, ..., 𝐹𝑘 ).*/
3 𝐹1 = 𝑉 ; 𝑘 = 2 //𝑘 = 2 means we start recursion from edges.
4 //Use all subgraphs in 𝐹𝑘−1 to generate candidates of size 𝑘:
5 while 𝐹𝑘−1 ≠ ∅ do: //𝐶𝑘 (below) are candidate subgraphs of size 𝑘
6 𝐹𝑘 = ∅; 𝐶𝑘 = candidate_gen(𝐹𝑘−1) //Use any selected kernel[84]
7 foreach 𝑔 ∈ 𝐶𝑘 do:
8 cnt = SI(𝑔, 𝐺) //For set operations in SI, see Algorithm 3
9 if cnt ≥ 𝜎𝑛 and 𝑔 ∉ 𝐹𝑘 : 𝐹𝑘 ∪= 𝑔
10 k++

Algorithm 4: Frequent subgraph mining [84].

algorithms such as clustering. In clustering, one iterates over all
adjacent vertex pairs, and uses their similarity to decide if the pair
belongs to a cluster.

1 /* Input: A graph 𝐺. Output: Similarity 𝑆 ∈ R of neighborhoods
2 * 𝑁 (𝑢) and 𝑁 (𝑣) of some vertices 𝑢 and 𝑣. */

3 𝑆 𝐽 (𝑣,𝑢) = |𝑁 (𝑣) ∩ 𝑁 (𝑢) | / |𝑁 (𝑣) ∪ 𝑁 (𝑢) | /* Jaccard Similarity */

Algorithm 5: Vertex similarity measures.

Finally, SISA does not target the “low-complexity” algorithms,
as they offer few opportunities for set-centric acceleration [20, 25,
42, 60, 114, 115, 144, 147, 148, 152, 172]. For example, in PageRank,
one updates vertex ranks in two nested loops, which is not easily
expressible with set operations. Our work is already more gen-
eral than other pattern matching accelerators / frameworks, as it
supports many more problems beyond simple pattern matching.

5.1 Deriving a Set-Centric Formulation
Often, algorithms use set notation, and one may simply pick opera-
tions for memory acceleration. This is the case with, for example,
Jarvis-Patrick clustering. Still, one may need to apply more complex
changes to “expose” set instructions. The general rule is to asso-
ciate used data structures with sets, and then identify respective
set operations. As an example, we compare a traditional snippet for
deriving the count of all 4-cliques cnt, a derived set-centric algo-
rithmic formulation, and the corresponding SISA snippet in Table 3.
The key algorithmic change is using set intersections instead of
explicitly verifying if vertices are connected. For example, instead
of iterating over all neighbors of 𝑣1-𝑣3 (Lines 4-6, the top snippet),
in SISA, we intersect neighborhoods of 𝑣1-𝑣3 (Line 4 & 6, the middle
snippet) to filter 4-cliques.

1 //Non set-centric code:
2 CSR_Graph g(𝐺); // Standard codes often use some form of CSR
3 #pragma omp parallel for
4 for (auto v1: g.V()) //For all vertices in parallel.
5 for (auto v2: g.N_out(v1)) // Explore neighborhoods of v1-v4...
6 for (auto v3: g.N_out(v2)) //... searching for a 4-clique
7 for (auto v4: g.N_out(v3)) //If v1 -v4 are connected pairwise
8 if(g.edge(v1,v3) && g.edge(v1,v4) && g.edge(v2,v4)) ++cnt;

1 //A set-centric algorithmic formulation:
2 for 𝑣1 ∈ 𝑉 in parallel do: //For all vertices in parallel.
3 for 𝑣2 ∈ 𝑁 + (𝑣1) do: //For each neighbor of 𝑣1 ...
4 𝑆1 = 𝑁 + (𝑣1) ∩ 𝑁 + (𝑣2) //Find common neighbors of 𝑣1 and 𝑣2.
5 for 𝑣3 ∈ 𝑆1 do: cnt += |𝑆1 ∩ 𝑁 + (𝑣3) |

1 //SISA (simplified) set-centric code:
2 SetGraph g = SetGraph(𝐺);
3 #pragma omp parallel for
4 for (auto v1: g.V()) for (auto v2: g.N_out(v1)) {
5 auto S1 = intersect(g.N_out(v1), g.N_out(v2));
6 for (auto v3: S1) cnt += intersect_card(S1 , g.N_out(v3)); }

Table 3: Finding all 4-cliques: a traditional (non-set-centric) snippet, a set-centric algorith-
mic formulation derived in this work, and a SISA set-centric snippet.

Algorithmic Formulations
 SISA set-centric

formulations

Example corresponding syntax:

SISA software: 
thin abstraction

+ wrappers

SISA HW units SCU Cache

SISA drivers

for (Vertex v : set) { ... }                       // Set iterators
VertexSet A = ..., B = ...;                       // Sets
VertexSet union = A.SISA_Union(B);      // Set operations 

 

SetId create(Vertex* vs, size_t count);
void delete(SetId id); SetId clone(SetId id);
void insert(SetId id, Vertex v, ...);
void remove(SetId id, Vertex v, ...);
SetId union(SetId A, SetId B, ...);
SetId intersect(SetId A, SetId B, ...);
SetId difference(SetId A, SetId B, ...);
size_t intersect_count(SetId A, SetId B, ...);
size_t cardinality(SetId id, ...);
bool is_member(SetId id, Vertex v, ...);
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Figure 3: Overview of SISA instructions and syntax at different levels of abstraction.

6 SISA: DESIGN, SYNTAX, SEMANTICS
We now detail SISA’s design, see Figure 3.

6.1 Representation of Sets
The first key question is how to represent sets: SISA’s “first-class
citizens”. We observe that – in each graph algorithm – there are
two fundamentally different classes of data structures. One class
are (1) vertex neighborhoods 𝑁 (𝑣) that maintain the structure
of the input graph. There are 𝑛 such sets, their total size is 𝑂 (𝑚),
and each single neighborhood is static (we currently focus on static
graphs) and sorted (following the established practice in graph
processing [109]). Another class are (2) auxiliary structures, for
example 𝑃 in Bron-Kerbosch (Listing 1). These sets are used to
maintain some algorithmic state. They are usually dynamic, they
may be unsorted, their number (in a given algorithm) is usually a
(small) constant, and their total size is 𝑂 (𝑛). While SISA enables
using any set representation for any specific set, we offer certain
recommendations to maximize performance.

SAs should be used for small neighborhoods and DBs for the
large ones (in the evaluation, we vary the threshold so that 5%-30%
largest neighborhoods use DBs). This approach is memory efficient.

Finally, SISA does not target the “low-complexity” algo-
rithms, as they offer few opportunities for set-centric accelera-
tion [20, 25, 42, 60, 114, 115, 144, 147, 148, 152, 172]. For example, in
PageRank, one updates vertex ranks in two nested loops, which is
not easily expressible with set operations. Our work is already more
general than other pattern matching accelerators / frameworks, as
it supports many more problems beyond simple pattern matching.

5.1 Deriving a Set-Centric Formulation
Often, algorithms use set notation, and one may simply pick opera-
tions for memory acceleration. This is the case with, for example,
Jarvis-Patrick clustering. Still, one may need to apply more complex
changes to “expose” set instructions. The general rule is to asso-
ciate used data structures with sets, and then identify respective
set operations. As an example, we compare a traditional snippet
for deriving the count of all 4-cliques cnt, a derived set-centric
algorithmic formulation, and the corresponding SISA snippet in
Table 3. The key algorithmic change is using set intersections in-
stead of explicitly verifying if vertices are connected. For example,
instead of iterating over all neighbors of v1-v3 (Lines 4-6, the top
snippet), in SISA, we intersect neighborhoods of v1-v3 (Line 4 & 6,
the middle snippet) to filter 4-cliques.

6 SISA: DESIGN, SYNTAX, SEMANTICS
We now detail SISA’s design, see Figure 3.

1 /* Input: target graph 𝐺1, pattern 𝐺2. Output: mapping between graphs.*/
2 𝑠0 = {}; 𝑀 (𝑠0) = ∅; // Initial state
3 Match(𝑠0); // Algorithm start
4 function Match(𝑠):

5 if 𝑀 (𝑠) covers all nodes in pattern graph: output 𝑀 (𝑠); return;

6 𝑃 (𝑠) = /* compute set of candidate pairs to be added to 𝑀 (𝑠) */

7 for (𝑣1, 𝑣2) ∈ 𝑃 (𝑠) do:

8 𝑐ℎ𝑒𝑐𝑘𝐶𝑜𝑟𝑒 = /* original 𝑅𝑐𝑜𝑟𝑒 rule */

9 𝑐ℎ𝑒𝑐𝑘𝑇𝑒𝑟𝑚 = |𝑁1 (𝑣1) ∩𝑇1 (𝑠) | ≥ |𝑁2 (𝑣2) ∩𝑇2 (𝑠) |
10 𝑐ℎ𝑒𝑐𝑘𝑁𝑒𝑤 = |𝑁1 (𝑣1) \ (𝑀1 (𝑠) ∪𝑇1 (𝑠)) | ≥ |𝑁2 (𝑣2) \ (𝑀2 (𝑠) ∪𝑇2 (𝑠)) |
11 𝑐ℎ𝑒𝑐𝑘𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑐ℎ𝑒𝑐𝑘𝐶𝑜𝑟𝑒 ∧ 𝑐ℎ𝑒𝑐𝑘𝑇𝑒𝑟𝑚 ∧ 𝑐ℎ𝑒𝑐𝑘𝑁𝑒𝑤

12 𝑐ℎ𝑒𝑐𝑘𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 = verify_labels(𝑣1, 𝑣2, 𝑠) //If we use labels.
13 𝑐ℎ𝑒𝑐𝑘𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑐ℎ𝑒𝑐𝑘𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ∧ 𝑐ℎ𝑒𝑐𝑘𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 //If we use

labels.
14 if 𝑐ℎ𝑒𝑐𝑘𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 : 𝑠′ = NewState(𝑠, 𝑣1 , 𝑣2); Match(𝑠′)
15 //Check if labeling of 𝑣1 and 𝑣2 and their neighborhoods matches:
16 bool verify_labels(𝑣1 , 𝑣2 , 𝑠):

17 forall 𝑣′1 ∈ 𝑁1 (𝑣1) ∩𝑀1 (𝑠) : forall (𝑣′1, 𝑣′2) ∈ 𝑀 (𝑠):
18 if (𝐿 (𝑣1) != 𝐿 (𝑣2)) or (𝐿 (𝑣1, 𝑣′1) != 𝐿 (𝑣2, 𝑣′2)): return false

19 return true

Algorithm 3: Subgraph isomorphism [41].𝑀1 and𝑀2 denote the current partial mappings
associated with𝐺1 and𝐺2 , respectively. 𝑇1 and 𝑇2 denote sets of vertices adjacent to the
ones in 𝑀1 and 𝑀2 , respectively. 𝑁1 and 𝑁2 denote neighborhoods within 𝐺1 and 𝐺2 ,
respectively. verify_labels is used if graphs are labeled.

1 /* Input: target graph (𝐺), minimum support / count of a found pattern (𝜎).
2 * Output: sets of frequent subgraphs of sizes 1, 2, ..., 𝑘 (𝐹1, 𝐹2, ..., 𝐹𝑘 ).*/
3 𝐹1 = 𝑉 ; 𝑘 = 2 //𝑘 = 2 means we start recursion from edges.
4 //Use all subgraphs in 𝐹𝑘−1 to generate candidates of size 𝑘:
5 while 𝐹𝑘−1 ≠ ∅ do: //𝐶𝑘 (below) are candidate subgraphs of size 𝑘
6 𝐹𝑘 = ∅; 𝐶𝑘 = candidate_gen(𝐹𝑘−1) //Use any selected kernel[84]
7 foreach 𝑔 ∈ 𝐶𝑘 do:
8 cnt = SI(𝑔, 𝐺) //For set operations in SI, see Algorithm 3
9 if cnt ≥ 𝜎𝑛 and 𝑔 ∉ 𝐹𝑘 : 𝐹𝑘 ∪= 𝑔
10 k++

Algorithm 4: Frequent subgraph mining [84].

algorithms such as clustering. In clustering, one iterates over all
adjacent vertex pairs, and uses their similarity to decide if the pair
belongs to a cluster.

1 /* Input: A graph 𝐺. Output: Similarity 𝑆 ∈ R of neighborhoods
2 * 𝑁 (𝑢) and 𝑁 (𝑣) of some vertices 𝑢 and 𝑣. */

3 𝑆 𝐽 (𝑣,𝑢) = |𝑁 (𝑣) ∩ 𝑁 (𝑢) | / |𝑁 (𝑣) ∪ 𝑁 (𝑢) | /* Jaccard Similarity */

Algorithm 5: Vertex similarity measures.

Finally, SISA does not target the “low-complexity” algorithms,
as they offer few opportunities for set-centric acceleration [20, 25,
42, 60, 114, 115, 144, 147, 148, 152, 172]. For example, in PageRank,
one updates vertex ranks in two nested loops, which is not easily
expressible with set operations. Our work is already more gen-
eral than other pattern matching accelerators / frameworks, as it
supports many more problems beyond simple pattern matching.

5.1 Deriving a Set-Centric Formulation
Often, algorithms use set notation, and one may simply pick opera-
tions for memory acceleration. This is the case with, for example,
Jarvis-Patrick clustering. Still, one may need to apply more complex
changes to “expose” set instructions. The general rule is to asso-
ciate used data structures with sets, and then identify respective
set operations. As an example, we compare a traditional snippet for
deriving the count of all 4-cliques cnt, a derived set-centric algo-
rithmic formulation, and the corresponding SISA snippet in Table 3.
The key algorithmic change is using set intersections instead of
explicitly verifying if vertices are connected. For example, instead
of iterating over all neighbors of 𝑣1-𝑣3 (Lines 4-6, the top snippet),
in SISA, we intersect neighborhoods of 𝑣1-𝑣3 (Line 4 & 6, the middle
snippet) to filter 4-cliques.

