SMASH: Co-designing Software Compression
and Hardware-Accelerated Indexing
for Efficient Sparse Matrix Operations

Konstantinos Kanellopoulos' Nandita Vijaykumar?®! Christina Giannoula!® Roknoddin Azizi'
Skanda Koppula! Nika Mansouri Ghiasi! Taha Shahroodi! Juan Gomez Luna! Onur Mutlu'-

1ETH Ziirich
ABSTRACT

Important workloads, such as machine learning and graph analytics
applications, heavily involve sparse linear algebra operations. These
operations use sparse matrix compression as an effective means to
avoid storing zeros and performing unnecessary computation on
zero elements. However, compression techniques like Compressed
Sparse Row (CSR) that are widely used today introduce significant
instruction overhead and expensive pointer-chasing operations to
discover the positions of the non-zero elements. In this paper, we
identify the discovery of the positions (i.e., indexing) of non-zero
elements as a key bottleneck in sparse matrix-based workloads,
which greatly reduces the benefits of compression.

We propose SMASH, a hardware-software cooperative mecha-
nism that enables highly-efficient indexing and storage of sparse
matrices. The key idea of SMASH is to explicitly enable the hard-
ware to recognize and exploit sparsity in data. To this end, we devise
a novel software encoding based on a hierarchy of bitmaps. This
encoding can be used to efficiently compress any sparse matrix,
regardless of the extent and structure of sparsity. At the same time,
the bitmap encoding can be directly interpreted by the hardware.
We design a lightweight hardware unit, the Bitmap Management
Unit (BMU), that buffers and scans the bitmap hierarchy to per-
form highly-efficient indexing of sparse matrices. SMASH exposes
an expressive and rich ISA to communicate with the BMU, which
enables its use in accelerating any sparse matrix computation.

We demonstrate the benefits of SMASH on four use cases that
include sparse matrix kernels and graph analytics applications. Our
evaluations show that SMASH provides average performance im-
provements of 38% for Sparse Matrix Vector Multiplication and 44%
for Sparse Matrix Matrix Multiplication, over a state-of-the-art CSR
implementation, on a wide variety of matrices with different char-
acteristics. SMASH incurs a very modest hardware area overhead
of up to 0.076% of an out-of-order CPU core.

KEYWORDS

sparse matrices, compression, hardware-software cooperation, ac-
celerators, memory, efficiency, specialized architectures, linear al-
gebra, graph processing

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MICRO-52, October 12-16, 2019, Columbus, OH, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6938-1/19/10...$15.00
https://doi.org/10.1145/3352460.3358286

Carnegie Mellon University

National Technical University of Athens

ACM Reference Format:

Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Giannoula, Ro-
knoddin Azizi, Skanda Koppula, Nika Mansouri Ghiasi, Juan Gomez Luna,
Taha Shahroodi and Onur Mutlu. 2019. SMASH: Co-designing Software
Compression and Hardware-Accelerated Indexing for Efficient Sparse Ma-
trix Operations. In The 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO-52), October 12-16, 2019, Columbus, OH, USA.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3352460.3358286

1 INTRODUCTION

Sparse linear algebra operations are widely used in modern applica-
tions like recommender systems [33, 49, 61], neural networks [29,
50], graph analytics [8, 12], and high-performance computing [10,
20, 24, 25, 34]. The matrices involved in these operations are very
large in size and highly sparse, i.e., the vast majority of the elements
are zeros. For example, the matrices that represent Facebook’s and
YouTube’s social network connectivity contain 0.0003% [75] and
2.31% [45] non-zero elements, respectively. These highly sparse
matrices lead to significant inefficiencies in both storage and com-
putation. First, they require an unnecessarily large amount of stor-
age space, which is largely occupied by zeros. Second, computation
on highly sparse matrices involves a large number of unnecessary
operations (such as additions and multiplications) on zero elements.
The traditional solution to these inefficiencies is to compress the
matrix and store only the non-zero elements, and then operate only
on the non-zero values.

Prior works take two major approaches to designing such com-
pression schemes. The first approach is to devise general compres-
sion formats or encodings [38, 44, 53, 68, 72, 86, 89, 93], such as
CSR [53], COO [72], BCSR [38], and CSR5 [53]. Such formats es-
sentially store the non-zero elements and their positions within
the matrix using additional data structures and different encodings.
Such encodings are general in applicability and are highly-efficient
in storage, with high compression ratios. However, this approach in-
volves repositioning and packing the non-zero values in the matrix,
which leads to significant computation overheads that diminish the
overall benefit. Determining the positions of the non-zero elements
in the compressed encoding (i.e., indexing) requires a series of
pointer-chasing operations in memory that, as we demonstrate, are
highly inefficient in modern processors and memory hierarchies.

The second approach taken by prior work is to leverage a cer-
tain known structure in a given type of sparse matrix to avoid
the cost of discovering the non-zero regions of the sparse ma-
trix [7, 16, 30, 41, 42, 46, 77]. For example, the DIA format [7]
is highly effective in matrices where the non-zero values are con-
centrated along the diagonals of the matrix. Specializing the com-
pression scheme to patterns in the sparsity can be efficient in both
computation and storage but it is highly specific to certain types of

https://doi.org/10.1145/3352460.3358286
https://doi.org/10.1145/3352460.3358286

matrices and inapplicable when the structure and extent of sparsity
are not known a priori.

Our goal in this work is to enable efficient and general sparse
matrix computation with a technique that satisfies three major re-
quirements: 1) high computation and storage efficiency by storing
and operating on only non-zero elements; 2) minimal overheads
from the compression scheme (e.g., efficient discovery of non-zero
elements) and 3) generality and applicability to any sparse matrix,
regardless of its structure or the extent of its sparsity.

Our key idea is a new hardware-software co-design where we
enable the hardware to recognize and exploit the compression en-
coding used in software for any sparse matrix. This allows us to
add hardware support for highly-efficient storage and retrieval of
non-zero values in sparse matrices, avoiding the overheads of soft-
ware indexing (requirement 2). Our software encoding is designed
to maintain low storage requirements (requirement 1) and be gen-
erally applicable to any sparse matrix without any assumption of
structure or extent of sparsity (requirement 3).

We propose SMASH (Sparse MAtrix Software/Hardware), a gen-
eral hardware-software cooperative mechanism that efficiently com-
presses and operates on sparse matrices. The key construct behind
SMASH is the use of efficiently encoded hierarchical bitmaps to
express sparsity, where each bit represents a region of non-zero val-
ues. These bitmaps are recognized by both hardware and software.
On the software side, sparse matrices of any form are flexibly en-
coded using our hierarchical bitmap representation. SMASH adapts
to each matrix’s sparsity characteristics by supporting multiple
compression granularities throughout the bitmap hierarchy. On
the hardware side, the bitmap representation allows us to use a
lightweight hardware unit, the Bitmap Management Unit (BMU),
to perform highly-efficient scans of the bitmap hierarchy. The BMU
hardware enables low-cost indexing (that avoids expensive pointer-
chasing lookups) and efficient sparse matrix computation.

To enable wide applicability, SMASH exposes five new instruc-
tions that enable the software to communicate with the Bitmap
Management Unit. The new instructions enable efficient lookup of
non-zero matrix regions, and are sufficiently rich to express a wide
variety of operations on any type of (sparse) matrix.

We evaluate SMASH on four use cases: two sparse matrix kernels,
Sparse Matrix Vector Multiplication (SpMV) and Sparse Matrix-
Matrix Multiplication (SpMM), as well as two graph analytics ap-
plications, PageRank and Betweenness Centrality (BC). For our
experiments, we use a collection of sparse matrices with varying
structure and sparsity characteristics [19]. We compare SMASH
to two state-of-the-art compression formats, CSR [53] and BCSR
[38]. We find that SMASH improves average performance by 41.5%
for SpMV and SpMM, across 15 matrices and by 20% for PageRank
and BC, compared to a state-of-the-art CSR implementation [40].
We also compare the software-only version of SMASH against two
state-of-the-art sparse matrix frameworks [1, 40] on a real system.
We find that even with no hardware support, SMASH’s bitmap
encoding outperforms a state-of-the-art CSR implementation [40].

In this paper, we make the following key contributions:

e We show that discovering the positions of non-zero elements
(indexing) is a key bottleneck in sparse matrix computation.
We demonstrate that efficient indexing can boost the perfor-
mance of sparse matrix operations significantly.

e We introduce SMASH, a hardware-software cooperative
mechanism that enables the hardware to recognize and ex-
ploit the compression encoding used in software. SMASH
consists of 1) a novel software encoding that uses a hierar-
chy of bitmaps to efficiently compress sparse matrices and
2) hardware support to enable highly-efficient indexing of
sparse matrices that are compressed using SMASH’s soft-
ware encoding.

e We show how SMASH can efficiently compress sparse matri-
ces with diverse structure and sparsity characteristics using
the hierarchical bitmap encoding. We design and demon-
strate the effectiveness of the Bitmap Management Unit
(BMU) that efficiently buffers and scans the bitmap hier-
archy in hardware to identify non-zero regions in the matrix.
We introduce an expressive ISA that enables the flexible use
of SMASH in a wide variety of sparse matrix operations.

e We evaluate SMASH on important sparse matrix kernels and
graph analytics applications using a collection of matrices
with diverse structure and sparsity. We find that SMASH
provides significant performance improvements compared
to state-of-the-art CSR implementations while incurring a
very modest area overhead in a modern out-of-order CPU.

2 MOTIVATION

Sparse matrix operations are widely used in a variety of applications
including sparse linear algebra [39, 69], graph processing [8, 12],
convolutional neural networks (CNNs) [50], and machine learn-
ing (ML) 33, 49, 61, 97]. These applications involve matrices with
very high sparsity, i.e., a large fraction of zero elements. Using a
compression scheme is a straightforward approach to avoid unnec-
essarily 1) storing zero elements and 2) performing computations
on them. To this end, a variety of sparse matrix representation
formats (e.g., [38, 44, 53, 68, 72, 86, 89, 93]) have been proposed to
compress the sparse matrix. The most widely used state-of-the-art
format is Compressed Sparse Row (CSR) [53]. In this section, we
describe the CSR format and demonstrate its inefficiency.