1 //Non set-centric code:
2 CSR_Graph g(𝐺); // Standard codes often use some form of CSR
3 #pragma omp parallel for
4 for (auto v1: g.V()) //For all vertices in parallel.
5 for (auto v2: g.N_out(v1)) // Explore neighborhoods of v1-v4...
6 for (auto v3: g.N_out(v2)) //... searching for a 4-clique
7 for (auto v4: g.N_out(v3)) //If v1 -v4 are connected pairwise
8 if(g.edge(v1,v3) && g.edge(v1,v4) && g.edge(v2,v4)) ++cnt;

1 //A set-centric algorithmic formulation:
2 for 𝑣1 ∈ 𝑉 in parallel do: //For all vertices in parallel.
3 for 𝑣2 ∈ 𝑁 + (𝑣1) do: //For each neighbor of 𝑣1 ...
4 𝑆1 = 𝑁 + (𝑣1) ∩ 𝑁 + (𝑣2) //Find common neighbors of 𝑣1 and 𝑣2.
5 for 𝑣3 ∈ 𝑆1 do: cnt += |𝑆1 ∩ 𝑁 + (𝑣3) |

1 //SISA (simplified) set-centric code:
2 SetGraph g = SetGraph(𝐺);
3 #pragma omp parallel for
4 for (auto v1: g.V()) for (auto v2: g.N_out(v1)) {
5 auto S1 = intersect(g.N_out(v1), g.N_out(v2));
6 for (auto v3: S1) cnt += intersect_card(S1 , g.N_out(v3)); }

Table 3: Finding all 4-cliques: a traditional (non-set-centric) snippet, a set-centric algorith-
mic formulation derived in this work, and a SISA set-centric snippet.

Algorithmic Formulations
 SISA set-centric

formulations

Example corresponding syntax:

SISA software: 
thin abstraction

+ wrappers

SISA HW units SCU Cache

SISA drivers

for (Vertex v : set) { ... }                       // Set iterators
VertexSet A = ..., B = ...;                       // Sets
VertexSet union = A.SISA_Union(B);      // Set operations 

 

SetId create(Vertex* vs, size_t count);
void delete(SetId id); SetId clone(SetId id);
void insert(SetId id, Vertex v, ...);
void remove(SetId id, Vertex v, ...);
SetId union(SetId A, SetId B, ...);
SetId intersect(SetId A, SetId B, ...);
SetId difference(SetId A, SetId B, ...);
size_t intersect_count(SetId A, SetId B, ...);
size_t cardinality(SetId id, ...);
bool is_member(SetId id, Vertex v, ...);
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Figure 3: Overview of SISA instructions and syntax at different levels of abstraction.

6 SISA: DESIGN, SYNTAX, SEMANTICS
We now detail SISA’s design, see Figure 3.

6.1 Representation of Sets
The first key question is how to represent sets: SISA’s “first-class
citizens”. We observe that – in each graph algorithm – there are
two fundamentally different classes of data structures. One class
are (1) vertex neighborhoods 𝑁 (𝑣) that maintain the structure
of the input graph. There are 𝑛 such sets, their total size is 𝑂 (𝑚),
and each single neighborhood is static (we currently focus on static
graphs) and sorted (following the established practice in graph
processing [109]). Another class are (2) auxiliary structures, for
example 𝑃 in Bron-Kerbosch (Listing 1). These sets are used to
maintain some algorithmic state. They are usually dynamic, they
may be unsorted, their number (in a given algorithm) is usually a
(small) constant, and their total size is 𝑂 (𝑛). While SISA enables
using any set representation for any specific set, we offer certain
recommendations to maximize performance.

SAs should be used for small neighborhoods and DBs for the
large ones (in the evaluation, we vary the threshold so that 5%-30%
largest neighborhoods use DBs). This approach is memory efficient.

Table 3: Finding all 4-cliques: a traditional (non-set-centric) snippet, a set-centric algorith-
mic formulation derived in this work, and a SISA set-centric snippet.

Algorithmic Formulations
 SISA set-centric

formulations

Example corresponding syntax:

SISA software: 
thin abstraction

+ wrappers

SISA HW units SCU Cache

SISA drivers

for (Vertex v : set) { ... }                       // Set iterators
VertexSet A = ..., B = ...;                       // Sets
VertexSet union = A.SISA_Union(B);      // Set operations 

 

SetId create(Vertex* vs, size_t count);
void delete(SetId id); SetId clone(SetId id);
void insert(SetId id, Vertex v, ...);
void remove(SetId id, Vertex v, ...);
SetId union(SetId A, SetId B, ...);
SetId intersect(SetId A, SetId B, ...);
SetId difference(SetId A, SetId B, ...);
size_t intersect_count(SetId A, SetId B, ...);
size_t cardinality(SetId id, ...);
bool is_member(SetId id, Vertex v, ...);
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Figure 3: Overview of SISA instructions and syntax at different levels of abstraction.

6.1 Representation of Sets
The first key question is how to represent sets: SISA’s “first-class
citizens”. We observe that – in each graph algorithm – there are
two fundamentally different classes of data structures. One class
are (1) vertex neighborhoods N (v) that maintain the structure
of the input graph. There are n such sets, their total size is O(m),
and each single neighborhood is static (we currently focus on static
graphs) and sorted (following the established practice in graph
processing [109]). Another class are (2) auxiliary structures, for
example P in Bron-Kerbosch (Listing 1). These sets are used to
maintain some algorithmic state. They are usually dynamic, they
may be unsorted, their number (in a given algorithm) is usually a
(small) constant, and their total size is O(n). While SISA enables
using any set representation for any specific set, we offer certain
recommendations to maximize performance.

SAs should be used for small neighborhoods and DBs for the
large ones (in the evaluation, we vary the threshold so that 5%-30%
largest neighborhoods use DBs). This approach is memory efficient.
For example, for |N (v)| = n/2, a DB takes only n bits while an SA
uses 16n bits (for a 32-bit word size).
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Auxiliary sets benefit from being stored as dense bitvectors. This
is because such sets are often dynamic, and updates or removals
take O(1) time. As in practice there is usually a small constant
number of such sets in considered algorithms, the needed storage is
not excessive, e.g., less than 3% on top of a CSR for a graph with the
average degree 100 (such as orkut), assuming using 32 threads and
the Bron-Kerbosch algorithm, with auxiliary sets P , X , and R (the
space complexity is O(Tn) where T is #threads). We analyze and
confirm it for other algorithms and datasets. For example, in SI, the
storage complexity is (TnP) (where P is the size of the subgraph),
which is also negligible in practice as P is usually small. To control
space usage, the user may pre-specify that, above a certain number
of DBs, SISA starts to use SAs only.

The user controls selecting a set representation. For programma-
bility, SISA offers a predefined graph structure, where small and
large neighborhoods are automatically created (when a SISA pro-
gram starts) as sparse arrays and dense bitvectors, respectively. A
given neighborhood N (v) is stored as a DB whenever |N (v)| ≥ t · n
(t ∈ (0; 1) is a user parameter that controls a “bias” towards using
DBs or SAs) and it does not exceed a storage budget limit set by the
user (SISA by default uses a limit of 10% of the additional storage
on top of the graph size when stored only with SAs). For example,
t = 0.5 indicates that each vertex connected to at least 50% of all
vertices has its neighborhood stored as a DB.

For example, for |𝑁 (𝑣) | = 𝑛/2, a DB takes only 𝑛 bits while an SA
uses 16𝑛 bits (for a 32-bit word size).

Auxiliary sets benefit from being stored as dense bitvectors. This
is because such sets are often dynamic, and updates or removals
take 𝑂 (1) time. As in practice there is usually a small constant
number of such sets in considered algorithms, the needed storage is
not excessive, e.g., less than 3% on top of a CSR for a graph with the
average degree 100 (such as orkut), assuming using 32 threads and
the Bron-Kerbosch algorithm, with auxiliary sets 𝑃 , 𝑋 , and 𝑅 (the
space complexity is 𝑂 (𝑇𝑛) where 𝑇 is #threads). We analyze and
confirm it for other algorithms and datasets. For example, in SI, the
storage complexity is (𝑇𝑛𝑃) (where 𝑃 is the size of the subgraph),
which is also negligible in practice as 𝑃 is usually small. To control
space usage, the user may pre-specify that, above a certain number
of DBs, SISA starts to use SAs only.

The user controls selecting a set representation. For programma-
bility, SISA offers a predefined graph structure, where small and
large neighborhoods are automatically created (when a SISA pro-
gram starts) as sparse arrays and dense bitvectors, respectively. A
given neighborhood 𝑁 (𝑣) is stored as a DB whenever |𝑁 (𝑣) | ≥ 𝑡 · 𝑛
(𝑡 ∈ (0; 1) is a user parameter that controls a “bias” towards using
DBs or SAs) and it does not exceed a storage budget limit set by the
user (SISA by default uses a limit of 10% of the additional storage
on top of the graph size when stored only with SAs). For example,
𝑡 = 0.5 indicates that each vertex connected to at least 50% of all
vertices has its neighborhood stored as a DB.

ins Set op. 𝐴 and 𝐵
represent.

Set
algorithm S? Time

complexity
Input size

[bits]
Main form of data
transfer (§ 8.2)

0x0𝐴 ∩ 𝐵 SA ∩ SA Merge ,𝑂 ( |𝐴 | + |𝐵 |) 𝑊 |𝐴 | +𝑊 |𝐵 | Streaming
0x1𝐴 ∩ 𝐵 SA ∩ SA Galloping ,𝑂 ( |𝐴 | log |𝐵 |)𝑊 |𝐴 | +𝑊 |𝐵 | Random accesses
0x2𝐴 ∩ 𝐵 SA ∩ SA Merge vs.

gallop. , cf. 0x0 and 0x1𝑊 |𝐴 | +𝑊 |𝐵 | cf. 0x0 and 0x1

0x3𝐴 ∩ 𝐵 SA ∩ DB Galloping , na𝑂 ( |𝐴 |) 𝑊 |𝐴 | + 𝑛 Random accesses
0x4𝐴 ∩ 𝐵 DB ∩ DB Bitwise ANDna, na𝑂 (𝑛/(𝑞𝑆)) 𝑛 + 𝑛 In-situ row copies

0x5𝐴 ∪ {𝑥 }DB ∪ {𝑥 } Set bit na, na𝑂 (1) 𝑛 +𝑊 Random access
0x6𝐴 \ {𝑥 } DB \ {𝑥 } Clear bit na, na𝑂 (1) 𝑛 +𝑊 Random access
Table 4: Overview of SISA instructions, one rowdescribes one specific set operation variant.
Set elements are vertices (𝐴, 𝐵 ⊆ 𝑉 , 𝑥 ∈ 𝑉 ). “” means “yes”. “na” means “not applicable”.
“ins” is a proposed instruction opcode. “S (Sorted)” indicates if an instruction assumes set
representations of𝐴 and 𝐵 to be sorted (thus two columns).

Figure 4 shows an SA and a DB built from the same vertex set.
Then, it illustrates an example SISA graph representation where
some neighborhoods are DBs and some are SAs.

6.2 High-Performance Set Operations
The second key challenge in SISA is how to apply set operations
for highest performance. For this, we detail the algorithmic aspects,
a summary is in Table 4. HW details (used PIM and a performance
model) are discussed in Section 8. An overview of the structure of
SISA is in Figure 3.

Set Intersection 𝐴 ∩ 𝐵 is a key operation in SISA, because our
analysis illustrates that it is used in essentially all considered graph
algorithms. We now briefly discuss the most relevant variants of ∩,
a summary is in Figure 4.
• SA [sorted] 𝐴 ∩ SA [sorted] 𝐵 The intersection of two sorted
SAs is commonly used when processing two neighborhoods. It
comes in two “flavors”. If 𝐴 and 𝐵 have similar sizes (|𝐴| ≈ |𝐵 |),
one prefers themerge scheme where one simply iterates through
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𝐴 and 𝐵, identifying common elements (time 𝑂 ( |𝐴| + |𝐵 |)). If one
set is much smaller than the other (|𝐴| ≪ |𝐵 |), it is better to use
the galloping scheme [1], in which one iterates over the elements
of a smaller set and uses a binary search to check if each element
is in the bigger set (time 𝑂 ( |𝐴| log |𝐵 |)). SISA offers both variants,
and a variant that automatically selects the best variant with a
performance model (described in § 8.2).

• SA [unsorted or sorted] 𝐴 ∩ DB 𝐵 Iterate over 𝐴 (𝑂 ( |𝐴|)) and
check if each element is in 𝐵 (𝑂 (1)). This variant is often used to
intersect a neighborhood with an auxiliary set represented as a
bitvector, for example 𝑋 ∩ 𝑁 (𝑣) in Listing 1.

• DB𝐴 ∩DB 𝐵 Apply bitwise AND over both input DBs (they both
have sizes of 𝑛 bits, giving𝑂 (𝑛/𝐶) time, where𝐶 is the maximum
chunk of bits that can be processed in 𝑂 (1) time using bit-level
parallelism). This variant is used for example when intersecting
two dense neighborhoods.
Set Union 𝐴 ∪ 𝐵, Set Difference 𝐴 \ 𝐵 𝐴 \ 𝐵 and 𝐴 ∪ 𝐵 have

variants similar to those for ∩, there are also corresponding merge
and galloping variants.

Set Membership 𝑥 ∈ 𝐴, Set Cardinality |𝐴| Set membership
takes 𝑂 ( |𝐴|) time for an unsorted SA (linear scan), 𝑂 (log |𝐴|) time
for a sorted SA (binary search), and 𝑂 (1) for a DB (a single access
to verify if 𝑥-th bit is set). As for set cardinality, we keep |𝐴| for
any set. This incurs only 𝑂 (1) storage overhead (per set) as well
𝑂 (1) time overhead needed to update the size, but it enables 𝑂 (1)
time to resolve any set cardinality operation. Finally, SISA provides
dedicated instructions for computing cardinalities of the results of
set operations, for example |𝐴 ∩ 𝐵 |. This enables speedups as SISA
avoids creating any intermediate structures needed for keeping the
results of operations such as intersection.

Adding & Removing Elements Auxiliary sets often grow and
shrink by one element. Both add and remove straightforwardly
take𝑂 (1) time for a DB (setting or zeroing a corresponding bit) and
𝑂 ( |𝐴|) for an SA (moving data for a sorted SA). Thus, in general,
we advocate using DBs for auxiliary sets; the size is 𝑛 bits.

6.3 Additional Details of SISA Design
We detail several aspects of SISA’s design; cf. Figure 3.

Labeled Graphs As a baseline, we propose to use a sparse
array to maintain labels, indexed by vertex IDs, similarly to other
works [41]. This form benefits from SISA-PNM. The SISA user can

Table 4: Overview of SISA instructions, one rowdescribes one specific set operation variant.
Set elements are vertices (A, B ⊆ V , x ∈ V ). “

For example, for |𝑁 (𝑣) | = 𝑛/2, a DB takes only 𝑛 bits while an SA
uses 16𝑛 bits (for a 32-bit word size).

Auxiliary sets benefit from being stored as dense bitvectors. This
is because such sets are often dynamic, and updates or removals
take 𝑂 (1) time. As in practice there is usually a small constant
number of such sets in considered algorithms, the needed storage is
not excessive, e.g., less than 3% on top of a CSR for a graph with the
average degree 100 (such as orkut), assuming using 32 threads and
the Bron-Kerbosch algorithm, with auxiliary sets 𝑃 , 𝑋 , and 𝑅 (the
space complexity is 𝑂 (𝑇𝑛) where 𝑇 is #threads). We analyze and
confirm it for other algorithms and datasets. For example, in SI, the
storage complexity is (𝑇𝑛𝑃) (where 𝑃 is the size of the subgraph),
which is also negligible in practice as 𝑃 is usually small. To control
space usage, the user may pre-specify that, above a certain number
of DBs, SISA starts to use SAs only.

The user controls selecting a set representation. For programma-
bility, SISA offers a predefined graph structure, where small and
large neighborhoods are automatically created (when a SISA pro-
gram starts) as sparse arrays and dense bitvectors, respectively. A
given neighborhood 𝑁 (𝑣) is stored as a DB whenever |𝑁 (𝑣) | ≥ 𝑡 · 𝑛
(𝑡 ∈ (0; 1) is a user parameter that controls a “bias” towards using
DBs or SAs) and it does not exceed a storage budget limit set by the
user (SISA by default uses a limit of 10% of the additional storage
on top of the graph size when stored only with SAs). For example,
𝑡 = 0.5 indicates that each vertex connected to at least 50% of all
vertices has its neighborhood stored as a DB.

ins Set op. 𝐴 and 𝐵
represent.

Set
algorithm S? Time

complexity
Input size

[bits]
Main form of data
transfer (§ 8.2)

0x0𝐴 ∩ 𝐵 SA ∩ SA Merge ,𝑂 ( |𝐴 | + |𝐵 |) 𝑊 |𝐴 | +𝑊 |𝐵 | Streaming
0x1𝐴 ∩ 𝐵 SA ∩ SA Galloping ,𝑂 ( |𝐴 | log |𝐵 |)𝑊 |𝐴 | +𝑊 |𝐵 | Random accesses
0x2𝐴 ∩ 𝐵 SA ∩ SA Merge vs.

gallop. , cf. 0x0 and 0x1𝑊 |𝐴 | +𝑊 |𝐵 | cf. 0x0 and 0x1

0x3𝐴 ∩ 𝐵 SA ∩ DB Galloping , na𝑂 ( |𝐴 |) 𝑊 |𝐴 | + 𝑛 Random accesses
0x4𝐴 ∩ 𝐵 DB ∩ DB Bitwise ANDna, na𝑂 (𝑛/(𝑞𝑆)) 𝑛 + 𝑛 In-situ row copies

0x5𝐴 ∪ {𝑥 }DB ∪ {𝑥 } Set bit na, na𝑂 (1) 𝑛 +𝑊 Random access
0x6𝐴 \ {𝑥 } DB \ {𝑥 } Clear bit na, na𝑂 (1) 𝑛 +𝑊 Random access
Table 4: Overview of SISA instructions, one rowdescribes one specific set operation variant.
Set elements are vertices (𝐴, 𝐵 ⊆ 𝑉 , 𝑥 ∈ 𝑉 ). “” means “yes”. “na” means “not applicable”.
“ins” is a proposed instruction opcode. “S (Sorted)” indicates if an instruction assumes set
representations of𝐴 and 𝐵 to be sorted (thus two columns).

Figure 4 shows an SA and a DB built from the same vertex set.
Then, it illustrates an example SISA graph representation where
some neighborhoods are DBs and some are SAs.

6.2 High-Performance Set Operations
The second key challenge in SISA is how to apply set operations
for highest performance. For this, we detail the algorithmic aspects,
a summary is in Table 4. HW details (used PIM and a performance
model) are discussed in Section 8. An overview of the structure of
SISA is in Figure 3.

Set Intersection 𝐴 ∩ 𝐵 is a key operation in SISA, because our
analysis illustrates that it is used in essentially all considered graph
algorithms. We now briefly discuss the most relevant variants of ∩,
a summary is in Figure 4.
• SA [sorted] 𝐴 ∩ SA [sorted] 𝐵 The intersection of two sorted
SAs is commonly used when processing two neighborhoods. It
comes in two “flavors”. If 𝐴 and 𝐵 have similar sizes (|𝐴| ≈ |𝐵 |),
one prefers themerge scheme where one simply iterates through
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Figure 4: SISA representations of sets and graphs, and processing SISA sets.

𝐴 and 𝐵, identifying common elements (time 𝑂 ( |𝐴| + |𝐵 |)). If one
set is much smaller than the other (|𝐴| ≪ |𝐵 |), it is better to use
the galloping scheme [1], in which one iterates over the elements
of a smaller set and uses a binary search to check if each element
is in the bigger set (time 𝑂 ( |𝐴| log |𝐵 |)). SISA offers both variants,
and a variant that automatically selects the best variant with a
performance model (described in § 8.2).

• SA [unsorted or sorted] 𝐴 ∩ DB 𝐵 Iterate over 𝐴 (𝑂 ( |𝐴|)) and
check if each element is in 𝐵 (𝑂 (1)). This variant is often used to
intersect a neighborhood with an auxiliary set represented as a
bitvector, for example 𝑋 ∩ 𝑁 (𝑣) in Listing 1.

• DB𝐴 ∩DB 𝐵 Apply bitwise AND over both input DBs (they both
have sizes of 𝑛 bits, giving𝑂 (𝑛/𝐶) time, where𝐶 is the maximum
chunk of bits that can be processed in 𝑂 (1) time using bit-level
parallelism). This variant is used for example when intersecting
two dense neighborhoods.
Set Union 𝐴 ∪ 𝐵, Set Difference 𝐴 \ 𝐵 𝐴 \ 𝐵 and 𝐴 ∪ 𝐵 have

variants similar to those for ∩, there are also corresponding merge
and galloping variants.

Set Membership 𝑥 ∈ 𝐴, Set Cardinality |𝐴| Set membership
takes 𝑂 ( |𝐴|) time for an unsorted SA (linear scan), 𝑂 (log |𝐴|) time
for a sorted SA (binary search), and 𝑂 (1) for a DB (a single access
to verify if 𝑥-th bit is set). As for set cardinality, we keep |𝐴| for
any set. This incurs only 𝑂 (1) storage overhead (per set) as well
𝑂 (1) time overhead needed to update the size, but it enables 𝑂 (1)
time to resolve any set cardinality operation. Finally, SISA provides
dedicated instructions for computing cardinalities of the results of
set operations, for example |𝐴 ∩ 𝐵 |. This enables speedups as SISA
avoids creating any intermediate structures needed for keeping the
results of operations such as intersection.

Adding & Removing Elements Auxiliary sets often grow and
shrink by one element. Both add and remove straightforwardly
take𝑂 (1) time for a DB (setting or zeroing a corresponding bit) and
𝑂 ( |𝐴|) for an SA (moving data for a sorted SA). Thus, in general,
we advocate using DBs for auxiliary sets; the size is 𝑛 bits.

6.3 Additional Details of SISA Design
We detail several aspects of SISA’s design; cf. Figure 3.

Labeled Graphs As a baseline, we propose to use a sparse
array to maintain labels, indexed by vertex IDs, similarly to other
works [41]. This form benefits from SISA-PNM. The SISA user can

”means “yes”. “na”means “not applicable”.
“ins” is a proposed instruction opcode. “S (Sorted)” indicates if an instruction assumes set
representations of A and B to be sorted (thus two columns).

Figure 4 shows an SA and a DB built from the same vertex set.
Then, it illustrates an example SISA graph representation where
some neighborhoods are DBs and some are SAs.

6.2 High-Performance Set Operations
The second key challenge in SISA is how to apply set operations
for highest performance. For this, we detail the algorithmic aspects,
a summary is in Table 4. HW details (used PIM and a performance
model) are discussed in Section 8. An overview of the structure of
SISA is in Figure 3.

Set Intersection A ∩ B is a key operation in SISA, because our
analysis illustrates that it is used in essentially all considered graph
algorithms. We now briefly discuss the most relevant variants of ∩,
a summary is in Figure 4.
• SA [sorted] A ∩ SA [sorted] B The intersection of two sorted
SAs is commonly used when processing two neighborhoods. It
comes in two “flavors”. If A and B have similar sizes (|A| ≈ |B |),
one prefers themerge scheme where one simply iterates through
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Figure 4: SISA representations of sets and graphs, and processing SISA sets.

A and B, identifying common elements (time O(|A| + |B |)). If one
set is much smaller than the other (|A| ≪ |B |), it is better to use
the galloping scheme [1], in which one iterates over the elements
of a smaller set and uses a binary search to check if each element
is in the bigger set (time O(|A| log |B |)). SISA offers both variants,
and a variant that automatically selects the best variant with a
performance model (described in § 8.2).

• SA [unsorted or sorted] A ∩ DB B Iterate over A (O(|A|)) and
check if each element is in B (O(1)). This variant is often used to
intersect a neighborhood with an auxiliary set represented as a
bitvector, for example X ∩ N (v) in Listing 1.

• DBA ∩DB B Apply bitwise AND over both input DBs (they both
have sizes of n bits, giving O(n/C) time, where C is the maximum
chunk of bits that can be processed in O(1) time using bit-level
parallelism). This variant is used for example when intersecting
two dense neighborhoods.
Set Union A ∪ B, Set Difference A \ B A \ B and A ∪ B have

variants similar to those for ∩, there are also corresponding merge
and galloping variants.

Set Membership x ∈ A, Set Cardinality |A| Set membership
takes O(|A|) time for an unsorted SA (linear scan), O(log |A|) time
for a sorted SA (binary search), and O(1) for a DB (a single access
to verify if x-th bit is set). As for set cardinality, we keep |A| for
any set. This incurs only O(1) storage overhead (per set) as well
O(1) time overhead needed to update the size, but it enables O(1)
time to resolve any set cardinality operation. Finally, SISA provides
dedicated instructions for computing cardinalities of the results of
set operations, for example |A ∩ B |. This enables speedups as SISA
avoids creating any intermediate structures needed for keeping the
results of operations such as intersection.

Adding & Removing Elements Auxiliary sets often grow and
shrink by one element. Both add and remove straightforwardly
takeO(1) time for a DB (setting or zeroing a corresponding bit) and
O(|A|) for an SA (moving data for a sorted SA). Thus, in general,
we advocate using DBs for auxiliary sets; the size is n bits

6.3 Additional Details of SISA Design
We detail several aspects of SISA’s design; cf. Figure 3.

Labeled Graphs As a baseline, we propose to use a sparse ar-
ray to maintain labels, indexed by vertex IDs, similarly to other
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SISA + merging intersection 𝑂 (𝑚𝑐)⋆ 𝑂 (𝑘𝑚 (𝑐/2)𝑘−2)⋆ 𝑂 (𝑘2𝑚 (𝑐/2)𝑘−1)⋆ 𝑂 (𝑐𝑑𝑛3𝑐/3) 𝑂 (𝑚𝑑) 𝑂 (𝑛2 +𝑚𝑑) 𝑂 (𝑛2)⋆ 𝑂 (𝑚𝑑)
SISA + galloping intersection 𝑂 (𝑚𝑐 log𝑐) 𝑂 (𝑘𝑚 (𝑐/2)𝑘−2 log𝑐) 𝑂 (𝑘2𝑚 (𝑐/2)𝑘−1 log𝑐) 𝑂 (𝑐𝑛3𝑐/3)⋆ 𝑂 (𝑚𝑐 log𝑐)⋆ 𝑂 (𝑛2 +𝑚𝑐 log𝑐)⋆ 𝑂 (𝑛2)⋆ 𝑂 (𝑚𝑐 log𝑑)⋆

Table 5: The impact of set intersection schemes (merging vs. galloping) on the runtime of graph mining algorithms.. “⋆” means that a given SISA variant matches asymptotically the best known
non-set-centric baseline, referenced in the top row. 𝑘 , 𝑐 , and 𝑑 denote the size of the mined pattern, the graph degeneracy (a popular measure of graph sparsity) and the maximum vertex degree, respectively
(other symbols are described in Section 2). Link prediction complexities are valid for the following vertex similarity measures: †Jaccard, Overlap, Adamic Adar, Resource Allocation, Common Neighbors; ‡Total
Neighbors; §Preferential Attachment [98, 121].

also implement labels with a one-hot encoding and use bit vectors.
This would harness SISA-PUM.

SISA Instructions SISA offers instructions that package the
described set operations in all the considered variants, including
instructions that automatically select merge or galloping set al-
gorithms (cf. § 6.2). Finally, SISA also provides instructions for
creating and deleting sets.

Programming Interface (Set Iterators&Wrappers) For pro-
grammability, SISA offers a thin software layer on top of high-level
instructions that consists of abstractions and wrappers. In the for-
mer, we provide an opaque type Set that is a reference to a SISA set;
this enables using C++ iterators over sets, see left side of Figure 3.
In the latter, SISA provides functions that directly map to SISA set
instructions.

RISC-V Compliant Encoding SISA can be integrated with the
RISC-V ISA [166]. To enable modularity and flexibility, SISA’s new
instructions are encoded using the custom opcode set [165]. We
encode the opcode and functionality of custom RISC-V instructions
using bits [31..25] and [6..0], see Figure 5. The former represent the
different SISA instructions (up to 128). The latter are set to 0x16 to
represent the custom characteristic of the instruction. Fields rs1,
rs2, and rd indicate registers with IDs of input sets and the output
set, respectively. In Table 4, we assign ISA codes (bits [31..25]) to
respective instructions. The number of SISA instructions is less
than 20, leaving space for potential new variants.

funct7 rs2 rs1 xd rd opcodexs1 xs2
31 25 24 20 19 15 14 13 12 11 7 6 0

7 5 5 1 1 1 5 7

. 
SISA operation
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operations
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Custom
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Figure 5: Encoding of SISA instructions.