2.1 Compressed Storage Formats

The Compressed Sparse Row (CSR) format [53] is widely used in
many libraries that involve sparse matrix operations [1, 23, 40, 87,
92]. It consists of three one-dimensional arrays: row_ptr, col_ind,
and values. Given an M X N matrix, the row_ptr array is used
to store (and determine) the number of non-zero elements per row;
the col_ind array indicates the column indices of the non-zero ele-
ments; and the values array stores the values of only the non-zero
elements. Discovering the position of a non-zero element in row i
requires streaming through col_ind from col_ind[row_ptr[i]]
up to col_ind[row_ptr[i+1]] to discover its column index in the
row. Figure 1 illustrates an example of a compressed matrix using
the CSR format. In this example, in order to discover the non-zero
elements of row 1 (i.e., second row from the top) of A, we search in
col_ind starting from index col_ind[row_ptr[1] == 1] up to
col_ind[row_ptr[2] == 3].

A variant of CSR is Compressed Sparse Column (CSC). CSC
stores the elements in column-major order instead of row-major.
The col_ptr array is used to store (and determine) the number of
non-zero elements per column, the row_ind array holds the row
indices of the non-zero elements, and the values array stores the
values of the non-zero elements themselves.

3.2 00 0.0 0.0

row_ptr: [o]1]3]4]é]
12 00 42 00)
A=| 40 00 00 51 | colind: [ofol2[s]o]1]
values: [32]12]a2[51]53[33]

Figure 1: Compressed Sparse Row format for a 4 X 4 matrix
with 6 non-zero elements. We count the number of non-zero
elements of row i by computing (row_ptr[i+1]-row_ptr[i]).
col_ind holds the column index of each non-zero element.

53 3.3 0.0 0.0

CSR significantly reduces the amount of memory needed to

store a sparse matrix, especially when the matrix is large and its
sparsity is high. However, CSR and schemes with CSR-like struc-
tures [53, 72] have one major requirement: in order to determine
where the non-zero elements are located in the original matrix,
the corresponding indices need to be retrieved from the row_ptr
and col_ind data structures. Accessing these data structures adds
many additional instructions and requires a series of indirect data-
dependent memory accesses. These overheads reduce the benefits
of avoiding the computation on zero elements. Hence, even though
CSR-like formats reduce storage requirements and avoid needless
computation, discovering the positions of the non-zero elements
still is an unsolved challenge that causes performance and efficiency
overheads.
2.1.1 Sparse Matrix Vector Multiplication (SpMV). We consider
the SpMV kernel y := y + Ax, where A is a sparse matrix, x is a
dense vector, and y is the output vector. The naive 2D implemen-
tation of the SpMV kernel involves performing computations on
every element of the two-dimensional matrix A and incurs high
computational and storage overheads. Code Listing 1 presents the
CSR-based implementation. In this case, the algorithm iterates over
only the non-zero elements and avoids unnecessary zero-element
computations. However, it introduces a pointer-chasing operation
when col_ind is loaded and then used as an index to load the
appropriate element of the vector (x[col_ind[j]]). Only after
this complex indexing operation can we perform the multiplication
with the corresponding non-zero element in matrix A (values[j]),
as shown in Line 3 of Code Listing 1.

1. for (i = 0; i < N; i++)
2. for (j = row_ptr[il; j < row_ptr[i+1]; j++)
3. y[i] += values[j] * x[col_ind[j]1]

Code Listing 1: CSR-based SpMV implementation. The col-
umn index of each element is needed to perform the multi-
plication with the x vector.

2.1.2 Sparse Matrix Matrix Multiplication (SpMM). SpMM is tra-
ditionally performed using inner product multiplication [66]. This
results in a series of dot product operations between each row
of the first matrix (A) and each column of the second matrix (B)
to produce the final elements of the result matrix (C). The naive
O(n®) SpMM implementation is prohibitively expensive due to the
high number of unnecessary computation operations on zero el-
ements. A CSR-based implementation of SpMM, shown in Code
Listing 2, avoids such unnecessary computations. In SpMM, ma-
trix A is compressed using CSR and matrix B using CSC. SpMM
iterates over the rows of A and columns of B (Lines 1-2 in Code

Listing 2). For each non-zero element in each row of A, we need
to search through col_ind of matrix A and row_ind of matrix B
to discover which elements should be multiplied during each dot
product. This process is called index matching (Lines 4-6 in Code
Listing 2). Figure 2 presents an example of index matching. We need
to match the positions of the non-zero elements of matrix A at row
0 and the non-zero elements of matrix B at column 0 to perform the
dot product correctly. Given that index matching is performed for
every dot product operation, a CSR-based SpMM implementation
requires a large number of position-finding operations for non-zero
elements and thus the indexing mechanism plays a critical role in
performance and efficiency.

1 for each row of A

2 for each column of B

3. for each non-zero element in row of A

4. k1 = search_in_col_ind_of_A()

5 k2 = search_for_row_ind_of_B()

6 if (k1 == k2)

7 y[il[j] += a_vallk1] * b_vall[k2]

Code Listing 2: CSR-based inner-product SpMM implemen-
tation. Index matching (Lines 4-6) is needed to perform the
multiplication of A’s rows and B’s columns (line 7).

Matrix A

Matrix B Matrix C

Indices match 7T values nxn

values xvulues
oY |
»

Figure 2: Index matching in SpMM. We search col_ind of ma-
trix A and row_ind of matrix B to find indices that match.
Only the indices of the first two elements of A’s Row 0 and
B’s Column 0 match. The remaining two elements in A’s
Row 0 or B’s Column 0 have at least one zero element in
them and their indices do not match.

2.2 Limitations of Existing Compressed

Storage Formats

Compressed storage formats, such as CSR [53], BCSR [38], and
CSR5 [53], are effective at reducing the storage area and avoid-
ing redundant computations on the zero elements of the matrix.
However, as described above, they require additional computation
and indirect memory accesses to find the indices, i.e., the row and
column positions, of non-zero elements. This increases the compu-
tation burden and memory traffic, and hence lowers the potential
gains from the compression scheme.

To understand the impact of this indexing overhead on sparse
matrix processing, we conduct an experiment where we compare
a state-of-the-art CSR implementation to an idealized version in
which accessing the positions of non-zero elements does not incur
any additional computation or memory access. Figure 3 shows the

] CSR Nl Ideal CSR

- —
im W om

0.25 -
SpMatAdd SpMV SpMM

Speedup
- N W

1.00
0.75 -1

Normalized
Instructions

Figure 3: Speedup and normalized number of executed in-
structions of an ideal indexing scheme over the baseline
CSR, averaged across 15 sparse matrices for Sparse Matrix
Addition, SpMV, and SpMM (see Section 6 for methodology).

speedup and executed instruction count of this idealized CSR over
the regular state-of-the-art CSR. As shown in the figure, eliminat-
ing the indexing part of the CSR format significantly improves
performance: 2.21x for Sparse Matrix Addition, 2.13x for SpMV,
and 2.81X for SpMM. These performance benefits come from the
reduced number of executed instructions (by 49%, 42%, 65%, respec-
tively) and from eliminating the expensive pointer-chasing lookups
in memory.

2.3 Other Approaches to Sparse Matrix
Compression

Other approaches [7, 16, 30, 41, 42, 46, 77] aim to maximize the
efficiency of sparse matrix computations by specializing to particu-
lar matrix types and thus trading off generality. These approaches
assume and leverage a specific matrix structure or known pattern.
Saad et al. [70] assume a diagonal matrix and base the compres-
sion scheme around the assumption that all non-zero elements are
only along the matrix diagonal. Kourtis et al. [41] assume matrices
with few unique non-zero elements in designing the compression
scheme. As a result, these approaches are not applicable to a wide
range of important classes of applications like CNNs and graph
processing algorithms, where such assumptions do not hold.

3 SMASH : DESIGN OVERVIEW

We introduce SMASH, a hardware-software cooperative mechanism
that 1) enables highly-compressed storage and avoids unnecessary
computation; 2) significantly reduces the overheads imposed by the
compression scheme itself (i.e., enables efficient discovery of the
positions of non-zero elements); and 3) can be used generally across
a diverse set of sparse matrices and sparse matrix operations.

The key idea of SMASH is to enable the hardware to recognize
and exploit the compression encoding used in software. We devise
a new construct, recognized by both the hardware and software, to
compress sparse matrices efficiently: a hierarchy of bitmaps. Each
bitmap in the hierarchy efficiently encodes sparsity by denoting
the presence/absence of non-zero values in a matrix region using
a single bit. The size of the region varies with the level of the
bitmap in the hierarchy and can be adjusted by software. This
representation does not assume any structure in the matrix and can
be used to efficiently compress a diverse set of sparse matrices. At
the same time, as we demonstrate, it enables designing hardware
that can exploit the known sparsity in data and hence perform
highly-efficient indexing of sparse matrices.

3.1 Design Challenges
Designing SMASH involves addressing two major challenges:

Challenge 1: Efficiently Encoding Bitmaps. Representing
each element in a matrix with a single bit to denote sparsity is
highly-inefficient in terms of storage and computation. Hence, we
need a more efficient bitmap representation that is effective re-
gardless of the matrix sparsity and the location/distribution of the
non-zero values. At the same time, hardware should be able to
flexibly interpret and leverage this bitmap encoding.

Challenge 2: Flexibility and Expressiveness. To express a
diverse set of sparse matrix operations in any application, we need
arich cross-layer interface between the application and the under-
lying hardware that 1) allows the software to flexibly manipulate
and index sparse matrices encoded using our hierarchical bitmap
encoding and 2) enables hardware to easily interpret the sparse
matrix operations in the application and effectively accelerate those
operations.

3.2 SMASH: Key Components

Hierarchy of Bitmaps. To address Challenge 1, we represent
the positions of the non-zero values in any sparse matrix with a
hierarchy of bitmaps. Our system is designed to support a certain
maximum number of levels of the hierarchy. Each level of the hier-
archy encodes the presence of non-zero values with a configurable
compression ratio. This compression ratio is determined by the
software based on the sparsity and distribution of non-zero values
in a given matrix. With this representation, a zero matrix would
require only one bit and one level of the bitmap encoding.

In Figure 4, we show an example with a 3-level bitmap hierarchy.
Each bit in Bitmap-2 encodes the presence of non-zero values in
two consecutive regions in Bitmap-1 (hence, the compression ratio
at this level is two). Bitmap-1, on the other hand, encodes the pres-
ence of non-zero values in four consecutive regions in Bitmap-0
(hence, the compression ratio at this level is four). The selection of
compression ratio at any level is a tradeoff between computation
efficiency and storage efficiency. With a higher compression ratio,
we store fewer bits to encode the presence/absence of non-zero
elements but may perform unnecessary computations on zero ele-
ments. With a lower compression ratio, on the other hand, we can
compute only on non-zero elements, but this would incur a higher
storage overhead.

The non-zero elements of the matrix are kept in a data struc-
ture called the Non-Zero Values Array (NZA). The granularity
at which they are stored in memory depends on the compression
ratio of the lowest level of the bitmap hierarchy (Bitmap-0). As
we show in the example bitmap hierarchy of Figure 4, Bitmap-0
encodes the 4-element non-zero blocks of the NZA using a single
bit (i.e., the compression ratio is 4:1).

Our hierarchical bitmap compression mechanism enables effi-
cient representation of matrices with varying degrees of sparsity
and varying distributions of non-zero elements by adjusting the
bitmap representation granularity (i.e., compression ratios at all
levels of the bitmap hierarchy). It can also be flexibly and efficiently
interpreted by hardware, as we describe next.

Bitmap Management Unit (BMU). We design a new hard-
ware unit that buffers and efficiently scans the bitmap hierarchy to
quickly find the non-zero elements. The BMU is responsible for effi-
ciently and quickly calculating the indices of the non-zero regions

Compression Bitmap Hierarchy
ratio 2:1
\ Ji ﬂ Bitmap-2

(@ A
ratio 4:1 E‘EI@ Bitmap-1
e — Bitmap-0
[GIoToT6Y [110 2] o] [Ola]o]o]
e
......... NZAblockNeAblock NzAblock ___ 41)
g‘ Bitmap-2 Bitmap-1 Bitmap-0 Bitmap-0
(b) g wo[1]1] [1]0]1]0][0]o]2]0][2]0]1]0]0e
Q

E oxro T I T (T W o8 NZA blocks

Figure 4: (a) A three-level bitmap hierarchy with different
compression ratios between the levels. The NZA (Non-Zero
Values Array) stores the non-zero values of the matrix. (b)
We store in memory only the non-zero blocks of the bitmaps
and the NZA.

in the matrix using the bitmap hierarchy. To this end, it caches and
efficiently operates on the bitmaps in the hierarchy. Section 4.2
describes the BMU in detail.

Cross-layer interface. To flexibly accelerate a diverse range
of operations on any sparse matrix, we expose to the software a
rich set of primitives that 1) are general, 2) can control the BMU to
quickly find the locations of non-zero elements, and 3) enable the
processing core to skip unnecessary computations. These primitives
are implemented as five new ISA instructions that are designed to
1) communicate the parameters of a sparse matrix and its bitmap
hierarchy to the BMU, 2) load the bitmaps into the BMU, 3) scan
the bitmaps to determine the location of the non-zero elements in
the matrix, and 4) communicate the <row, column> positions of the
non-zero elements in the original sparse matrix back to the appli-
cation. These instructions are sufficiently expressive to be used for
a diverse set of sparse matrix computations, such as Sparse Matrix
Vector Multiplication, Sparse Matrix Matrix Multiplication, Sparse
Matrix Addition, and more [39, 69], thereby addressing Challenge
2 (Section 3.1). Section 4.3 describes the SMASH ISA primitives in
detail. Section 5 shows examples of how the primitives can be used
in software applications.

4 SMASH: DETAILED DESIGN

In this section, we provide a detailed description of the different
components of SMASH and their operation.

4.1 Software Compression (Hierarchical
Bitmap Compression)
The hierarchy of bitmaps is the key construct of SMASH that en-
ables 1) highly-compressed matrix storage and 2) efficient discovery
of the positions of the non-zero regions of the matrix. The Non-Zero
Values Array (NZA) holds the actual values of the sparse matrix.
Every set bit of the last-level Bitmap-0 corresponds to one non-
zero block in the NZA. The size of each non-zero block in the NZA
(that is encoded by a single set bit in Bitmap-0) depends on the
compression ratio used for Bitmap-0.

There are two major factors that impact the effectiveness of our
hierarchical bitmap compression scheme: 1) the selected compres-
sion ratio at each level of the bitmap hierarchy (Section 4.1.1) and 2)
the distribution of non-zero elements in the matrix (Section 4.1.2).

4.1.1 Impact of compression ratio. Figure 5 demonstrates the im-
pact of choosing different compression ratios for Bitmap-0 using a
simplified example. We show two cases where the bitmap encodes
the same 4 X 4 matrix using two different compression ratios be-
tween Bitmap-0 and the NZA. In case @, the bitmap uses a single
bit to encode 8 consecutive elements of the matrix, i.e., the com-
pression ratio is 8:1. The bitmap requires 2 bits to encode the entire
matrix and the NZA holds one 8-element non-zero block (consisting
of 2 non-zero and 6 zero elements). In case @, the bitmap uses a
single bit to encode 4 consecutive elements of the matrix, i.e, the
compression ratio is 4:1. In this case, the bitmap requires 4 bits to
encode the entire matrix and the NZA holds one 4-element block
(consisting of 2 non-zero and 2 zero elements).

—— NZA —

Figure 5: Two bitmaps that compress the matrix with two
different compression ratios. Bitmap @ encodes blocks of 8
elements with a single bit, while Bitmap @ encodes blocks
of 4 elements with a single bit.

As we demonstrate with this example, a higher compression
ratio reduces the size of the bitmap and thus scanning it becomes
more efficient. However, with a higher compression ratio, the NZA
unnecessarily stores more zero elements. Since zeroes within the
block cannot be identified a priori, the processor unnecessarily
performs computation on them.

Hence, the compression ratio forms a tradeoff between 1) smaller
bitmaps that can be quickly scanned and 2) more zero elements
in the NZA storage and unnecessary computations on them. This
major tradeoff also applies to the higher levels of the bitmap hier-
archy.

4.1.2 Impact of distribution of non-zero elements in the sparse ma-
trix. The distribution of non-zero elements across the matrix also
affects the size of the NZA. On the one hand, if the non-zero ele-
ments of the matrix are closely clustered, the number of non-zero
blocks of the matrix decreases and the NZA stores fewer blocks.
On the other hand, if the non-zero elements of the matrix are dis-
tributed more uniformly across the matrix, the number of non-zero
blocks of the matrix increases and the NZA may need to hold more
non-zero blocks (that also contain more zeros).

4.1.3 Conversion to the hierarchical bitmap format. If the input
data to any user application is already stored using another com-
pression format (such as CSR), the application needs to convert

the sparse matrices to the hierarchical bitmap encoding and the
NZA used in SMASH. This is done using three steps. First, the
application identifies all the non-zero blocks in the matrix using
the indexing mechanism required by the original format. The size
of the block depends on the assumed size of the non-zero blocks in
the NZA. Second, the application creates the NZA by appending
these non-zero blocks contiguously in memory. Third, the applica-
tion creates the bitmap hierarchy, starting with Bitmap-0. To create
Bitmap-0, the application determines the locations of the non-zero
blocks of the matrix (where the block size is equal to the Bitmap 0
compression ratio). For each one of these locations, the application
sets the corresponding bit of Bitmap-0 to 1. Next, the application
creates the higher levels of the bitmap hierarchy: each level i of the
hierarchy is created based on the compression ratio of Bitmap-i and
the corresponding set bits of Bitmap-(i — 1). Assuming the chosen
compression ratio of level i is 8:1, we set each bit in Bitmap-i if
there are one or more set bits in the corresponding 8 elements in
Bitmap-(i — 1).

We note that this conversion process from any format to our
hierarchical bitmap encoding can be automated in software, and, if
needed, accelerated with hardware support.

4.2 Hardware Indexing
(Bitmap Management Unit)

The Bitmap Management Unit (BMU) provides the key functionality
of scanning the bitmap hierarchy to quickly identify the non-zero
elements of the matrix in a highly-efficient manner. It recognizes
the bitmap encoding used in software based on the parameters
of the bitmap (and sparse matrix) provided to it via the SMASH
software-hardware interface (Section 4.3).

4.2.1 BMU components. Figure 6 demonstrates the structure of the
BMU. It consists of four key components: 1) the SRAM buffers that
hold the bitmaps when they are being scanned, 2) the hardware logic
that scans the buffers to find the non-zero blocks, 3) programmable
registers that hold configuration parameters, such as the matrix
dimensions and the compression ratios of the bitmap hierarchy,
and that effectively orchestrate the operation of the hardware logic,
and 4) two registers to store the row and column indices of the non-
zero elements determined by the BMU. The BMU supports multiple
groups of the components presented in Figure 6, to enable the
indexing of multiple sparse matrices, where each group is dedicated
to buffering and scanning a single sparse matrix.

The SRAM buffers hold the bitmaps one block at a time. In our
implementation, each buffer is 256 bytes in size. The compression
ratio (the number of bytes encoded by a single bit) at each level of
the bitmap, including between Bitmap-0 and the NZA, must be less
than or equal to the bitmap buffer size. This is to avoid loading the
buffers multiple times from memory to scan a single block, which
would be expensive and inefficient. For example, with a 256-byte
SRAM buffer size, the maximum compression ratio supported in
the BMU is 256 X 8 = 2048:1.