7 THEORETICAL ANALYSIS
We now show that SISA-enhanced algorithms are theoretically effi-
cient, i.e., their time complexities match those of hand-tuned graph
mining algorithms. This is enabled by SISA’s ability to control used
set representations and set operations. To show this, we analyze
how varying a used set intersection variant (merge vs. galloping)
impacts the runtime of set-centric algorithms, see Table 5. We focus
on intersection as it is prevalent in considered algorithms. Cru-
cially, all set-centric variants are able to match the competitive time
complexities of considered tuned graph mining algorithms.

8 HARDWARE IMPLEMENTATION
SISA-PUM First, the intersection, union, and difference of sets rep-
resented as DBs are processed with SISA-PUM that relies on in-situ
DRAMbulk bitwise schemes. For concreteness, we pick Ambit [141],

a recent design that enables energy-efficient bulk bitwise opera-
tions fully inside DRAM, by small extensions to the DRAM circuitry
but without any changes to the DRAM interface. However, SISA is
generic and other designs could also be used (e.g., ELP2IM [168],
DRISA [100], ComputeDRAM [53], PCM (Pinatubo) [101]). The key
extension in Ambit (for in-situ processing) is to modify a decoder
for three selected DRAM rows (that share the same set of sense
amplifiers) in such a way that one amplifier connects directly to
three DRAM cells. This enables logical AND and OR over two of
such three rows, immediately computing the result in the third
row (NOT is provided by including a single row of dual-contact
DRAM cells [141]). Importantly for SISA-PUM, only three selected
designated DRAM rows (per single DRAM subarray) are modified
this way. Whenever the running code requests an in-situ mem-
ory operation, Ambit uses a recent RowClone technology [140] to
copy (also in-situ) the rows that store input sets to these two desig-
nated rows, compute the result in-situ, and again use RowClone to
copy the result to the destination (unmodified) DRAM row. Now,
SISA-PUM uses Ambit’s execution model and interface without
any modifications: set intersection and union are processed with
an in-situ AND and OR, respectively. Set difference is processed
using set intersection, along with the well-known set algebra rule:
𝐴 \ 𝐵 = 𝐴 ∩ 𝐵′ [82].

SISA-PNM A set operation with no bulk bitwise processing uses
SISA-PNM that relies on high bandwidth between processing units
and DRAM (as in UPMEM [96], HMC [83], or Tesseract [6]). Adding
or removing an element from a set stored as a DB (𝐴∪ {𝑥}, 𝐴 \ {𝑥})
is conducted with a single DRAM access to a specific memory cell.
Other set operations on SAs that employ streaming or random
accesses are also executed using small in-order cores.

8.1 SCU & Automatizing SISA Decisions
We use a small SISA Control Unit (SCU), cf. Section 3, to automat-
ically decide on (1) selecting the PNM or PUM execution, and (2)
merge or galloping. Once the host core decodes a SISA instruction,
it passes it to the SCU. The SCU further decodes this instruction,
and picks either PNM or PUM to execute the instruction. For de-
ployment, SCU could either be added to the CPU or to the DRAM
circuitry (see the feasibility discussion later in this section), or – to
avoid any HW modifications – it can also be emulated by a single
designated in-order logic layer core. SCU does not implement any
complex logic (e.g., dynamic set modifications), it only decides on
variants of schemes to execute.

SISA-PUM & SISA-PNM First, SCU decides whether to use
SISA-PUM or SISA-PNM for given two sets. This decision is simple
and is based on how sets are represented (this information is stored
in a simple in-memory SM (“set metadata”) structure and possibly
cached in SCU’s cache).

Table 5: The impact of set intersection schemes (merging vs. galloping) on the runtime of graph mining algorithms.. “
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also implement labels with a one-hot encoding and use bit vectors.
This would harness SISA-PUM.

SISA Instructions SISA offers instructions that package the
described set operations in all the considered variants, including
instructions that automatically select merge or galloping set al-
gorithms (cf. § 6.2). Finally, SISA also provides instructions for
creating and deleting sets.

Programming Interface (Set Iterators&Wrappers) For pro-
grammability, SISA offers a thin software layer on top of high-level
instructions that consists of abstractions and wrappers. In the for-
mer, we provide an opaque type Set that is a reference to a SISA set;
this enables using C++ iterators over sets, see left side of Figure 3.
In the latter, SISA provides functions that directly map to SISA set
instructions.

RISC-V Compliant Encoding SISA can be integrated with the
RISC-V ISA [166]. To enable modularity and flexibility, SISA’s new
instructions are encoded using the custom opcode set [165]. We
encode the opcode and functionality of custom RISC-V instructions
using bits [31..25] and [6..0], see Figure 5. The former represent the
different SISA instructions (up to 128). The latter are set to 0x16 to
represent the custom characteristic of the instruction. Fields rs1,
rs2, and rd indicate registers with IDs of input sets and the output
set, respectively. In Table 4, we assign ISA codes (bits [31..25]) to
respective instructions. The number of SISA instructions is less
than 20, leaving space for potential new variants.
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Figure 5: Encoding of SISA instructions.

7 THEORETICAL ANALYSIS
We now show that SISA-enhanced algorithms are theoretically effi-
cient, i.e., their time complexities match those of hand-tuned graph
mining algorithms. This is enabled by SISA’s ability to control used
set representations and set operations. To show this, we analyze
how varying a used set intersection variant (merge vs. galloping)
impacts the runtime of set-centric algorithms, see Table 5. We focus
on intersection as it is prevalent in considered algorithms. Cru-
cially, all set-centric variants are able to match the competitive time
complexities of considered tuned graph mining algorithms.

8 HARDWARE IMPLEMENTATION
SISA-PUM First, the intersection, union, and difference of sets rep-
resented as DBs are processed with SISA-PUM that relies on in-situ
DRAMbulk bitwise schemes. For concreteness, we pick Ambit [141],

a recent design that enables energy-efficient bulk bitwise opera-
tions fully inside DRAM, by small extensions to the DRAM circuitry
but without any changes to the DRAM interface. However, SISA is
generic and other designs could also be used (e.g., ELP2IM [168],
DRISA [100], ComputeDRAM [53], PCM (Pinatubo) [101]). The key
extension in Ambit (for in-situ processing) is to modify a decoder
for three selected DRAM rows (that share the same set of sense
amplifiers) in such a way that one amplifier connects directly to
three DRAM cells. This enables logical AND and OR over two of
such three rows, immediately computing the result in the third
row (NOT is provided by including a single row of dual-contact
DRAM cells [141]). Importantly for SISA-PUM, only three selected
designated DRAM rows (per single DRAM subarray) are modified
this way. Whenever the running code requests an in-situ mem-
ory operation, Ambit uses a recent RowClone technology [140] to
copy (also in-situ) the rows that store input sets to these two desig-
nated rows, compute the result in-situ, and again use RowClone to
copy the result to the destination (unmodified) DRAM row. Now,
SISA-PUM uses Ambit’s execution model and interface without
any modifications: set intersection and union are processed with
an in-situ AND and OR, respectively. Set difference is processed
using set intersection, along with the well-known set algebra rule:
𝐴 \ 𝐵 = 𝐴 ∩ 𝐵′ [82].

SISA-PNM A set operation with no bulk bitwise processing uses
SISA-PNM that relies on high bandwidth between processing units
and DRAM (as in UPMEM [96], HMC [83], or Tesseract [6]). Adding
or removing an element from a set stored as a DB (𝐴∪ {𝑥}, 𝐴 \ {𝑥})
is conducted with a single DRAM access to a specific memory cell.
Other set operations on SAs that employ streaming or random
accesses are also executed using small in-order cores.

8.1 SCU & Automatizing SISA Decisions
We use a small SISA Control Unit (SCU), cf. Section 3, to automat-
ically decide on (1) selecting the PNM or PUM execution, and (2)
merge or galloping. Once the host core decodes a SISA instruction,
it passes it to the SCU. The SCU further decodes this instruction,
and picks either PNM or PUM to execute the instruction. For de-
ployment, SCU could either be added to the CPU or to the DRAM
circuitry (see the feasibility discussion later in this section), or – to
avoid any HW modifications – it can also be emulated by a single
designated in-order logic layer core. SCU does not implement any
complex logic (e.g., dynamic set modifications), it only decides on
variants of schemes to execute.

SISA-PUM & SISA-PNM First, SCU decides whether to use
SISA-PUM or SISA-PNM for given two sets. This decision is simple
and is based on how sets are represented (this information is stored
in a simple in-memory SM (“set metadata”) structure and possibly
cached in SCU’s cache).

” means that a given SISA variant matches asymptotically the best known
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works [41]. This form benefits from SISA-PNM. The SISA user can
also implement labels with a one-hot encoding and use bit vectors.
This would harness SISA-PUM.

SISA Instructions SISA offers instructions that package the
described set operations in all the considered variants, including
instructions that automatically select merge or galloping set algo-
rithms (cf. § 6.2). Finally, SISA also provides instructions for creating
and deleting sets.

Programming Interface (Set Iterators &Wrappers) For pro-
grammability, SISA offers a thin software layer on top of high-level
instructions that consists of abstractions and wrappers. In the for-
mer, we provide an opaque type Set that is a reference to a SISA set;
this enables using C++ iterators over sets, see left side of Figure 3.
In the latter, SISA provides functions that directly map to SISA set
instructions.

RISC-V Compliant Encoding SISA can be integrated with the
RISC-V ISA [166]. To enable modularity and flexibility, SISA’s new
instructions are encoded using the custom opcode set [165]. We
encode the opcode and functionality of custom RISC-V instructions
using bits [31..25] and [6..0], see Figure 5. The former represent the
different SISA instructions (up to 128). The latter are set to 0x16 to
represent the custom characteristic of the instruction. Fields rs1,
rs2, and rd indicate registers with IDs of input sets and the output
set, respectively. In Table 4, we assign ISA codes (bits [31..25]) to
respective instructions. The number of SISA instructions is less
than 20, leaving space for potential new variants.
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7 THEORETICAL ANALYSIS
We now show that SISA-enhanced algorithms are theoretically effi-
cient, i.e., their time complexities match those of hand-tuned graph
mining algorithms. This is enabled by SISA’s ability to control used
set representations and set operations. To show this, we analyze
how varying a used set intersection variant (merge vs. galloping)
impacts the runtime of set-centric algorithms, see Table 5. We focus
on intersection as it is prevalent in considered algorithms. Cru-
cially, all set-centric variants are able to match the competitive time
complexities of considered tuned graph mining algorithms.

8 HARDWARE IMPLEMENTATION
SISA-PUM First, the intersection, union, and difference of sets rep-
resented as DBs are processed with SISA-PUM that relies on in-situ

DRAMbulk bitwise schemes. For concreteness, we pick Ambit [141],
a recent design that enables energy-efficient bulk bitwise opera-
tions fully inside DRAM, by small extensions to the DRAM circuitry
but without any changes to the DRAM interface. However, SISA is
generic and other designs could also be used (e.g., ELP2IM [168],
DRISA [100], ComputeDRAM [53], PCM (Pinatubo) [101]). The key
extension in Ambit (for in-situ processing) is to modify a decoder
for three selected DRAM rows (that share the same set of sense
amplifiers) in such a way that one amplifier connects directly to
three DRAM cells. This enables logical AND and OR over two of
such three rows, immediately computing the result in the third
row (NOT is provided by including a single row of dual-contact
DRAM cells [141]). Importantly for SISA-PUM, only three selected
designated DRAM rows (per single DRAM subarray) are modified
this way. Whenever the running code requests an in-situ mem-
ory operation, Ambit uses a recent RowClone technology [140] to
copy (also in-situ) the rows that store input sets to these two desig-
nated rows, compute the result in-situ, and again use RowClone to
copy the result to the destination (unmodified) DRAM row. Now,
SISA-PUM uses Ambit’s execution model and interface without
any modifications: set intersection and union are processed with
an in-situ AND and OR, respectively. Set difference is processed
using set intersection, along with the well-known set algebra rule:
A \ B = A ∩ B′ [82].

SISA-PNMA set operation with no bulk bitwise processing uses
SISA-PNM that relies on high bandwidth between processing units
and DRAM (as in UPMEM [96], HMC [83], or Tesseract [6]). Adding
or removing an element from a set stored as a DB (A∪ {x},A \ {x})
is conducted with a single DRAM access to a specific memory cell.
Other set operations on SAs that employ streaming or random
accesses are also executed using small in-order cores.
8.1 SCU & Automatizing SISA Decisions
We use a small SISA Control Unit (SCU), cf. Section 3, to automat-
ically decide on (1) selecting the PNM or PUM execution, and (2)
merge or galloping. Once the host core decodes a SISA instruction,
it passes it to the SCU. The SCU further decodes this instruction,
and picks either PNM or PUM to execute the instruction. For de-
ployment, SCU could either be added to the CPU or to the DRAM
circuitry (see the feasibility discussion later in this section), or – to
avoid any HW modifications – it can also be emulated by a single
designated in-order logic layer core. SCU does not implement any
complex logic (e.g., dynamic set modifications), it only decides on
variants of schemes to execute.

SISA-PUM & SISA-PNM First, SCU decides whether to use
SISA-PUM or SISA-PNM for given two sets. This decision is simple
and is based on how sets are represented (this information is stored
in a simple in-memory SM (“set metadata”) structure and possibly
cached in SCU’s cache).
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Variants of Set Operations Second, SCU automatically detects
if it is best to use merge or galloping, and processes input sets
using the corresponding variant. This decision is guided by our
performance models.

8.2 Performance Models for Set Operations
The runtime of each SISA instruction variant is dominated by either
streaming or random accesses.

Streaming takes place when two sets A and B stored as SAs
are processed using merging. We model the runtime as lM +W ·
max{|A|, |B |} ·min{bM ,bL}. lM and bM are latency and bandwidth
of accessing DRAM, and bL is bandwidth between cores. The model
conservatively assumes that A and B may be located in memory
locations attached to different cores (e.g., in different vaults), and
thus (1) the overall bandwidth is bottlenecked bymin{bM ,bL}, and
(2) we can use max{|A|, |B |} as A and B are streamed in parallel.