4.2.2 BMU operation. As depicted in Figure 6, identifying the lo-
cation of a non-zero block in the matrix involves three steps. First,
the hardware logic scans the bitmap buffers to find the set bits
and discover the positions of the non-zero blocks @. Second, the
hardware logic reads the matrix dimensions and the compression
ratios from the programmable registers to calculate the row and

Bitmap Management Unit (BMU)

[Group 1
SRAM Buffer 2 D Transfer
Bitmap Bitmap Blocks Memory
SRAM Buffer 1 Buffers * Hierarchy
SRAM Buffer 0
TScan o Row
index @ N
| N I SMASH ISA
. Update | Column
. CPU
lRead (2] © index©®
Matrix parameters Programmable
Bitmap parameters Registers

Figure 6: Bitmap Management Unit consists of four key com-
ponents: 1) SRAM buffers to store portions of the bitmaps
that are being operated on, 2) hardware logic that scans the
buffers, 3) registers to hold the matrix and bitmap parame-
ters, and 4) output registers to store the row @ and column
indices @ of the non-zero blocks. The BMU communicates
with the CPU using the SMASH ISA @.

column indices of the current non-zero block @. Third, it updates
the output registers @ that hold the row @ and column @ indices
of the non-zero block. These registers can be repeatedly read by
the CPU to iteratively find the location of the non-zero elements.
To find the next non-zero element, the hardware logic looks for
the next set bit in the bitmap block or loads the next bitmap block
from the memory hierarchy to perform the search for the non-zero
blocks. These operations are controlled by software with five new
ISA instructions @, which we describe in Section 4.3.

4.2.3 Efficient indexing with the BMU. The BMU iteratively com-
municates to the CPU the row and column indices of the non-zero
elements in the sparse matrix. Since we use multiple levels of indi-
rection with the hierarchical bitmap, finding each non-zero element
involves traversing the bitmap hierarchy in a depth-first manner.
Every time a set bit is encountered at any bitmap level, we save
that bit’s index within the bitmap and then traverse the lower-level
bitmap associated with that set bit. The BMU traverses the hierar-
chy in this manner (saving the index of the set bit at each level)
until it reaches Bitmap-0. Any set bit in Bitmap-0 directly maps
to a block of elements in the sparse matrix that has at least one
non-zero element. Using the saved indices of the set bits at each
level of the hierarchy, as well as the corresponding compression
ratios, the BMU calculates the index of the non-zero block in the
original sparse matrix.

The final index = row_index * matrix_columns +column_index,
is computed using the hierarchy of bitmaps in the following way:

Index = Zgigels*l((]—]ézl comp(j))«index_bit(i)) where comp(j)
is the compression ratio of Bitmap-j and index_bit(i) is the index
of the encountered set bit while scanning Bitmap-i. The row and
column indices of the non-zero block in the original sparse matrix
are calculated as follows: row_index = Index/matrix_columns and
column_index = Index%matrix_columns. These indices are stored
in the two output registers dedicated to the row index and the col-
umn index in the BMU. They are retrieved by the CPU using new
ISA instructions (described below). The application iterates through
the non-zero blocks of the NZA to compute on the non-zero val-
ues. For each consecutive non-zero block, the application reads the

row and column indices from the BMU registers to identify the
<row,column> location of the non-zero block in the original sparse
matrix.

4.3 SMASH ISA: Software/Hardware Interface
We introduce five new instructions in the ISA to control the func-
tionality provided by the BMU. Table 1 shows the instructions.
These instructions are designed to i) communicate parameters of the
matrix and the bitmap hierarchy to the BMU (MATINFO, BMAPINFO),
ii) load the bitmaps into the BMU buffers (RDBMAP), iii) iteratively
scan the bitmaps to determine the location of the next non-zero
element in the matrix (PBMAP), and iv) communicate the row and col-
umn indices (in the original sparse matrix) of the non-zero element
back to the application (RDIND).

MATINFO: This instruction communicates the dimensions of the
matrices to the BMU. It has three source operands: row, col, and
grp. row represents the number of rows and col represents the
number of columns of the matrix. grp is used to select the group of
the BMU. If the user application involves two sparse data structures,
MATINFO needs to be executed twice (one for each matrix) before
performing other operations with the BMU.

BMAPINFO: This instruction communicates the compression ratio
of each bitmap to the BMU. It has three source operands: comp for
the compression ratio, 1v1 selects the bitmap level in the hierarchy,
and grp selects the group of the BMU.

Table 1: SMASH instructions

ISA instruction Functionality

Loads the matrix dimensions
into the registers of the BMU.
Loads the compression ratio
comp that bitmap at 1v1 oper-
ates with.

matinfo row,col,grp

bmapinfo comp,lvl,grp

Loads bitmap starting from
[mem] into SRAM buffer buf.
Signals the BMU to scan the
SRAM buffers and find the row
and column indices of the next
non-zero block.

Loads into rd1 and rd2 the
row and column indices of the
current non-zero block that
are stored in the row index
and column index output reg-
isters of the BMU.

rdbmap [mem],buf,grp

pbmap grp

rdind rdi1,rd2,grp

RDBMAP: This instruction loads the bitmap into the bitmap buffers
in the BMU. It has three source operands: a [mem] location, a buf
selector, and a grp selector. It loads a bitmap block starting from
the address pointed by [mem] into the buffer buf of the group grp .

PBMAP: This instruction signals the hardware logic of the BMU to
scan the bitmap buffers and find the index of the next non-zero block.
The hardware logic updates the row index and column index output
registers with the position of the non-zero block. This instruction
has one source operand: grp selects the group of the BMU.

RDIND: This instruction communicates to the CPU the row and
column indices of the current non-zero block that was identified
by the BMU after the execution of PBMAP. This essentially involves

reading the row index and column index output registers of the
BMU. RDIND has two destination registers: rd1 and rd2, and a grp
selector. RDIND loads the row index and column index into rd1 and
rd2, respectively. grp is used to select the group of the BMU.

4.4 An Alternative: Software-only SMASH

The hierarchical bitmap encoding of SMASH can be used entirely in
software, as a pure software compression mechanism without any
hardware support. In this case, a sparse matrix is represented using
the hierarchy of bitmaps but the indexing is still performed entirely
in software, i.e., the BMU and the ISA are not used to accelerate
the indexing. If used entirely in software, one 64-byte block of the
bitmap needs to be loaded using four memory load instructions. A
Count Leading Zeros (e.g., CLZ in x86) bitwise instruction is needed
to find the first most-significant set bit. For every set bit that is
found, one bitwise AND is needed to mask the set bit and then
search for the next one. This adds more computation to find the
set bits compared to the mechanism we describe in Section 4.2. In
contrast to Software-only SMASH, the BMU loads the whole block
at once and does not need AND operations to find set bits. As we
show in Section 7.2, Software-only SMASH cannot leverage the full
benefits of the hierarchical bitmap encoding and incurs additional
computational overhead. Even so, as we also show in Section 7.2,
Software-only SMASH still outperforms CSR on average, because
it uses fewer instructions overall.

5 SMASH EXAMPLE USE CASES

We describe in detail how the SpMV and SpMM operations are
performed using SMASH. We assume a 3-level bitmap hierarchy
for SpMV and, for simplicity of explanation, a 1-level bitmap for
SpMM. Our SpMM example consists of two sparse data structures.

5.1 Example Use Case 1: SpMV

Figure 7 and Algorithm 1 describe the execution flow for SpMV
using SMASH. SpMV involves only one sparse matrix and a dense
vector, x. Therefore, it utilizes only one group of the BMU’s com-
ponents. MATINFO is used in the beginning of the algorithm to
communicate the dimensions of the matrices @ to the BMU (line
2 in Algorithm 1). BMAPINFO is executed once for each bitmap to
communicate the compression ratios @ (lines 3-5). RDBMAP is ex-
ecuted three times at the beginning to load the bitmap hierarchy
into the bitmap buffers @ (lines 6-8). Whenever a non-zero block
is found, PBMAP is used to search in the SRAM buffers to find the
row and column indices of the next non-zero block of the NZA @
(line 11) and RDIND returns these indices of the non-zero block back
to the application (line 12). The processor loads the block from the
NZA, and multiplies it with the x vector’s block at the row index
returned by RDIND @ (lines 15-16).

5.2 Example Use Case 2: SpMM

Figure 8 and Algorithm 2 describe the execution flow for SpMM
using SMASH. We describe SpMM in the case where a 1-level bitmap
hierarchy is used for each of the two sparse data structures. In the
initialization phase of the algorithm, we need to execute MATINFO
twice, one for each sparse matrix @ (lines 2-3 in Algorithm 2). We
also need to execute BMAPINFO twice, one for each bitmap @ (lines
4-5). The program iterates over the rows of matrix A and columns
of matrix B. For each row of matrix A, we load the bitmap at the
correct offset using RDBMAP as follows: [mem]=bitmapA+rowOffset,

BMU ~ Application - SpMV

NZA

o
g.: | ol 1 DI 1| 0| 0| | Row Index

|
8 H
[C]] 0|l 1|10] 1]10]0 Column Index || N .
| EX 4 I
| [ariparmeres] @ S T
If:

X
[
1013A X

| Compseones 1@

Figure 7: SpMV flow of execution. One matrix is compressed
using a 3-Level Bitmap Hierarchy.

Algorithm 1 : SpMV using SMASH

1 # Operation: A x x = C

2 matinfo rows,columns,@ # Load dimensions to BMU

3 bmapinfo comp2,2,0@

4 bmapinfo compl1,1,0 # Load compression ratios to BMU

5 bmapinfo comp@,0,0@

6 rdbmap [bitmap2],2,0

7 rdbmap [bitmap1],1,0 # Load 3 bitmaps in BMU buffers
8 rdbmap [bitmap0],0,0

9 ctrNZ = @ # Initialize counter of NZ blocks
10 for all non-zero blocks of the sparse matrix

11 pbmap @ # Scan the bitmaps
12 rdind rowInd,colInd,@ # Read index of the NZ block
13 ctrElmt = @ # Initialize counter of elements

14 for all elements of block (rowInd,colInd)
15 NZA_ind = ctrNZxcomp@ + ctrElmt
16 CLrowInd+ctrElmt]+=NZA[NZA_ind]*x[colInd+ctrElmt]
17 ctrElmt+=1 # Point to the next element
18 ctrNZ+=1 # Point to the next NZ block

where buf=0 and grp=0 @ (line 7). For each column of matrix B, we
load the bitmap at the correct offset in the second group of buffers
using RDBMAP as follows: [mem]= bitmapB+colOffset, where buf=0
and grp=1 (line 9). Index matching requires the use of the PBMAP
instructions @ (lines 10-11) to search the bitmaps of both matrices
and determine the matching indices of NZA_A’s and NZA_B’s
blocks. RDIND instructions @ (lines 12-13) are executed to load the
indices of the non-zero blocks into registers so that the column
index of A can be compared to the row index of B (line 14). If the
indices match, the algorithm performs the inner product between
the corresponding blocks of NZA_A and NZA_B (line 15). If the
row index of A is greater than the current row or if the column
index of B is greater than the current column of B (line 16), the
algorithm skips the remaining inner-product computation (lines 10-
15) between the current row of A and the current column of B. This
implies the absence of anymore non-zero elements in the current
row of A (or column of B) and thus, unnecessary computation on
zero elements is avoided.

The index matching phase of the algorithm requires calculating
the indices of each non-zero element in both A and B for each
inner product (line 10-16). A format like CSR would incur extra
computations and expensive indirect memory accesses to perform
this step (i.e., the index matching). With SMASH, we leverage the
BMU to accelerate the index matching. We demonstrate the benefits
of our scheme in Section 7.

5.2.1 Generality of SMASH for other use cases. In this work, we
evaluate SMASH using two sparse matrix kernels, SpMV and SpMM,
that are central to many important applications (e.g., [50, 67, 83]).
However, SMASH is generally applicable to any sparse matrix com-
putation. Sparse matrix computations operate only on the non-zero
elements of the matrix and hence fundamentally require 1) identi-
fying the indices (row and column) of the non-zero elements and
2) retrieving those non-zero elements from memory. With the pro-
posed ISA instructions, we can efficiently determine the location
(in the matrix) of the non-zero blocks of the NZA, regardless of 1)
the computation that will be performed on the non-zero elements
and 2) the structure and the extent of sparsity in the matrix. Other
examples of widely used operations on sparse matrices that SMASH
can accelerate include Sparse LU Decomposition [69], Sparse Eigen-
value Calculation [21, 39] and Sparse Iterative Solvers [70].

BMU _ Application - SpMM
____________ I
| 1 |E
g-l Row Index || | é NZA_A NZA_B
g: Matrix parameters Column Index : :
i.__ _Bjﬂip_ ____________________ =¥ (Non zero] td
block
[o[2] o[2] 0] 0]® E =
HI 7 0 (I T
§| ‘ Row Index || | : (5)
E Matrix ii I B
gpl ” E Columnindex || | :
11 Bitmap parameters|]

Figure 8: SpMM flow of execution. Two matrices are com-
pressed, each using a single-level Bitmap Hierarchy.

Algorithm 2 : SpMM using SMASH

1 # Operation: A *x B = C

2 matinfo rowsA,colsA,@ # Load dimensions to BMU

3 matinfo rowsB,colsB,1

4 bmapinfo comp@_A,0,0 # Load compression ratios to BMU
5 bmapinfo comp@_B,0,1

6 for i in [@ .. rowsA) # Iterate over rows of A

7 rdbmap [bitmapA+rowOffset],@,0 # Load bitmap_A

8 for j in [@ .. colsB) # Iterate over columns of B
9 rdbmap [bitmapB+colOffset],®,1 # Load bitmap_B

10 do: pbmap @ # Find next non-zero block

11 pbmap 1 # in both matrices

12 rdind rowIndA,colIndA,@ # Read NZ index in A
13 rdind rowIndB,colIndB,1 # Read NZ index in B
14 if (colIndA == rowIndB) # Index matching

15 CLrowIndA][colIndB]+=inner_pr(NZA_A,NZA_B)
16 while (rowIndA < i) && (colIndB < j)

6 EXPERIMENTAL SETUP

We model and evaluate SMASH using the zsim simulator [71]. Ta-
ble 2 provides the system configuration we evaluate. We simulate
each workload until completion. We use an Intel Xeon system [2]
to perform experiments on real hardware. Table 5 provides the
configuration of the real system.

Workloads: Sparse Matrix Kernels. We evaluate SMASH us-
ing two sparse matrix kernels, Sparse Matrix Vector Multiplication
and Sparse Matrix Matrix Multiplication. We use the TACO library’s
[40] respective implementations of these kernels as our baseline.

Table 2: Simulated system configuration

CPU 3.6 GHz, Westmere-like [43] OOO, 4-wide issue;
128-entry ROB; 32-entry LQ and SQ;

L1 Data + Inst. Cache 32 KB, 8-way, 2-cycle; 64 B line; LRU policy;
MSHR size: 10; Stride prefetcher;

L2 Cache 256 KB, 8-way, 8-cycle; 64 B line; LRU policy;
MSHR size: 20; Stride prefetcher;

L3 Cache 1MB, 16-way, 20-cycle; 64 B line; LRU policy;
MSHR size: 64; Stride prefetcher;

DRAM 1-channel; 16-bank; open-row policy; 4GB DDR4;

Table 3: Evaluated sparse matrices

Name # Rows 1;;; l:ni]e::: Sparsity (%)
Mi1: descriptor_xingo6u 20,738 73,916 0.01
Ma2: g7jac060sc 17,730 183,325 0.06
Ms3: Trefethen_20000 20,000 554,466 0.14
M4: 1G5-16 18,846 588,326 0.17
M5: TSOPF_RS_b162_c3 15,374 610,299 0.26
Mé6: ns3Da 20,414 1,679,599 0.40
M7: tsyl201 20,685 2,454,957 0.57
Ms: pkustk07 16,860 2,418,804 0.85
Mo: ramage02 16,830 2,866,352 1.01
M10: patternl 19,242 9,323,432 2.52
M11: gupta3 16,783 9,323,427 3.31
Mi12: nd3k 9,000 3,279,690 4.05
M13: human_genel 22,283 24,669,643 4.97
M14: exdata_1 6,001 2,269,500 6.30
M15: human_gene2 14,340 18,068,388 8.79

Table 4: Input graphs Table 5: Real system

configuration

Graph Vertices Edges CPU Intel Xeon Gold 5118

2.30 GHz 14nm [2]
L1 384 KB, 8-way

G1: com-Youtube 1.IM 2.9M
G2: com-DBLP 317K 1M

G3: roadNet-CA 19M 2.7M
G4: amazon0601 403K 3.3M

L2 12 MB, 16-way

L3 16.5MB, 11-way

Main memory DDR4-2400

For input datasets, we use a diverse set of 15 sparse matrices from
the Sparse Suite Collection [19]. The matrices have different spar-
sities and distributions of non-zero elements. The term sparsity
refers to the fraction of non-zero elements in the matrix over the
total number of elements. Table 3 presents these matrices, sorted
in ascending order of their sparsity. We use the term M; to refer
to each matrix in Section 7. We open source SMASH’s software
implementations of these sparse matrix kernels [3].

Workloads: Graph Processing. We implement PageRank and
Betweenness Centrality from the Ligra Benchmark Suite [9] as
SpMV computation and evaluate the performance of SMASH over
the default CSR-based versions of these two algorithms. PageRank
[65] was first used by Google to rank website pages. Specifically, it
takes as input a graph and computes the rank of each vertex, which
represents the relative importance of each node (e.g., webpage).
PageRank iteratively uses SpMV to calculate the ranks of nodes in
the graph [91].

Betweenness Centrality [27] is a measure of the significance
of each vertex based on the number of shortest paths that pass
through it. Betweenness Centrality iteratively uses SpMV to per-
form breadth-first searches in the graph [9]. We evaluate these two
workloads using a set of four graph inputs from the Sparse Suite
Collection [19]. We use the term G; to refer to each graph input in
Section 7.

7 EVALUATION RESULTS

We evaluate five different mechanisms: (i) TACO-CSR: The CSR-
based implementation from the TACO library [40]; (ii) TACO-
BCSR: The BCSR-based implementation from the TACO library
[40]; (iii) MKL-CSR: CSR-based SpMV and SpMM implementa-
tions from Intel MKL [1]; (iv) Software-only SMASH: SMASH’s
hierarchical bitmap encoding implemented purely in software with-
out the BMU; and (iv) SMASH: our complete proposed scheme,
with the hierarchical bitmap encoding and the BMU. The matrices
we evaluate vary in sparsity and hence, for SMASH implementation
of each matrix, we use different compression ratios in the bitmap
hierarchy for SMASH . We denote the bitmap configuration of each
matrix (and graph) i as M;.b2.b1.b0, where M; denotes the matrix
id and b2.b1.b0 denotes the compression ratios of each level in the
bitmap hierarchy. We evaluate 4 different use cases: SpMV, SpMM
(Section 7.2), PageRank, and Betweenness Centrality (Section 7.3).

7.1 Software-only Approaches

We first compare the performance of three state-of-the-art sparse
matrix formats (TACO-CSR [40], TACO-BCSR [40], and MKL [1])
and the hierarchical bitmap encoding used in SMASH (i.e., Software-
only SMASH) on our real Intel Xeon system (Table 5). Our goals
with this experiment are to 1) compare existing state-of-the-art
software solutions to identify a baseline for our simulation experi-
ments and 2) evaluate the performance of SMASH’s hierarchical
bitmap encoding without any hardware support. The TACO and
MKL formats employ a range of software optimizations that are
orthogonal to the matrix format itself and the indexing mechanism.
To ensure a fair comparison, our implementation of Software-only
SMASH includes all the software optimizations used by the TACO
compiler, but uses SMASH’s hierarchical bitmap encoding instead
of CSR.