To model random accesses, we simply count the number of
performed operations and multiply it by the memory access latency.
This gives lM ·min{|A|, |B |} · log(max{|A|, |B |}) for a binary search
over the larger of input sets, used when processing two SAs with
galloping. Then, a specific variant is selected automatically to
minimize the predicted runtime. To parametrize these models,
SISA needs (1) the sizes of processed sets, (2) their representation
types, and (3) bM ,bL , lM . (1) and (2) are maintained in the metadata
structure. (3) describe the execution environment and are thus iden-
tical for each set; they are stored directly in the SCU. We instantiate
(3) to reflect logic layers in Tesseract [6].

8.3 Details of SISA Hardware
Life Cycle of a Set A set is allocated with a standard malloc, aug-
mented with setting the appropriate set information in the set
metadata (SM) structure. Loading, processing, and storing sets is
conducted by the respective existing elements such as logic layer
cores; the SCU is only responsible for selecting the appropriate in-
struction variant to be executed. Once a set is deleted, the standard
free call is used, together with removing the respective entry from
the SM structure.

SetMetadata SM forms a simple associative structure that holds
constant amount of data per set (set representation, set size). The
total SM size is O(n) as there are n neighborhoods and a constant
number of auxiliary sets. Thus, while we conservatively assume that
SM is an in-memory structure, in practice it fits completely in cache
or a small scratchpad. This is because many datasets processed by
graph mining algorithms have small n, in the order of hundreds or
thousands [132]. These graphs pose computational challenges, but
these challenges come from high computational complexities (e.g.,
listing maximal cliques is NP-hard) or from relatively high edge
countsm (as some vertices may have high degrees [132]), but not
(or to a smaller extend) from n. Whenever the given SM information
is not cached, there is a single additional memory access for one set
operation. Each SM entry describing one set also contains the set
location. Now, entries in the SM structure are indexed by set IDs.
A set ID is returned by a function creating a set, cf. Figure 3. Set
IDs and set creation (and destruction) calls are used by a developer
analogously to pointers and malloc/free calls.

Caching Set Metadata Depending on how SISA HW is de-
ployed, the SM information can be cached in either a small dedicated
scratchpad or cache (if the SCU is implemented as an additional
circuitry), or in the standard cache of a logic layer core (if the SCU
is emulated by a such designated core).

SISA-PNM and SISA-PUM Together Ambit fully preserves
the DRAM interface: the sets are always stored in standard DRAM
rows, and moved to the designated rows only for bulk bitwise pro-
cessing [141]. SISA-PNM accesses run on unmodified DRAM banks
(the modifications in PNM are only related to the high bandwidth,
and the SCU in SISA). Thus, SISA-PNM and -PUM are seamlessly
used together.

Harnessing Parallelism First, bit-level parallelism is enabled
by using Ambit’s bulk bitwise operations: bits in a row are ANDed
or ORed in parallel. Second, pairs of bitvectors placed in different
subarrays (or, e.g., DRAM banks) can be processed in parallel. Third,
processing pairs of sets stored as integer arrays in different vaults
can also be parallelized. Here, SISA benefits from the same effect of
bandwidth scalability as the Tesseract graph accelerator [6].

Managing Concurrency SISA relies on developers using es-
tablished techniques (locks, lock-free protocols, general parallel
programming principles [71] and libraries such as OpenMP [32])
to concurrently access the same set.

For cache coherence in SISA-PUM, we rely on mechanisms
(provided by the memory controller) that flush dirty cache lines in
source rows, and invalidate cache lines in destination rows. Existing
schemes also rely on it, including Ambit [141], DMA accesses [40]
and others [75, 140]. As in Ambit, SISA-PUM accesses are always
row-wise, and thus we can also rely on Dirty-Block Index [139] and
similar schemes for fast data flushing. Invalidations run in parallel
with Ambit operations and thus do not incur overheads.

Memory Layout and Storage of SetsWe ensure that storing
SISA sets is feasible (i.e., a maximum-size neighborhood, repre-
sented as SA or DB, fits into a single vault).

8.4 SISA Hardware Cost and Feasibility
We also briefly discuss the hardware cost. First, the needed DRAM
chipmodifications are minimal and identical to those already dis-
cussed in Ambit. Second, as the logic to be implemented in SCU
is straightforward decision making on what instruction variant to
use, its costs are not prohibitive, as shown by many designs pro-
posed in the past, for example in HyVE [76] (a hybrid vertex-edge
memory hierarchy that uses ReRAM and DRAM) or in GraphH [43]
(an accelerator that combines HMC with SRAM). Third, the code of
all SISA instructions is also straightforward: a simple binary search
(galloping), merging of two arrays (merge), or setting/clearing a
DRAM cell (set element add/remove). Thus, they can be trivially
deployed in in-order cores in the logic layer of 3D stacked DRAM,
as shown by other designs [43].

9 EVALUATION
We illustrate example performance advantages from SISA.

9.1 Methodology, Setup, Parameters
Simulation InfrastructureWe use Sniper [70] with the Pin fron-
tend [106]. Sniper is a popular cycle-level simulator used in many
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works proposing various architectural extensions for both CPUs
and memory subsystem [116, 160].

SISA ImplementationWe simulate the SISA HW design and
the ISA, instrumenting the code so that the simulation toolchain
can distinguish between SISA and non-SISA instructions. To model
each component of SISA, we add the respective set instructions and
simulate the SCU (a small fixed delay), the cache in SCU (with the
LRU policy), the SM structure (random memory accesses whenever
the SCU cache is not hit), and the execution of all used set operations
by appropriate delays in the simulation execution. For operations
based on streaming and random memory accesses, we use the
performance models described in § 8.2. To simulate SISA-PUM, we
model a run-time of in-situ operations with a delay lM +lI · ⌈n/(qS)⌉;
lM is the latency to access DRAM (to initiate the operation) and
lI is the latency execute one in-situ instruction. ⌈n/(qR)⌉ models
a scenario when the bitvector size n exceeds the size of all DRAM
rows that can be processed in parallel. q is the count of rows within
a bank that can be used in parallel and R is the size of one row.

SISA Platform & Parameters For concreteness, we set the
platform for executing SISA instructions to match Tesseract [6]
(for SISA-PNM) and Ambit [141] (for SISA-PUM). The former has
simple in-order cores (1 core/vault in its logic layer) with 32 KB L1
instruction/data caches, no L2, 16 8GB HMCs (128 GB in total), 32
vaults/cube, 16 banks/vault. Each vault offers 16 GB/s of memory
bandwidth to its core. Thus, we assume scalable bandwidth as pro-
posed by Tesseract: using more vaults increases the total memory
bandwidth. We set the DRAM row rank size to 8 KB, following
Ambit [141]. Next, we set the parameter t ∈ [0; 1] (that controls the
bias towards using DBs or SAs to store neighborhoods) to 0.4 (i.e.,
40% of neighborhoods are stored as DBs); we also analyze other
values. We ensure that the total storage used for neighborhoods
does not exceed the size of the simple CSR graph storage by more
than 10%. Finally, we set the size of SISA SCU’s cache to be 32 KB
(matching Tesseract’s L1).

Platform for non-SISA Instructions & Baselines For any
non-SISA instructions and baselines, we use a high-performance
Out-of-Order manycore CPU. Each core has a 128-entry instruction
window, a branch predictor, 32 KB L1 instruction/data caches, a
256 KB L2 cache. All cores share an 8 MB L3 cache. There is also a
four-way associative 64-entry D-TLB, a 128-entry I-TLB, and a 512-
entry S-TLB. For fair comparison, we also use bandwidth scalability
in this configuration, i.e., we increase the memory bandwidth with
the number of cores, matching it with that of SISA-PNM.

ConsideredMining Problems The graph mining problems we
consider are clustering with the Jaccard (cl-jac), overlap (cl-ovr),
and total neighbors (cl-tot) coefficients, listing k-cliques (kcc-k ,
k ∈ {4, 5, 6}), k-clique-stars (ksc-k , k ∈ {4, 5, 6}), maximal cliques
(mc), triangles (tc), and subgraph isomorphism (si-ks for k-stars).

Comparison Targets: Hand-Tuned Algorithms Our most
important (the most challenging to outperform) baselines are hand-
optimized parallel algorithms for each graph mining problem.
Specifically, we use a tuned version from the GAP Benchmark
Suite [14] for tc, Eppstein’s version of BK for mc [51], Danisch’
scheme for kcc-k [44], enhanced Jabbour’s scheme for ksc-k [79],
parallel VF2 for si-ks [41], and cl-jac based on counting triangles
in the GAP suite [14]. All used baselines have competitive work and
depth complexities, cf. Table 5. For fair comparison, all baselines

benefit from the high bandwidth of PIM. We consider algorithms
that do not explicitly use set algebra (denoted with _non-set) and
their set-centric variants (denoted with _set-based).

Comparison Targets: Pattern Matching Frameworks SISA
and its underlying paradigm do not aim to outperform specific
accelerators but complement or reinforce them, by offering a novel
set-centric paradigm and building blocks. Thus, we focus on com-
paring to the fundamental paradigms / algebras that underlie these
accelerators: neighborhood expansion for pattern matching imple-
mented in Peregrine [80] (which represents GRAMER [176]) and
relational algebra implemented in RStream [161] (which represents
TrieJax [89]). We stress that, while we consider these baselines for
completeness, we focus on comparing to (much faster) hand-tuned
parallel algorithms for solving specific problems.

Graphs We select different input datasets (Table 6) from Net-
work Repository [133], considering biological (bio-), interaction
(int-), brain (bn-), economics (econ-), social (soc-), scientific-
computing (sc-), discrete-math (dimacs-), and wiktionary (edit-)
networks. We pick graphs with different structural properties
(low/high density, small/large maximum degree, low/high degree
distribution skew, etc.).

works proposing various architectural extensions for both CPUs
and memory subsystem [116, 160].

SISA Implementation We simulate the SISA HW design and
the ISA, instrumenting the code so that the simulation toolchain
can distinguish between SISA and non-SISA instructions. To model
each component of SISA, we add the respective set instructions and
simulate the SCU (a small fixed delay), the cache in SCU (with the
LRU policy), the SM structure (random memory accesses whenever
the SCU cache is not hit), and the execution of all used set operations
by appropriate delays in the simulation execution. For operations
based on streaming and random memory accesses, we use the
performance models described in § 8.2. To simulate SISA-PUM, we
model a run-time of in-situ operations with a delay 𝑙𝑀 +𝑙𝐼 · ⌈𝑛/(𝑞𝑆)⌉;
𝑙𝑀 is the latency to access DRAM (to initiate the operation) and 𝑙𝐼
is the latency execute one in-situ instruction. ⌈𝑛/(𝑞𝑅)⌉ models a
scenario when the bitvector size 𝑛 exceeds the size of all DRAM
rows that can be processed in parallel. 𝑞 is the count of rows within
a bank that can be used in parallel and 𝑅 is the size of one row.

SISA Platform & Parameters For concreteness, we set the
platform for executing SISA instructions to match Tesseract [6]
(for SISA-PNM) and Ambit [141] (for SISA-PUM). The former has
simple in-order cores (1 core/vault in its logic layer) with 32 KB L1
instruction/data caches, no L2, 16 8GB HMCs (128 GB in total), 32
vaults/cube, 16 banks/vault. Each vault offers 16 GB/s of memory
bandwidth to its core. Thus, we assume scalable bandwidth as pro-
posed by Tesseract: using more vaults increases the total memory
bandwidth. We set the DRAM row rank size to 8 KB, following
Ambit [141]. Next, we set the parameter 𝑡 ∈ [0; 1] (that controls the
bias towards using DBs or SAs to store neighborhoods) to 0.4 (i.e.,
40% of neighborhoods are stored as DBs); we also analyze other
values. We ensure that the total storage used for neighborhoods
does not exceed the size of the simple CSR graph storage by more
than 10%. Finally, we set the size of SISA SCU’s cache to be 32 KB
(matching Tesseract’s L1).

Platform for non-SISA Instructions & Baselines For any
non-SISA instructions and baselines, we use a high-performance
Out-of-Order manycore CPU. Each core has a 128-entry instruction
window, a branch predictor, 32 KB L1 instruction/data caches, a
256 KB L2 cache. All cores share an 8 MB L3 cache. There is also a
four-way associative 64-entry D-TLB, a 128-entry I-TLB, and a 512-
entry S-TLB. For fair comparison, we also use bandwidth scalability
in this configuration, i.e., we increase the memory bandwidth with
the number of cores, matching it with that of SISA-PNM.

ConsideredMining Problems The graph mining problems we
consider are clustering with the Jaccard (cl-jac), overlap (cl-ovr),
and total neighbors (cl-tot) coefficients, listing 𝑘-cliques (kcc-𝑘 ,
𝑘 ∈ {4, 5, 6}), 𝑘-clique-stars (ksc-𝑘 , 𝑘 ∈ {4, 5, 6}), maximal cliques
(mc), triangles (tc), and subgraph isomorphism (si-𝑘s for 𝑘-stars).

Comparison Targets: Hand-Tuned Algorithms Our most
important (the most challenging to outperform) baselines are hand-
optimized parallel algorithms for each graphmining problem. Specif-
ically, we use a tuned version from the GAP Benchmark Suite [14]
for tc, Eppstein’s version of BK for mc [51], Danisch’ scheme for
kcc-𝑘 [44], enhanced Jabbour’s scheme for ksc-𝑘 [79], parallel
VF2 for si-𝑘s [41], and cl-jac based on counting triangles in the
GAP suite [14]. All used baselines have competitive work and depth
complexities, cf. Table 5. For fair comparison, all baselines benefit

from the high bandwidth of PIM. We consider algorithms that do
not explicitly use set algebra (denoted with _non-set) and their
set-centric variants (denoted with _set-based).

Comparison Targets: Pattern Matching Frameworks SISA
and its underlying paradigm do not aim to outperform specific
accelerators but complement or reinforce them, by offering a novel
set-centric paradigm and building blocks. Thus, we focus on com-
paring to the fundamental paradigms / algebras that underlie these
accelerators: neighborhood expansion for pattern matching imple-
mented in Peregrine [80] (which represents GRAMER [176]) and
relational algebra implemented in RStream [161] (which represents
TrieJax [89]). We stress that, while we consider these baselines for
completeness, we focus on comparing to (much faster) hand-tuned
parallel algorithms for solving specific problems.

Graphs We select different input datasets (Table 6) from Net-
work Repository [133], considering biological (bio-), interaction
(int-), brain (bn-), economics (econ-), social (soc-), scientific-
computing (sc-), discrete-math (dimacs-), and wiktionary (edit-)
networks. We pick graphs with different structural properties
(low/high density, small/large maximum degree, low/high degree
distribution skew, etc.).

Biological. Gene functional associations: (bio-SC-GT , 1.7K, 34K), (bio-CE-PG,
1.8K, 48K), (bio-DM-CX , 4K, 77K), (bio-DR-CX , 3.2K, 85K), (bio-HS-LC,
4.2K, 39K), (bio-SC-HT , 2K, 63K), (bio-WormNetB3, 2.4K, 79K). Human gene
regulatory network: (bio-humanGene, 14K, 9M) (large),
(bio-mouseGene, 45K, 14.5M) (large).
Interaction. Animal networks: (int-antCol3-d1, 161, 11.1K), (int-antCol5-d1,
153, 9K), (int-antCol6-d2, 165, 10.2K), (intD-antCol4, 134, 5K). Human contact
network: (int-HosWardProx, 1.8k, 1.4k). Users-rate-users: (int-dating, 169K, 17.3M)
(large), (edit-enwiktionary, 2.1M, 5.5M) (large).
Brain. (bn-flyMedulla, 1.8K, 8.9K), (bn-mouse, 1.1K, 90.8K).
Economic. (econ-beacxc, 498, 42K), (econ-beaflw, 508, 44.9K),
(econ-mbeacxc, 493, 41.6K), (econ-orani678, 2.5K, 86.8K).
Social. Facebook: (soc-fbMsg, 1.9k, 13.8k). Orkut: (3.1M, 117M) (large),
Scientific computing. (sc-pwtk, 217.9K, 5.6M) (large),
Discrete math. (dimacs-c500-9, 501, 112K),

Table 6: Considered graphs[133]. For each graph, we show its “(#vertices, #edges)”.

Tackling Long Simulation Runtimes Most benchmarks use
relatively small graphs because (1) we run cycle accurate simula-
tions, tracing all memory accesses, which is very time-consuming,
and (2) the considered algorithms are computationally hard and
even software codes use graphs much smaller than those used with
algorithms such as PageRank [44, 51]. Yet, even this is often not
enough to enable finishing simulations of algorithms such as Bron-
Kerbosch. Thus, we usually also pre-specify a number of graph
patterns to be found. Past work analogously handled long simula-
tions graph algorithms [6] such as PageRank (limiting #iteration).

PerformanceMeasures & Summaries:We focus on plain run-
times as recommended for parallel codes [73] as speedup may be
misleading because it is higher on unoptimized baselines. How-
ever, for overview, we also summarize speedups (following [73]), i.e.,
we provide (1) speedups of average runtimes (“speedup-of-avgs”),
and (2) geometric means of speedups of all data points (“avg-of-
speedups”).

9.2 Discussion of Results
Comparison to Hand-Tuned Algorithms We first analyze run-
times with all available cores, comparing SISA set-centric variants

Table 6: Considered graphs[133]. For each graph, we show its “(#vertices, #edges)”.

Tackling Long Simulation Runtimes Most benchmarks use
relatively small graphs because (1) we run cycle accurate simula-
tions, tracing all memory accesses, which is very time-consuming,
and (2) the considered algorithms are computationally hard and
even software codes use graphs much smaller than those used with
algorithms such as PageRank [44, 51]. Yet, even this is often not
enough to enable finishing simulations of algorithms such as Bron-
Kerbosch. Thus, we usually also pre-specify a number of graph
patterns to be found. Past work analogously handled long simula-
tions graph algorithms [6] such as PageRank (limiting #iteration).

PerformanceMeasures & Summaries:We focus on plain run-
times as recommended for parallel codes [73] as speedup may be
misleading because it is higher on unoptimized baselines. How-
ever, for overview, we also summarize speedups (following [73]), i.e.,
we provide (1) speedups of average runtimes (“speedup-of-avgs”),
and (2) geometric means of speedups of all data points (“avg-of-
speedups”).

9.2 Discussion of Results
Comparison to Hand-Tuned Algorithms We first analyze run-
times with all available cores, comparing SISA set-centric variants
to non-set-based and set-based hand-tuned parallel baselines that
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(3) SISA speedup over set-based ("avg-of-speedups"), (4) SISA speedup over set-based ("speedup-of-avgs"),

In each plot, 
we show 
respectively: "avg-of-speedups" and "speedup-of-avgs" are different ways to derive summaries, explained at the end of Section IX.A
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Figure 6: Run-timeswith full parallelism. The red line cuts off of long simulation runtimes
for readability (the bars reaching the line havemuch larger runtimes). No bar indicates the
timeout of the respective baseline (>24h). The results for cl-jac (clustering based on the
Jaccard coefficient) are very similar to those that use other coefficients and for link predic-
tion as well as vertex similarity. All 32 cores are used. Acronyms are stated in “Comparison
Targets: Hand-Tuned Algorithms”.

all benefit from high-bandwidth storage. The results are in Figure 6.
SISA is almost always the fastest by a large margin of at least 2×,
often more than 10× (than non-set schemes). The differences vary
depending on the processed graphs and the considered problem.
Gains are usually larger on graphs with large maximum degrees,
such as brain graphs, where SISA-PUM is usedmore often to directly
process sets inside DRAM, reducing the latency. Such graphs are
prevalent in many computational domains [133], and this is the
case for the majority of considered datasets.

Algorithmic vs. Architectural Speedups We also observe
speedups from using only set-centric formulations (over non-set-
based variants). Namely, speedups of “_set-based” schemes over
the “_non-set” ones indicate gains from purely algorithmic (set-
centric) changes, while speedups of “_sisa” schemes over the
“_set-based” indicate gains only from architectural changes (i.e.,

from using PIM). First, the differences between _set-based and
_non-set heavily depend on the targeted mining algorithm. These
speedups are particularly visible for more complex algorithms such
as mc, with multiple nested loops and/or recursion. Packaging dif-
ferent parts of such algorithms into, e.g., set intersections, and
being able to control the used operation variant (e.g., merging
based on streaming) helps to utilize features such as high sequential
bandwidth. Contrarily, for certain simpler schemes such as clus-
tering, the very tuned _non-set baseline outperforms _set-based
(while still falling short of _sisa). Second, the difference between
_set-based and _sisa depend more on the used graph. Here, in
many cases, _sisa is only marginally faster than _set-based, be-
cause the graph structure (e.g., sizes of neighborhoods) favor us-
ing SAs rather than DBs, diminishing benefits from SISA-PUM
(e.g., for econ- graphs) and equalizing the differences because both
_set-based and _non-set take advantage from the high band-
width setting. In other cases (e.g., bio-HS-LC), more vertices have
large enough degrees to benefit from DBs and low latencies of
SISA-PUM.

Labels We also analyze labeled SI. Most often, labeled graphs
are faster to process. Despite more memory accesses, the labels
form additional constraints, which eliminates some recursive calls
earlier, resulting in performance gains.

Scalability We also analyze how run-times change when vary-
ing numbers of threads T , for a fixed graph size (“strong scal-
ing”), and when increasing T proportionally to the graph size
(“weak scalability”). To fix the used graph model, we use Kronecker
graphs [99] and we vary the number of edges/vertex. SISA main-
tains its speedups, but they become less distinctive whenT is small.
This is expected because fewer threads exert less pressure on the
memory subsystem, and there is overall smaller potential from
using PIM in SISA.

Large Graphs We execute SISA on several large graphs, see
Figure 8. Runtime benefits from SISA and the set-centric formula-
tions are similar to those in smaller graphs in Figure 6. The only
two graphs where SISA and non-SISA set baselines are comparable,
are sc-pwtk and soc-orkut. This is because these networks, due to
their origin (social and scientific) do not have large cliques or very
dense clusters (unlike, e.g., genome graphs), somewhat lowering
SISA benefits.

Comparison to Other Paradigms We compare SISA set-
centric algorithms to neighborhood expansion and relational al-
gebra paradigms, representing frameworks such as Peregrine or
RStream, and accelerators such as GRAMER or TrieJax. Peregrine
is able to express only listing k-cliques and subgraph isomorphism,
and maximal clique listing in a limited way (i.e., it does not of-
fer a native scheme for MC and we implemented it by iterating
over possible clique sizes and listing maximal cliques of each size).
RStream can only find k-cliques. In each case, SISA baselines are
much faster: 10-100× than Peregrine (and more than 1,000× for
mc due to Peregrine’s inability to natively support mc), and more
than 100× for RStream. This is because the underlying paradigms
focus on programmability in the first place, sacrificing performance,
while in SISA we start with tuned graph algorithms and only then
restructure them with the set-centric paradigm.

Sensitivity Analysis & Design Exploration We investigate
the impact from varying SISA parameters.
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Graphs often used in graph mining have often very heavy tails. Graphs used also outside mining have much lighter (or no) tails.

(a) Degree distribution analysis
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Figure 7: Figure 7a: Differences between degree distributions in graphs used mostly in graph mining and the ones used also outside graph mining (on the right). Figure 7b: Sensitivity analysis: the percentage
of neighborhoods stored as dense bitvectors vs. different thresholds for using the galloping or the merging intersection.
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Figure 8: Run-times for large graphs. 8 cores are used.

SCU cache Not using the SCU cache lowers performance by
≈1.5× for T = 1 and ≈0.05-0.1× for T = 32. The lower performance
for highT is because, with more threads executing set operations, it
becomesmore difficult to ensure high hit ratio. Overall, the behavior
of the SCU cache is similar to that of other such units such as L1,
including varying cache parameters such as size.

PNM vs. PUM & Sparse/Dense Neighborhoods PNM and
PUM are synergistic in SISA. PNM cores handle sparse neighbor-
hoods and SAs well, as they offer low latency and bandwidth pro-
portionality. PUM is well-suited for large neighborhoods stored
as DBs (common in considered graphs due to their degree distri-
bution skews). Yet, SISA-PUM adds overheads when using it for
sparse sets due to low utilization of very sparse rows. Thus, it is
relevant to not choose the DB bias parameter to be too high. We
find that 0.4 works well for most processed graphs. We illustrate
this in Figure 7b, where we analyze how the performance changes
when varying the fraction of largest neighborhoods stored as DBs.
Smallest and largest fractions that correspond to using only SISA-
PNM or only SISA-PUM, while technically feasible, give slowest
runtimes. We also vary the “galloping threshold”, i.e., the relative
difference between two sets that causes the set operation to switch
to the galloping variant. For example, the value of 5 indicates that
galloping is used if any of the two sets is at least 5× larger than the
other one. While this threshold influences performance, the general
pattern stays the same.

We also analyze the impact from degree distributions of
datasets, see Figure 7a. Graphs often used in graph mining, such
as biological networks, that SISA focuses on, have often very heavy
tails. This implies many large neighborhoods and very dense large
clusters, benefiting from SISA-PUM. For example, the human genome
graph hasmany vertices connected tomore than 30% of all other ver-
tices. Other graphs such as social networks have much lighter tails,

cf. soc-orkut and sc-pwtk in Figure 7a. This is because these net-
works, due to their origin (social, scientific) do not have large cliques
or very dense clusters. Such graphs benefit less from SISA-PUM.
Still, using SISA-PNM enables high performance, outperforming
tuned non-set-based baselines, cf. Figure 8.

Load balancing Figure 9a illustrates total fractions of time dur-
ing which each parallel thread is stalled when executing a given
algorithm. SISA stall times are low because its design implicitly
tackles two types of load imbalance. First, SISA’s performance mod-
els enable adaptive selection of the best variant of a set algorithm
to be executed for any two sets. This minimizes load imbalance
from processing two sizes that differ a lot in sizes. Second, load
imbalance due to processing imbalanced pairs of sets (i.e., two very
small and two very large sets) is alleviated by the fact that very
large pairs of sets are processed with very fast SISA-PUM.

SCU cache: shared vs. private We also explore sharing the
SCU cache among all the cores. While possibly increasing the hit
rate, a single shared cache has higher access latency. This has a
small (<1%) yet noticeable slowdown effect in our simulations. A
potential remedy would be to include multiple SCU cache levels. To
keep the core logic simple, we do not explore it further, and leave
it for future work.

We also show that the reduced simulation runtimes do not ar-
tificially eliminate load imbalance. We gather traces of executed
set operations in full vs. partial simulation executions, and we plot
histograms of the sizes of processed sets, see Figure 9b. In both
types of executions, we encounter large sets which are the primary
source of load imbalance.

SISA Limitations For some graphs with small maximum de-
grees (e.g., soc-fbMsg) in Figure 6, SISA speedups are smaller, or
even (in the extreme cases) result in slowdowns. This is because
the benefits from SISA-PUM, or from the automatic selection of the
most beneficial set operation variant, are out-weighted by having
to process too many large bitvectors. This effect rare, and it can be
alleviated by reducing the number of neighborhoods stored as DBs.
In this case, the performance of SISA variants gradually converges
towards that of standard CSR based set-centric algorithms. We plan
on addressing it with advanced bitvector representations.