Figure 9 depicts the speedup of TACO-BCSR, MKL, and software-
only SMASH, normalized to TACO-CSR, for SpMV and SpMM.
We make two observations, averaged across the 15 matrices we
evaluate. First, MKL outperforms TACO-CSR in both SpMV and
SpMM by 15% and 25% respectively. MKL also outperforms TACO-
BCSR, but by a smaller margin: 3% in SpMV and 4% in SpMM.
While MKL uses the same CSR format as the TACO compiler, it
also employs a range of proprietary software optimizations that
lead to better performance than the TACO implementations. We
can only compare to the TACO implementations in the simulation
experiments as the additional optimizations in the closed-source
MKL library cannot be added to SMASH (or to any other technique)
to enable a fair and insightful comparison. Second, we observe that
Software-only SMASH outperforms TACO-CSR by 5% in SpMV and
10% in SpMM, but is outperformed by both TACO-BCSR and MKL.
Software-only SMASH incurs a performance overhead because 1)
indexing the hierarchical bitmap entirely in software requires more
instructions than indexing the CSR format and 2) unlike CSR, which

1.5

1.0

S 0 E A

el B N

15

1.0 1

5 E
| B

0.0 =

Speedup

1&93¢& M“;g

o
50“-‘::;@5“
Figure 9: Performance of software-only approaches on areal
Intel Xeon system (normalized to TACO-CSR).

eliminates all zeros, SMASH’s hierarchical bitmap encoding may
require unnecessary computations on zero values, depending on
the choice of compression ratios in the bitmap hierarchy. However,
despite these overheads, the hierarchical bitmap encoding avoids
the expensive indexing and pointer-chasing operations in CSR and
outperforms TACO-CSR.

7.2 Sparse Matrix Kernels

7.2.1 Performance Results. Figure 10 shows the speedup of TACO-
CSR, TACO-BCSR, Software-only SMASH, and SMASH, normalized
to TACO-CSR, for the SpMV kernel. Figure 11 shows the number
of executed instructions in each mechanism, normalized to TACO-
CSR. We make three observations.

[TACO-CSR [TACO-BCSR

[Software-only SMASH

B SMASH

RN N SN SRV S Y S SR SR RN SR SRS
N b\b' ,\\“" I O A L 4
N Ay o W N AN N N Y o o W
FIFIIIEFIIIITIIIESS
Figure 10: Speedup (normalized to TACO-CSR) for SpMV.
[0 TACO-CSR [TACO-BCSR [Software-only SMASH N SMASH

of Instructions

Normalized Number

b-. .. %-. «’ -. «’
WY a5 W S

N N N N
FIIFIFIFIFIFTIINES
Figure 11: Number of executed instructions (normalized to

TACO-CSR) for SpMV.

First, SMASH significantly outperforms all other mechanisms: it
is 38% faster over TACO-CSR and 32% over TACO-BCSR, on average.
SMASH’s speedup is mainly due to executing fewer indexing in-
structions (47% less than TACO-CSR and 30% less than TACO-BCSR,
on average) and avoiding expensive pointer-chasing operations in
memory. Second, SMASH is highly effective regardless of the spar-
sity of the matrix. For the matrices with the highest sparsity in
our evaluation (M; and M2), TACO-BCSR is inefficient because it
encodes data in blocks, which leads to unnecessary computation
on zero elements. SMASH avoids such overhead by leveraging the
configurability of compression ratios in our hierarchical bitmap

10

encoding to adapt the compression ratio to the matrix sparsity.
Third, we observe that the effectiveness of Software-only SMASH
depends on the sparsity of the matrix. Software-only SMASH incurs
a higher performance overhead when the sparsity is higher because
Software-only SMASH performs more unnecessary computation
on zero elements and executes more instructions searching the
bitmaps for non-zero bits. In these cases, TACO-CSR outperforms
Software-only SMASH. When the matrix is denser, the benefits of
avoiding pointer-chasing and indirect indexing outweigh the addi-
tional computation and search operations on zero elements. Thus,
Software-only SMASH outperforms both TACO-CSR and TACO-
BCSR for less sparse matrices. This strong impact of sparsity on
overall performance is not seen as strongly in SMASH because the
hardware support makes the indexing highly efficient even when
the matrix is extremely sparse. As a result, SMASH outperforms all
other approaches regardless of the matrix sparsity.

Figures 12 and 13 depict the speedup and the number of executed
instructions, respectively, for the SpMM kernel.

[TACO-CSR [TACO-BCSR

[Software-only SMASH

I SMASH

b?:"’ b?:y b??l b?:.‘,
" S o & IR

PO O
FIEIIIEFLIIITIISS
Figure 12: Speedup (normalized to TACO-CSR) for SpMM.

W

"
> &

(RN S SR N
BN S S SR L SR R

v

[TACO-CSR [TACO-BCSR [Software-only SMASH I SMASH

Normalized Number
of Instructions

Figure 13: Number of executed instructions (normalized to
TACO-CSR) for SpMM.

We observe the same trends and make the same observations for
SpMM as we do for SpMV, but with an important difference. SpMM
requires twice the number of indexing operations as SpMV per dot
product. As a result, the performance benefits of SMASH are even
higher over TACO-CSR for SpMM than for SpMV: SMASH outper-
forms TACO-CSR by 44% and TACO-BCSR by 30%, on average.

We conclude that SMASH is a highly effective mechanism to
accelerate sparse matrix computation, regardless of the sparsity of
the matrix, and it significantly outperforms state-of-the-art com-
pression schemes for all matrices we evaluate.

7.2.2 Sensitivity to Compression Ratio. As discussed in Section
4.1.1, the compression ratio between Bitmap-0 and the NZA defines
an important tradeoff between 1) smaller bitmaps and 2) more zero
elements in the NZA that lead to unnecessary computation on
zero elements. In Figures 14 and 15, we quantitatively evaluate this
tradeoff for SpMV and SpMM respectively, by showing the speedups

SMASH provides with different compression ratios. The speedups
are normalized to a configuration that uses a 2:1 compression ratio
between Bitmap-0 and the NZA (i.e., each bit in Bitmap-0 encodes
two elements in the NZA).

We make two observations. First, increasing the compression
ratio from 2:1 to 8:1 degrades performance, by 4% on average (up
to 13%) for SpMV and by 5% on average (up to 15%) for SpMM.
This is a direct result of more unnecessary computations on zero
elements in the NZA which cannot be skipped as a result of the high
compression ratio.! Second, we observe that matrices with higher
density can in some cases benefit from a higher compression ratio
(performance increases by 18% in Mj2 and 40% in M4, by going
from a compression ratio of 2:1 to 8:1). These matrices exhibit a more
clustered distribution of non-zero values (i.e., the non-zero elements
are close to each other). As a result, even though the compression
ratio is higher, the number of zeros in the NZA (and hence the
unnecessary computation on zero elements) does not increase in
proportion. Instead, SMASH benefits from scanning smaller bitmaps
during the indexing operation with a higher compression ratio.

1.50
£ Bo-21 [Bo-4:1 [BO-8:1
1.2
(-} o m
2 -
k-] -
@ 1.00 77 N I
[T}
(-3
v
0.75 H I H I H
050

T T T T T T T T T T T T T T T T

LA A PR TP A VA A S S S R R PSPt R

\,'\b ";@ »,'-‘b u,'\e 9,'@ b,‘\vo }\,?b é\b q,‘@ e,_(o (:y 0@ 09; oV '&g» 5\
T IFIST IS IS S

Figure 14: Sensitivity of SMASH speedup to the compression
ratio between Bitmap-0 and the NZA for SpMV.

T T T T T T T T T

R
NG
% o

o
SMFES

1.50
3 Bo-21 [J BO-41 [BO-8&1

o 125 - -
E] 4
o
@ 1.00 77 . - =
]
&

0.75 H |

0.50

>

b? b?‘ b? b? (3
FEETFTELE
Figure 15: Sensitivity of SMASH speedup to the compression
ratio between Bitmap-0 and the NZA for SpMM.

We conclude that the compression ratio between Bitmap-0 and
the NZA plays an important role on the effectiveness of SMASH.
Our evaluations indicate that a compression ratio of 2:1 is most
effective on average and should be used when the structure of
sparsity in unknown. However, a matrix that has a known clustered
distribution of non-zero elements may significantly benefit from a
higher compression ratio.

7.2.3 Locality of Sparsity. In Figures 16 and 17, we illustrate the
impact of the distribution of non-zero elements in a sparse matrix
on the effectiveness of SMASH. We define a new metric, locality
of sparsity, which is the ratio of the average number of non-zero
elements per block of the NZA to the size of each NZA block (ex-
pressed as a percentage). A matrix with a 100% locality of sparsity

!Note that we assume there is enough memory to store matrices with any bitmap
compression ratio.

11

would have no zero elements in any NZA block (i.e., all the non-
zero elements are clustered at the granularity of the NZA block
size). A matrix with 12.5% locality, on the other hand, has exactly
one non-zero element per NZA block assuming the NZA holds 8
elements per block.

Figures 16 and 17 compare the speedup of SMASH when the lo-
cality of sparsity is varied for three different matrices (Ma, Mg, M;3).
The results are normalized to the performance of SMASH when
the locality of sparsity is 12.5%. The three matrices are chosen to
have widely different sparsities (0.06%, 0.85%, and 4.97%).

1.25
P ®
1.00 1@ ® - ® ® - >
-0 M2.16.4.8
0.75 L T T T T T T T
a 125
-g A A A AA_—-—""‘ ‘
A
@ 1.00 14— \ 4 v ¥ ¥ -
o
a —4- Ms.16.438
Vo715 Lt T T T T T T T
1.25 M
1.00
—>¢ M13.84.8
0.75 L T T T T T T T
125 25 375 50 625 75 875 100

Locality of sparsity (%)
Figure 16: Sensitivity to locality of sparsity in SpMV.