10 RELATEDWORK
Related graph processing paradigms (Table 1) and software efforts
are described in Section 1 [18, 18, 21, 107, 135]. We now briefly
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Reference /
Accelerator

Prob. Key memory
mechanism

Pattern M. Learning “Low-c.” is xl ab
mckcds si vs lp cl avbf pr cc

[Pi] GaaS-X [31] SpMV [e] CAM/MAC é é é é é é é é   é
[Pi] GraphiDe [10] low-c [e] DRAM é é é é  é é é    é
[Pc] Spara [181] ver-c [e] ReRAM é é é é é é é é   é  é
[Pc] GraphQ [183] ver-c [e] HMC é é é é é é é é   é  é
[Pc] GraphS [11] low-c [e] SOT-MRAM é é é é  é é é   é é é
[Pc] RAGra [77] ver-c [e] 3D ReRAM é é é é é é é é   é  é
[Pc] GRAM [182] ver-c [e] ReRAM é é é é é é é é   é  é

[Pc] GraphR [149] SpMV [e] ReRAM é é é é é é é é   é
[Pc] GraphP [177] ver-c [e] HMC é é é é é é é é   é é
[Pc] Tesseract [6] low-c [e] HMC é é é é é é é é   é
[Pc] PIM-Enabled [7] low-c [e] HMC é é é é é é é é  
[Pc] Gao et al. [54] low-c 3D DRAM é é  é é é é é   é  é
[A] IntersectX [127] pattern m. [e] cache é  é é é é é é é
[A] Gramer [176] pattern m. DRAM, cache é  é é é é é é é é  é
[A] TrieJax [89] joins DRAM, LLC é  é é é é é é é é é
[A] HyGCN [174] GCN eDRAM é é é é  é é é  é
[A] Outerspace [124] SpMSpM HBM é  é é é é é é   é é é
[A] Domino [169] low-c on-chip buffers é  é é é é é é   é é é
[A] GraphPIM [120] low-c [e] HMC é  é é é é é    é
[A] Graphicionado [65] ver-c [e] eDRAM é é é é é é é é   é é
[A] Ozdal et al. [123] ver-c [e] caches é é é é é é é é   é
[A+Pc] EnGN [68] GNN [e] HBM é é é é  é é  é é é é
[A+Pc] OMEGA [2] low-c [e] Scratchpads é  é é é é  é   é é

[A+Pc+M] GraphH [43] ver-c [e] HMC é é é é é é é é   é  é

[F+Pc] HRL [55] ver-c [e] 3D DRAM é é é é é é é é   é  é

[Pc+Pi] SISA [This work]Graph miningPIM  é é é

Table 7: Comparison of SISA to graph-related accelerators, focusing on supported graph
mining problems and offered architecture elements. “”: Support / significant focus. “”:
Partial support / some focus. “é”: no support / no focus. Addressed problems: see Table 1. Graph
problems and algorithms: as in Table 1. Considered architecture and stack elements: “is”:
an ISA, or its extensions, “xl”: a cross-layer design, “ab”: a programming paradigm Classes of ac-
celerators: [Pi]: in-situ PIM, [Pc]: near memory PIM (e.g., logic layers), [A]: ASIC, FPGA designs
and little related memory hierarchy enhancements are excluded. [e] focus on extensions and mod-
ifications to the established (already proposed) HW technology, Note that the generality of SISA
comes from harnessing all basic set algebra operations.

analysis of existing hardware accelerators as well as ISA designs
for graph processing, see Table 7. The analysis indicates that SISA
offers the only hardware acceleration for a broad family of prob-
lems such as maximal clique listing or clustering. The closest de-
signs [89, 127, 176] only focus on selected pattern matching prob-
lems. Works orthogonal to SISA include HW accelerated dynamic
(time-evolving) graph analytics [27, 28, 69], or external memory
HW accelerated graph processing [47, 87, 110]. One could use the
latter as a SISA backend for external memory set instructions; we
leave details for future work.

Sets are used in different graph algorithms, to simplify opera-
tions on selected data structures [21, 26, 92, 114, 125, 138, 143]. For

example, the BFS frontier can bemodeled as a set. Here, SISA’s main
contribution is not to simply use set notation. Instead, from the
algorithmic perspective, SISA is the first design that (1) uses set op-
erations as the primary building blocks, which break down complex
graph mining algorithms into simple units of parallel execution,
and (2) identifies the “appropriate” set operations (i.e., operations
that are easily accelerated with PIM) and reformulates selected
algorithms so that they use such operations, cf. Table 2.

SISA vs. AutoMine [112] AutoMine [112] uses set operations
to express finding graph patterns. It focuses on automatic compi-
lation of set schedules into efficient code. This part is orthogonal
to our work and AutoMine could easily be combined with SISA to,
for example, generate code based on SISA’s set-centric formula-
tions. Note that SISA’s set formulations are superior to those of
AutoMine, because SISA (1) supports all set operations, including
non anti-monotonic ones (not just intersection and difference), (2) it
expresses whole algorithms with the set building blocks (not just
pattern generation schedules), and (3) it targets broad graph mining
(not just pattern matching).

SISA shows how to seamlessly integrate PUM and PNM capa-
bilities in a single system. They work synergistically and produce
significantly better results than working separately.

11 DISCUSSION AND CONCLUSION
We develop the first hardware acceleration for broad graph mining.
First, we offer a set-centric programming paradigm, where one
identifies and exposes set operations in graph mining algorithms.
This enables competitive time complexities and succinct formu-
lations. We support labeled graphs and non anti-monotonic set
operations [89, 112, 127, 176].

Second, the set-centric algorithms are mapped to SISA, a small
yet expressive “set-centric” ISA extension for graph mining. SISA
could be extended with CISC-style set instructions that accept
multiple arguments (e.g., 𝐴1 ∩ ... ∩𝐴𝑙 ) to facilitate optimizations
such as vectorization with loop unrolling. Due to the generality of
set algebra, SISA can be used for problems beyond graph mining.
Third, while we pick in-situ and logic layer PIM for hardware accel-
eration, SISA’s set algebra interface could easily use other hardware
backends, for example a GPU backend for fast SIMD-based set in-
tersections [67], FPGAs [22], or even execution in caches [3, 119].
We leave this for future work.

Finally, our cross-layer architecture could also be extended in
other directions, for example by providing compiler support for
generating SISA programs from set-centric formulations. Here, one
could use, e.g., AutoMine’s [112] compiler generated schedules as
input to some SISA programs.
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Table 7: Comparison of SISA to graph-related accelerators, focusing on supported graph
mining problems and offered architecture elements. “

vertex 𝑣 can only access the neighbors of 𝑣 . While this suffices
for algorithms such as PageRank, graph mining often requires
non-local knowledge of the graph structure [39]. Obtaining such
knowledge in the vertex-centric paradigm is hard or infeasible,
as noted by Kalavri et al. [88] (“(...) graph algorithms, like trian-
gle counting, are not a good fit for the vertex-centric model” ) and
many others [93, 103, 136, 172]. Similar arguments apply to other
paradigms such as GraphBLAS [90, 134] and to frameworks such
as Ligra [145]. They do not support many graph mining problems,
and we discuss in Table 1 and Section 4.

Several graph mining software frameworks (Peregrine [80] and
others [33, 35, 48, 78, 86, 111, 112, 156, 171, 173, 179]) were proposed.
Unfortunately, they (1) focus exclusively on only a few graph pat-
tern matching problems, and (2) usually do not provide theoretical
guarantees on total work [24] (unlike parallel graph algorithms
for specific mining problems). Overall, there is a need for a graph
mining paradigm that would (1) enable expressing many graph
mining problems, and (2) offer competitive theoretical work guar-
antees [24].

Moreover, past works illustrated that graph mining algorithms
are memory bound [37, 50, 80, 175, 178]. This is because these algo-
rithms generate and heavily use large intermediate structures, but,
similarly to algorithms such as PageRank, they are not compute-
intensive [51, 80, 176]. We show this in Figure 1: When we increase
the number of parallel threads, runtime decrease flattens out and
stalled CPU cycle count increases. This motivates using processing-
in-memory (PIM) to obtain the much needed speedups in graph
mining. While PIM is not the only potential solution for hardware
acceleration of graph mining, we select PIM because it (1) rep-
resents one of the most promising trends to tackle the memory
bottleneck [56, 117] outperforming various other approaches [141],
(2) offers well-understood designs [118], and (3) brings very large
speedups in simple graph algorithms such as BFS or PageRank (see
more than 15 works in Table 7). Yet, graph mining algorithms are
much more complex than PageRank, BFS, and similar: they employ
deep recursion, create many intermediate data structures with non-
trivial inter-dependencies, and have high load imbalance [51, 171].
As we show in Section 10, no existing HW design targets broad graph
mining (i.e., both graph pattern matching and graph learning), or
explores PIM techniques for accelerating broad graph mining.

To address all these issues, we propose a novel design that is high-
performance (empirically and theoretically), applicable to many
graph mining problems, and easily amenable to PIM acceleration.
We first observe that large parts of many graph mining algorithms
can be expressed with simple set operations such as intersection
∩ or union ∪, where sets contain vertices or edges. This drives
our set-centric programming paradigm, in which the developer
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Figure 1: Runtimes and stalled CPU cycle count, for various numbers of parallel threads,
using the Bron-Kerbosch algorithm for listing maximal cliques in different input graphs
(Section 9 describes our evaluation methodology).

Abstraction or
programming model

A? Pattern M. Learning “Low-c.” Remarks
mckc ds si vs lp cl av tc bf cc pr

Vertex-centric (ver-c) é é é é é é é é é ∗    ∗High comm. costs
Edge-centric (edge-c) é é é é é é é é é ∗ ∗ ∗  ∗High work and depth
Array maps é é é  é é é ∗é     ∗Only low-diameter decomp.

GraphBLAS [90]  (L)é é é ∗ é é é é   †

∗The only existing SI scheme
only uses trees as patterns [34]

Neural message passing,
graph networks [13, 62]  (L)é é é †     é é é

†GNNs are as powerful as the
Weisfeiler-Lehman test [170].

Pattern matching é ∗ ∗ ∗ ∗ é é é é ∗é é é ∗No bounds, low performance
Joins [36]  (R)é ∗ ∗é ∗ ∗ ∗é ∗é ∗ ∗ ∗No bounds, low performance

Set-Centric / SISA  (S)          é é é

Table 1: Comparison of the set-centric programming approach and SISA to existing graph
processing abstractions/programmingmodels, focusing on support for selected graphmin-
ing problems (pattern matching, learning), and for “low-complexity” graph problems. A?:
Underlying algebra? L: linear, R: relational, S: set. “”: Support / significant focus. “”: Partial
support / some focus. “é”: no support / no focus. PatternM.: selected graph pattern matching prob-
lems,mc: maximal clique listing, kc:𝑘-clique listing, ds: dense subgraph, si: subgraph isomorphism,
Learning: selected graph learning problems, vs: vertex similarity, lp: link prediction, cl: clustering
or community detection, av: accuracy verification (of link prediction outcomes), “Low-c.”: selected
“low-complexity” problems targeted by vast majority of existing works on graph processing. tc: tri-
angle counting, bf: BFS, cc: connected components, pr: PageRank. The analysis in this table is
extended in Section 10 and Table 7 by detailing specific HW accelerators for graph processing.

identifies sets and set operations in a given algorithm. These set op-
erations are thenmapped to a small and simple yet expressive group
of instructions, offering a rich selection of storage/performance
tradeoffs. These instructions are offloaded to PIM units. We call
these instructions SISA as they form “Set-centric” ISA extensions
that enable a simple interface between numerous graphmining algo-
rithms and PIM hardware. Overall, our cross-layer design consists
of three key elements: a new set-centric programming paradigm
and formulations of graph algorithms (contribution #1), set-centric
ISA extensions with its instructions, implemented set operations,
and set organization (contribution #2), and PIM acceleration (con-
tribution #3).

Overall, we advocate using set algebra as a basis for the design
of graph mining algorithms. Our set-centric paradigm is the first to
use set operations as fundamental general building blocks for both
algorithmic formulations and their execution. Using set algebra
ensures that SISA set-centric algorithms are succinct, applicable to
many problems, and theoretically efficient.

For the in-memory acceleration of SISA, we investigate which
types of PIM are beneficial for which set operations. We process sets
stored as bitvectors using in-situ PIM [57, 118], as offered in Am-
bit [64, 141], ELP2IM [168], DRISA [100], or ComputeDRAM [53],
for highest performance and energy efficiency (“SISA process-
ing using memory” – SISA-PUM). In contrast, while sets stored
as sparse arrays cannot be simply processed in situ with today’s
technology, they can use the high throughput and low latency of
near-memory PIM [57, 104, 118, 122] as offered in the 2D UPMEM
architecture [63, 96] or logic layer of 3D DRAM such as Hybrid
Memory Cube (HMC) [83] (“SISA processing near memory” –
SISA-PNM). For even higher performance, we provide a small
HW controller that selects the best variant of a set instruction to
be executed on-the-fly.

Overall, our results show that graphmining algorithms, although
complex and lacking straightforward parallelism, greatly benefit
from PIM. Our key solution is using parallelism offered by set op-
erations and exposed with the set-centric approach. This solution
harnesses parallelism at the level of bits, DRAM subarrays, and
vaults. We show that SISA-enhanced algorithms are theoretically

”: Support / significant focus. “
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for specific mining problems). Overall, there is a need for a graph
mining paradigm that would (1) enable expressing many graph
mining problems, and (2) offer competitive theoretical work guar-
antees [24].

Moreover, past works illustrated that graph mining algorithms
are memory bound [37, 50, 80, 175, 178]. This is because these algo-
rithms generate and heavily use large intermediate structures, but,
similarly to algorithms such as PageRank, they are not compute-
intensive [51, 80, 176]. We show this in Figure 1: When we increase
the number of parallel threads, runtime decrease flattens out and
stalled CPU cycle count increases. This motivates using processing-
in-memory (PIM) to obtain the much needed speedups in graph
mining. While PIM is not the only potential solution for hardware
acceleration of graph mining, we select PIM because it (1) rep-
resents one of the most promising trends to tackle the memory
bottleneck [56, 117] outperforming various other approaches [141],
(2) offers well-understood designs [118], and (3) brings very large
speedups in simple graph algorithms such as BFS or PageRank (see
more than 15 works in Table 7). Yet, graph mining algorithms are
much more complex than PageRank, BFS, and similar: they employ
deep recursion, create many intermediate data structures with non-
trivial inter-dependencies, and have high load imbalance [51, 171].
As we show in Section 10, no existing HW design targets broad graph
mining (i.e., both graph pattern matching and graph learning), or
explores PIM techniques for accelerating broad graph mining.

To address all these issues, we propose a novel design that is high-
performance (empirically and theoretically), applicable to many
graph mining problems, and easily amenable to PIM acceleration.
We first observe that large parts of many graph mining algorithms
can be expressed with simple set operations such as intersection
∩ or union ∪, where sets contain vertices or edges. This drives
our set-centric programming paradigm, in which the developer

●
●

●
● ● ●0

10

20

30

40

50

1 2 4 8 16 32Number of threads

R
un

tim
e 

[s
]

Input graph
● int−authorship

int−citations
social−Flx
social−Pok

●

●

●

●

●

●

0.1

0.2

0.3

0.4

0.5

1 2 4 8 16 32Number of threads

St
al

le
d 

C
PU

 c
yc

le
s 

[ra
tio

]

Legend:
on the left

Flattening
of speedups Increasing

counts of stalled
CPU cycles

Figure 1: Runtimes and stalled CPU cycle count, for various numbers of parallel threads,
using the Bron-Kerbosch algorithm for listing maximal cliques in different input graphs
(Section 9 describes our evaluation methodology).