1.25 I
1.00 1@ ® o———0——0 e -
~0- M2.16.4.8
0.75
T T T T T T T T
3]
1.25
° . _—QI
& 1.00 {4~ 4 4+ ¢ ¢ L b4
a —4— Ms.16.4.8 <|
0 075
T T T T T T T T
1.25
_
1.00
—¢ M13.8.4.8
0.75 —
T T T T T T T T
125 25 375 50 62.5 75 87.5 100

Locality of sparsity (%)
Figure 17: Sensitivity to locality of sparsity in SpMM.

We make two observations. First, the speedup of SMASH in-
creases with an increase in locality of sparsity (by up to 25% in M3
for SpMV when going from 12.5% to 100% locality of sparsity). This
is because the NZA blocks contain fewer zeros when locality is
higher, and this leads to fewer unnecessary computations on zero
elements and faster scans of bitmaps during indexing. Second, the
performance impact of locality of sparsity depends on the number
of non-zero elements in the matrix, i.e., sparsity. The benefits of
locality diminish when the matrix is more sparse. This is because
indexing of the matrices dominates the overall computation time
when the sparsity is very low and very little time is spent on com-
puting over the non-zero values. As a result, reducing the amount
of unnecessary computation on zero elements in the NZA blocks
does not provide significant performance benefit.

7.3 Graph Applications
Figure 18 compares the default CSR-based and the SMASH-based
implementations of the PageRank and Betweenness Centrality ap-
plications from the Ligra benchmark suite [74] in terms of perfor-
mance and the number of executed instructions.

We observe that the SMASH-based implementations outperform
the CSR-based implementations by 27% and 31% respectively, for
PageRank and Betweenness Centrality. Similar to SpMV and SpMM,

[0 PageRank-SMASH Il BC-SMASH

1.50

=
1.00 7 -! -! . .

1.00

0.75
0.50
0.25
0.00 -

Gl G2 G G4 AVG
Figure 18: Speedup and normalized number of executed in-
structions for PageRank and Betweenness Centrality using
SMASH (normalized to the CSR-based implementations).
SMASH’s speedups in graph workloads come from executing fewer
instructions to index the sparse matrices and avoiding the expensive
pointer-chasing operations in memory. However, SMASH’s benefits
are lower in graph workloads than in the SpMV and SpMM kernels
since sparse matrix indexing operations in PageRank and BC form
a smaller component of the overall execution time. We conclude
that SMASH is effective in graph applications.

Speedup

instructions

Normalized

7.4 Storage Efficiency

A key goal of a sparse matrix compression scheme is to efficiently
store the matrix in a manner that avoids saving zero elements
and minimizes the amount of metadata required. In Figure 19, we
compare the storage efficiency of SMASH and CSR by measuring
the ratio of the size of the original uncompressed matrix to the total
size of all the data structures required to encode the matrix with
SMASH or the CSR format (called the total compression ratio).

104
[CSR
I SMASH

T T T T T T T T T T T T T T
L L L T L S

Total compression ratio

NI NI A I A L SO S s
A I A I I R IR
P EEFRFLITITIFTIY s

Figure 19: Total compression ratios of SMASH and CSR. Y-
axis is in log scale.

CSR stores only the non-zero elements and uses one integer per
non-zero element to save the non-zero element’s position in the
matrix, regardless of the sparsity or the locality of sparsity of the
matrix. SMASH, on the other hand, encodes each block in the NZA
using a single bit (we assume each block to hold 2 elements in Figure
19). If the non-zero elements are not contiguously located, the NZA
may hold zero elements in its blocks.

As aresult, when the matrices are highly sparse, CSR only stores
the few non-zero elements and their positions in the matrix. In
contrast, SMASH may store a large number of zero elements in
the NZA and many zero bits in the bitmap hierarchy to encode the
positions of the few non-zero elements. Hence, as we observe in
Figure 19, CSR has a higher total compression ratio than SMASH
for matrices that are highly sparse (M;-My).

However, as the matrices become denser, SMASH provides ei-
ther a similar compression ratio to or a much higher compression
ratio than CSR. The reason is twofold. First, the non-zero elements
are more likely to be located close to each other at higher matrix
densities (i.e., the locality of sparsity is higher). SMASH, as a result,

12

is likely to unnecessarily store fewer zero elements in the NZA. Sec-
ond, at higher matrix densities, the cost of storing one additional
integer index per non-zero element in the CSR format becomes
higher than encoding the zero and non-zero regions of the sparse
matrix using bitmaps. Hence, in Figure 19, we observe that SMASH
generally has a significantly higher (up to 2.48x) total compression
ratio than CSR for matrices with higher densities. In some cases
(e.g., M13, M15), even though the matrix has high density, SMASH
does not provide a greatly higher compression ratio than CSR. This
is because these matrices have low locality of sparsity, which causes
SMASH to store more zero elements in the NZA and more zero bits
in the bitmap hierarchy.

We conclude that SMASH provides high compression ratios
when encoding sparse matrices, enabling highly-efficient storage
of sparse matrices in memory. The hierarchical bitmap structure is
highly effective in exploiting any locality of sparsity in the matrix
to provide even higher compression ratios.

7.5 Format Conversion Overhead

In cases where the sparse matrix is already stored in another for-
mat (such as CSR), it first needs to be converted to the hierarchi-
cal bitmap encoding in order to leverage the indexing benefits of
SMASH. Figure 20 depicts the total time spent on such conversion
operations relative to the computation itself for SpMV, SpMM, and
PageRank, assuming that the sparse matrix has to be stored in the
CSR format but processed using SMASH. In SpMM and PageRank,
the total time spent on conversion from CSR to SMASH and vice
versa is only a small fraction of the overall computation (10% in
SpMM and 0.5% in PageRank), and hence imposes only a small
conversion overhead. SpMV, on the other hand, is a short-running
kernel and hence, the conversion time dominates SpMV’s total
execution time (55% of the overall execution time).

[CSRtoSMASH [Kernel I SMASHtoCSR

0,

-
o
-3

~
[

N wn
n o
!

Breakdown (%)

Execution Time

o

T
SpMV SpMM PageRank

Figure 20: Breakdown of end-to-end execution time, assum-
ing the matrix has to be stored in CSR format but processed
using SMASH.

We conclude that the conversion overhead is negligible com-
pared to the demonstrated benefits of SMASH for long running
applications and cases where SpMV and SpMM are invoked multiple
times (e.g., in neural networks and graph applications). However,
for short-running kernels that are invoked only once, the benefits
of SMASH may not justify the conversion overhead from another
format, assuming that other format is necessary for storage.

7.6 SMASH Area Overhead

The major area overhead in SMASH comes from the buffers and
the registers in the BMU. Assuming a BMU with 4 groups of 3
bitmap buffers (where the size of each buffer is 256 bytes), the total
additional SRAM required for the bitmaps is 3KB and 140 bytes
for the registers. We evaluate the area overhead of the BMU using
CACTI 6.5 [47]. In a modern Intel Xeon E5-2698 CPU core, with a
32 KiB L1, 256 KiB L2 and 2.5 MiB L3 Cache, the BMU incurs an
area overhead of at most 0.076%.

8 RELATED WORK

To our knowledge, this is the first work to propose a hardware-
software cooperative compression scheme and indexing mechanism
that 1) enables highly-compressed storage of sparse matrices, 2)
provides highly-efficient hardware-supported indexing of sparse
matrices to accelerate sparse matrix kernels, and 3) is general and
applicable to any sparse matrix operation and matrices with any
sparsity and structure.

Sparse matrix operations have been extensively studied in the
past. Prior work in this area falls into three categories: 1) sparse ma-
trix compression formats; 2) software optimizations for sparse ma-
trix kernels; and 3) hardware accelerators and hardware-software
cooperative mechanisms for sparse matrix kernels. In this section,
we briefly discuss these prior works and contrast them with SMASH.

Sparse Matrix Compression Formats. Prior works propose a
range of compression formats for sparse matrices [38, 44, 53, 68, 72,
86, 89, 93], including the state-of-the-art formats such as CSR [53],
CSR5 [53], and BCSR [38] that are widely used today. These formats
are designed to be highly-efficient in storage and can be generally
applied to any sparse matrix. However, as we demonstrate in this
paper, these formats incur significant performance overheads as a
result of inefficient indexing. We quantitatively compare SMASH to
CSR [44] and BCSR [44] in Section 7 and demonstrate that SMASH’s
hierarchical bitmap compression mechanism, along with its hard-
ware support for indexing, significantly outperforms these formats
by enabling highly-efficient storage and indexing of sparse matrices.

Several sparse matrix compression formats [7, 16, 30, 41, 42, 46,
77] leverage specific characteristics of the sparse matrix to enable
more efficient storage and indexing. For example, CSX [42] first
processes each matrix to detect patterns such as dense diagonals or
repeated values and then encodes them using compression formats
tailored to the detected pattern. CSR-DU [41] and CSR-VI [41]
leverage repetition or similarity among non-zero values to compress
the sparse matrix more efficiently. These works have three major
shortcomings. First, they are limited in applicability to matrices
that possess specific patterns in sparsity. SMASH, in contrast, can
be used to compress any sparse matrix and accelerate any operation
on it. Second, these approaches require expensive preprocessing
of matrices to identify patterns in sparsity. Third, similar to the
general compression formats, these approaches incur significant
performance overheads due to inefficient indexing.

Software Optimizations for Sparse Matrix Kernels. There
is a large body of prior work on software optimizations to accelerate
sparse matrix computation by making sparse matrix kernels more
memory or cache efficient [6, 15, 62, 78] and more amenable towards
parallelization [1, 13, 54, 58]. A range of prior works also include
general software frameworks, such as MKL [1] and TACO [40], that
leverage these optimizations to produce more efficient code for
CPUs [1, 14, 15, 22, 23, 34, 37, 40, 56, 57, 62, 79, 87, 88, 90], GPUs
[10, 18, 31, 35, 51, 91, 93], or heterogeneous CPU-GPU systems [52,
55]. SMASH is orthogonal to these software optimizations and can
be seamlessly integrated into software frameworks that employ
such optimizations to further improve the performance and energy
efficiency of sparse matrix computation.