Abstraction or
programming model

A? Pattern M. Learning “Low-c.” Remarks
mckc ds si vs lp cl av tc bf cc pr

Vertex-centric (ver-c) é é é é é é é é é ∗    ∗High comm. costs
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Table 1: Comparison of the set-centric programming approach and SISA to existing graph
processing abstractions/programmingmodels, focusing on support for selected graphmin-
ing problems (pattern matching, learning), and for “low-complexity” graph problems. A?:
Underlying algebra? L: linear, R: relational, S: set. “”: Support / significant focus. “”: Partial
support / some focus. “é”: no support / no focus. PatternM.: selected graph pattern matching prob-
lems,mc: maximal clique listing, kc:𝑘-clique listing, ds: dense subgraph, si: subgraph isomorphism,
Learning: selected graph learning problems, vs: vertex similarity, lp: link prediction, cl: clustering
or community detection, av: accuracy verification (of link prediction outcomes), “Low-c.”: selected
“low-complexity” problems targeted by vast majority of existing works on graph processing. tc: tri-
angle counting, bf: BFS, cc: connected components, pr: PageRank. The analysis in this table is
extended in Section 10 and Table 7 by detailing specific HW accelerators for graph processing.

identifies sets and set operations in a given algorithm. These set op-
erations are thenmapped to a small and simple yet expressive group
of instructions, offering a rich selection of storage/performance
tradeoffs. These instructions are offloaded to PIM units. We call
these instructions SISA as they form “Set-centric” ISA extensions
that enable a simple interface between numerous graphmining algo-
rithms and PIM hardware. Overall, our cross-layer design consists
of three key elements: a new set-centric programming paradigm
and formulations of graph algorithms (contribution #1), set-centric
ISA extensions with its instructions, implemented set operations,
and set organization (contribution #2), and PIM acceleration (con-
tribution #3).

Overall, we advocate using set algebra as a basis for the design
of graph mining algorithms. Our set-centric paradigm is the first to
use set operations as fundamental general building blocks for both
algorithmic formulations and their execution. Using set algebra
ensures that SISA set-centric algorithms are succinct, applicable to
many problems, and theoretically efficient.

For the in-memory acceleration of SISA, we investigate which
types of PIM are beneficial for which set operations. We process sets
stored as bitvectors using in-situ PIM [57, 118], as offered in Am-
bit [64, 141], ELP2IM [168], DRISA [100], or ComputeDRAM [53],
for highest performance and energy efficiency (“SISA process-
ing using memory” – SISA-PUM). In contrast, while sets stored
as sparse arrays cannot be simply processed in situ with today’s
technology, they can use the high throughput and low latency of
near-memory PIM [57, 104, 118, 122] as offered in the 2D UPMEM
architecture [63, 96] or logic layer of 3D DRAM such as Hybrid
Memory Cube (HMC) [83] (“SISA processing near memory” –
SISA-PNM). For even higher performance, we provide a small
HW controller that selects the best variant of a set instruction to
be executed on-the-fly.

Overall, our results show that graphmining algorithms, although
complex and lacking straightforward parallelism, greatly benefit
from PIM. Our key solution is using parallelism offered by set op-
erations and exposed with the set-centric approach. This solution
harnesses parallelism at the level of bits, DRAM subarrays, and
vaults. We show that SISA-enhanced algorithms are theoretically

”:
Partial support / some focus. “

Triangle
Counting [146]

𝑘-Clique
Listing [44]

𝑘-Star-Clique
Listing [79]

Maximal Cliques
Listing [26, 51]

Link
Prediction†

Link
Prediction‡

Link
Prediction§

Jarvis-Patrick
Clustering [81]

SISA + merging intersection 𝑂 (𝑚𝑐)⋆ 𝑂 (𝑘𝑚 (𝑐/2)𝑘−2)⋆ 𝑂 (𝑘2𝑚 (𝑐/2)𝑘−1)⋆ 𝑂 (𝑐𝑑𝑛3𝑐/3) 𝑂 (𝑚𝑑) 𝑂 (𝑛2 +𝑚𝑑) 𝑂 (𝑛2)⋆ 𝑂 (𝑚𝑑)
SISA + galloping intersection 𝑂 (𝑚𝑐 log𝑐) 𝑂 (𝑘𝑚 (𝑐/2)𝑘−2 log𝑐) 𝑂 (𝑘2𝑚 (𝑐/2)𝑘−1 log𝑐) 𝑂 (𝑐𝑛3𝑐/3)⋆ 𝑂 (𝑚𝑐 log𝑐)⋆ 𝑂 (𝑛2 +𝑚𝑐 log𝑐)⋆ 𝑂 (𝑛2)⋆ 𝑂 (𝑚𝑐 log𝑑)⋆

Table 5: The impact of set intersection schemes (merging vs. galloping) on the runtime of graph mining algorithms.. “⋆” means that a given SISA variant matches asymptotically the best known
non-set-centric baseline, referenced in the top row. 𝑘 , 𝑐 , and 𝑑 denote the size of the mined pattern, the graph degeneracy (a popular measure of graph sparsity) and the maximum vertex degree, respectively
(other symbols are described in Section 2). Link prediction complexities are valid for the following vertex similarity measures: †Jaccard, Overlap, Adamic Adar, Resource Allocation, Common Neighbors; ‡Total
Neighbors; §Preferential Attachment [98, 121].

also implement labels with a one-hot encoding and use bit vectors.
This would harness SISA-PUM.

SISA Instructions SISA offers instructions that package the
described set operations in all the considered variants, including
instructions that automatically select merge or galloping set al-
gorithms (cf. § 6.2). Finally, SISA also provides instructions for
creating and deleting sets.

Programming Interface (Set Iterators&Wrappers) For pro-
grammability, SISA offers a thin software layer on top of high-level
instructions that consists of abstractions and wrappers. In the for-
mer, we provide an opaque type Set that is a reference to a SISA set;
this enables using C++ iterators over sets, see left side of Figure 3.
In the latter, SISA provides functions that directly map to SISA set
instructions.

RISC-V Compliant Encoding SISA can be integrated with the
RISC-V ISA [166]. To enable modularity and flexibility, SISA’s new
instructions are encoded using the custom opcode set [165]. We
encode the opcode and functionality of custom RISC-V instructions
using bits [31..25] and [6..0], see Figure 5. The former represent the
different SISA instructions (up to 128). The latter are set to 0x16 to
represent the custom characteristic of the instruction. Fields rs1,
rs2, and rd indicate registers with IDs of input sets and the output
set, respectively. In Table 4, we assign ISA codes (bits [31..25]) to
respective instructions. The number of SISA instructions is less
than 20, leaving space for potential new variants.

funct7 rs2 rs1 xd rd opcodexs1 xs2
31 25 24 20 19 15 14 13 12 11 7 6 0

7 5 5 1 1 1 5 7

. 
SISA operation

identifier. Support
for up to 128 
operations

SISA source
operands

Set to "1" if
SISA uses the

register operands

SISA
destination

register

Custom
instruction

opcode

Bit index

#bits:

Figure 5: Encoding of SISA instructions.

7 THEORETICAL ANALYSIS
We now show that SISA-enhanced algorithms are theoretically effi-
cient, i.e., their time complexities match those of hand-tuned graph
mining algorithms. This is enabled by SISA’s ability to control used
set representations and set operations. To show this, we analyze
how varying a used set intersection variant (merge vs. galloping)
impacts the runtime of set-centric algorithms, see Table 5. We focus
on intersection as it is prevalent in considered algorithms. Cru-
cially, all set-centric variants are able to match the competitive time
complexities of considered tuned graph mining algorithms.

8 HARDWARE IMPLEMENTATION
SISA-PUM First, the intersection, union, and difference of sets rep-
resented as DBs are processed with SISA-PUM that relies on in-situ
DRAMbulk bitwise schemes. For concreteness, we pick Ambit [141],

a recent design that enables energy-efficient bulk bitwise opera-
tions fully inside DRAM, by small extensions to the DRAM circuitry
but without any changes to the DRAM interface. However, SISA is
generic and other designs could also be used (e.g., ELP2IM [168],
DRISA [100], ComputeDRAM [53], PCM (Pinatubo) [101]). The key
extension in Ambit (for in-situ processing) is to modify a decoder
for three selected DRAM rows (that share the same set of sense
amplifiers) in such a way that one amplifier connects directly to
three DRAM cells. This enables logical AND and OR over two of
such three rows, immediately computing the result in the third
row (NOT is provided by including a single row of dual-contact
DRAM cells [141]). Importantly for SISA-PUM, only three selected
designated DRAM rows (per single DRAM subarray) are modified
this way. Whenever the running code requests an in-situ mem-
ory operation, Ambit uses a recent RowClone technology [140] to
copy (also in-situ) the rows that store input sets to these two desig-
nated rows, compute the result in-situ, and again use RowClone to
copy the result to the destination (unmodified) DRAM row. Now,
SISA-PUM uses Ambit’s execution model and interface without
any modifications: set intersection and union are processed with
an in-situ AND and OR, respectively. Set difference is processed
using set intersection, along with the well-known set algebra rule:
𝐴 \ 𝐵 = 𝐴 ∩ 𝐵′ [82].

SISA-PNM A set operation with no bulk bitwise processing uses
SISA-PNM that relies on high bandwidth between processing units
and DRAM (as in UPMEM [96], HMC [83], or Tesseract [6]). Adding
or removing an element from a set stored as a DB (𝐴∪ {𝑥}, 𝐴 \ {𝑥})
is conducted with a single DRAM access to a specific memory cell.
Other set operations on SAs that employ streaming or random
accesses are also executed using small in-order cores.

8.1 SCU & Automatizing SISA Decisions
We use a small SISA Control Unit (SCU), cf. Section 3, to automat-
ically decide on (1) selecting the PNM or PUM execution, and (2)
merge or galloping. Once the host core decodes a SISA instruction,
it passes it to the SCU. The SCU further decodes this instruction,
and picks either PNM or PUM to execute the instruction. For de-
ployment, SCU could either be added to the CPU or to the DRAM
circuitry (see the feasibility discussion later in this section), or – to
avoid any HW modifications – it can also be emulated by a single
designated in-order logic layer core. SCU does not implement any
complex logic (e.g., dynamic set modifications), it only decides on
variants of schemes to execute.

SISA-PUM & SISA-PNM First, SCU decides whether to use
SISA-PUM or SISA-PNM for given two sets. This decision is simple
and is based on how sets are represented (this information is stored
in a simple in-memory SM (“set metadata”) structure and possibly
cached in SCU’s cache).

”: no support / no focus.Addressed problems: see Table 1.Graph
problems and algorithms: as in Table 1. Considered architecture and stack elements: “is”:
an ISA, or its extensions, “xl”: a cross-layer design, “ab”: a programming paradigm Classes of ac-
celerators: [Pi]: in-situ PIM, [Pc]: near memory PIM (e.g., logic layers), [A]: ASIC, FPGA designs
and little related memory hierarchy enhancements are excluded. [e] focus on extensions and mod-
ifications to the established (already proposed) HW technology, Note that the generality of SISA
comes from harnessing all basic set algebra operations.

summarize other related areas. First, we conducted an exhaustive
analysis of existing hardware accelerators as well as ISA designs
for graph processing, see Table 7. The analysis indicates that SISA
offers the only hardware acceleration for a broad family of prob-
lems such as maximal clique listing or clustering. The closest de-
signs [89, 127, 176] only focus on selected pattern matching prob-
lems. Works orthogonal to SISA include HW accelerated dynamic
(time-evolving) graph analytics [27, 28, 69], or external memory
HW accelerated graph processing [47, 87, 110]. One could use the
latter as a SISA backend for external memory set instructions; we
leave details for future work.

Sets are used in different graph algorithms, to simplify opera-
tions on selected data structures [21, 26, 92, 114, 125, 138, 143]. For

example, the BFS frontier can be modeled as a set. Here, SISA’s main
contribution is not to simply use set notation. Instead, from the
algorithmic perspective, SISA is the first design that (1) uses set op-
erations as the primary building blocks, which break down complex
graph mining algorithms into simple units of parallel execution,
and (2) identifies the “appropriate” set operations (i.e., operations
that are easily accelerated with PIM) and reformulates selected
algorithms so that they use such operations, cf. Table 2.

SISA vs. AutoMine [112] AutoMine [112] uses set operations
to express finding graph patterns. It focuses on automatic compi-
lation of set schedules into efficient code. This part is orthogonal
to our work and AutoMine could easily be combined with SISA to,
for example, generate code based on SISA’s set-centric formula-
tions. Note that SISA’s set formulations are superior to those of
AutoMine, because SISA (1) supports all set operations, including
non anti-monotonic ones (not just intersection and difference), (2) it
expresses whole algorithms with the set building blocks (not just
pattern generation schedules), and (3) it targets broad graph mining
(not just pattern matching).

SISA shows how to seamlessly integrate PUM and PNM capa-
bilities in a single system. They work synergistically and produce
significantly better results than working separately.

11 DISCUSSION AND CONCLUSION
We develop the first hardware acceleration for broad graph mining.
First, we offer a set-centric programming paradigm, where one
identifies and exposes set operations in graph mining algorithms.
This enables competitive time complexities and succinct formu-
lations. We support labeled graphs and non anti-monotonic set
operations [89, 112, 127, 176].

Second, the set-centric algorithms are mapped to SISA, a small
yet expressive “set-centric” ISA extension for graph mining. SISA
could be extended with CISC-style set instructions that accept
multiple arguments (e.g., A1 ∩ ... ∩Al ) to facilitate optimizations
such as vectorization with loop unrolling. Due to the generality of
set algebra, SISA can be used for problems beyond graph mining.
Third, while we pick in-situ and logic layer PIM for hardware accel-
eration, SISA’s set algebra interface could easily use other hardware
backends, for example a GPU backend for fast SIMD-based set in-
tersections [67], FPGAs [22], or even execution in caches [3, 119].
We leave this for future work.

Finally, our cross-layer architecture could also be extended in
other directions, for example by providing compiler support for
generating SISA programs from set-centric formulations. Here, one
could use, e.g., AutoMine’s [112] compiler generated schedules as
input to some SISA programs.
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