Hardware Accelerators and Hardware-Software Coopera-
tive Mechanisms for Sparse Matrix Kernels. Prior works pro-
pose a range of hardware accelerators [59, 63, 64, 66, 94, 96, 98] or
FPGA designs [26, 32, 48, 82] for sparse matrix computation. Sev-
eral of these works also leverage emerging memory technologies

13

such as memristors [17] and 3D-stacked memories [99] to accel-
erate sparse matrix kernels. These prior approaches are either 1)
only applicable to certain applications, such as SpMV [32] or sparse
neural networks [96, 98], or 2) assume hardware dedicated to a
specific type of sparse matrix kernel only. SMASH, in contrast, can
be generally applied across a diverse set of sparse matrix operations
and does not require fully-dedicated hardware to any particular
matrix/kernel type. The hierarchy of bitmaps in SMASH can be
used purely in software without hardware support in any system,
and the hardware unit proposed in SMASH can be added with low
overhead to general-purpose processors such as CPUs and GPUs.
Prior works propose a range of hardware-software cooperative
mechanisms [4, 5, 11, 28, 36, 60, 73, 76, 80, 81, 84, 85, 95, 100] to ac-
celerate memory-bound operations and can be applied to accelerate
sparse matrix computations. These approaches are designed to be
generally applicable to a very wide range of applications. SMASH, in
contrast, addresses the challenges of designing a hardware-software
cooperative mechanism for sparse matrix computation. Hence,
SMASH is largely orthogonal to these mechanisms and can be
integrated into them to accelerate sparse matrix computation.

9 CONCLUSION

We introduce SMASH, a general hardware-software cooperative
mechanism that accelerates sparse matrix operations and enables
highly-efficient indexing and storage of sparse matrices in memory.
The key idea of SMASH is to explicitly enable the hardware to recog-
nize and exploit data sparsity. To this end, we develop a flexible and
efficient sparse matrix encoding, based on a hierarchy of bitmaps,
that is recognized by both hardware and software. This encoding
enables efficient compression of any sparse matrix, regardless of
the structure of its sparsity. We develop a hardware mechanism that
can directly interpret sparse matrices encoded with hierarchical
bitmaps and accelerate computation on those matrices. The bitmap
representation, along with the hardware support, greatly reduces
the performance overheads of the expensive indexing operations
that make state-of-the-art sparse matrix formats inefficient in com-
putation. The expressive SMASH ISA provides programmability of
the hardware support and generality across a wide variety of sparse
matrix kernels. Our evaluation over a diverse set of 15 matrices and
four graphs demonstrates that SMASH significantly improves the
performance of SpMV, SpMM, and two graph algorithms (PageRank
and Betweenness Centrality), compared to the state-of-the-art CSR
format. We believe that the new ideas introduced in SMASH are
applicable beyond CPUs and can be a good fit for GPUs, hardware
accelerators, and processing in/near memory engines.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for feedback. We thank the
SAFARI Research Group members for feedback and the stimulat-
ing intellectual environment they provide. We acknowledge the
generous gifts provided by our industrial partners: Alibaba, Face-
book, Google, Huawei, Intel, Microsoft, and VMware. This research
was supported in part by the Semiconductor Research Corporation.
Christina Giannoula is funded for her postgraduate studies from
the General Secretariat for Research and Technology (GSRT) and
the Hellenic Foundation for Research and Innovation (HFRI).

REFERENCES

(1]
[2]

=
&

e
=t

=
o

=
=

oy
)

~
&

®
&

[34

Intel Math Kernel Library. http://software.intel.com/en-us/articles/intel-mkl/
Intel Xeon Gold 5118. https://ark.intel.com/content/www/us/en/ark/products/
120473/intel-xeon- gold-5118-processor-16-5m-cache-2-30-ghz.html.

SMASH code. https://github.com/CMU-SAFARI/SMASH

J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-in-Memory
Accelerator for Parallel Graph Processing,” in ISCA, 2015.

J. Ahn, S. Yoo, O. Mutlu, and K. Y. Choi, “PIM-Enabled Instructions: A Low-
Overhead, Locality-Aware Processing-in-Memory Architecture,” 2015.

K. Akbudak and C. Aykanat, “Exploiting Locality in Sparse Matrix-Matrix Mul-
tiplication on Many-Core Architectures,” TPDS, 2017.

M. Belgin, G. Back, and C. J. Ribbens, “Pattern-Based Sparse Matrix Representa-
tion for Memory-Efficient SMVM Kernels,” in ISC, 2009.

M. Besta, F. Marending, E. Solomonik, and T. Hoefler, “SlimSell: A Vectorizable
Graph Representation for Breadth-First Search,” in IPDPS, 2017.

M. Besta, M. Podstawski, L. Groner, E. Solomonik, and T. Hoefler, “To Push or
To Pull: On Reducing Communication and Synchronization in Graph Computa-
tions,” in HPDC, 2017.

J. Bolz, L. Farmer, E. Grinspun, and P. Schréder, “Sparse Matrix Solvers on the
GPU: Conjugate Gradients and Multigrid,” SSGGRAPH, 2003.

A.Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu, R. Thakur, D. Kim,
A. Kuusela, A. Knies, P. Ranganathan, and O. Mutlu, “Google Workloads for
Consumer Devices: Mitigating Data Movement Bottlenecks,” ser. ASPLOS, 2018.
S. Brin and L. Page, “The Anatomy of a Large-scale Hypertextual Web Search
Engine,” in WWW, 1998.

A. Buluc and J. R. Gilbert, “Challenges and Advances in Parallel Sparse Matrix-
Matrix Multiplication,” in ICPP, 2008.

A. Bulug and J. R. Gilbert, “Parallel Sparse Matrix-Matrix Multiplication and
Indexing: Implementation and Experiments,” SISC, 2012.

A. Buluc, S. Williams, L. Oliker, and J. Demmel, “Reduced-Bandwidth Multi-
threaded Algorithms for Sparse Matrix-Vector Multiplication,” in IPDPS, 2011.
A.Bulug, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson, “Parallel Sparse
Matrix-Vector and Matrix-Transpose-Vector Multiplication Using Compressed
Sparse Blocks,” in SPAA, 2009.

J. Cui and Q. Qiu, “Towards Memristor based Accelerator for Sparse Matrix
Vector Multiplication,” in ISCAS, 2016.

S.Dalton, L. Olson, and N. Bell, “Optimizing Sparse Matrix-Matrix Multiplication
for the GPU,” TMS, 2015.

T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix Collection,”
TOMS, 2011.

J. Dongarra, A. Lumsdaine, X. Niu, R. Pozoz, and K. Remington, “Sparse Matrix
Libraries in C++ for High Performance Architectures,” 1994.

A. Dziekonski and M. Mrozowski, “A GPU Solver for Sparse Generalized Eigen-
value Problems with Symmetric Complex-Valued Matrices Obtained Using
Higher-Order FEM,” IEEE Access, 2018.

A. Elafrou, G. Goumas, and N. Koziris, “Performance Analysis and Optimiza-
tion of Sparse Matrix-Vector Multiplication on Modern Multi-and Many-Core
Processors,” in ICPP, 2017.

A. Elafrou, V. Karakasis, T. Gkountouvas, K. Kourtis, G. Goumas, and N. Koziris,
“SparseX: A Library for High-Performance Sparse Matrix-Vector Multiplication
on Multicore Platforms,” TOMS, 2018.

R. D. Falgout, “An Introduction to Algebraic Multigrid,” Computing in Science
Engineering, 2006.

R. D. Falgout and U. M. Yang, “hypre: A Library of High Performance Precondi-
tioners,” in ICCS, 2002.

J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt, “A High Memory
Bandwidth FPGA Accelerator for Sparse Matrix-Vector Multiplication,” in FCCM,
2014.

L. Freeman, “A Set of Measures of Centrality Based on Betweenness,” Sociometry,
1977.

M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS: Scalable and
Efficient Neural Network Acceleration with 3D Memory,” in ASPLOS, 2017.

B. Graham, “Spatially-Sparse Convolutional Neural Networks,” arXiv, 2014.

J. L. Greathouse and M. Daga, “Efficient Sparse Matrix-vector Multiplication on
GPUs Using the CSR Storage Format,” in SC, 2014.

F. Gremse, A. Hofter, L. O. Schwen, F. Kiessling, and U. Naumann, “GPU-
Accelerated Sparse Matrix-Matrix Multiplication by Iterative Row Merging,”
SIAM, 2015.

P. Grigoras, P. Burovskiy, E. Hung, and W. Luk, “Accelerating SpMV on FPGAs
by Compressing Nonzero Values,” in FCCM, 2015.

U. Gupta, X. Wang, M. Naumov, C. Wu, B. Reagen, D. Brooks, B. Cottel, K. M.
Hazelwood, B. Jia, H. S. Lee, A. Malevich, D. Mudigere, M. Smelyanskiy, L. Xiong,
and X. Zhang, “The Architectural Implications of Facebook’s DNN-based Per-
sonalized Recommendation,” CoRR, 2019.

P. Hénon, P. Ramet, and J. Roman, “PASTIX: A High-Performance Parallel Direct
Solver for Sparse Symmetric Positive Definite Systems,” PMAA, 2002.

14

[35]

[36

[37

[38]

[39

[40

[41

[42

[43

[44]
[45]
[46]

[47]

[48]

[49

[50]

[51

[52

[53

[54

[55]
[56]

[57

[58

[59]

[60]

[61]

[62

[63

[64

[65

[66

[67

[68

C. Hong, A. Sukumaran-Rajam, B. Bandyopadhyay, J. Kim, S. E. Kurt, I. Nisa,
S. Sabhlok, U. V. Catalyiirek, S. Parthasarathy, and P. Sadayappan, “Efficient
Sparse-Matrix Multi-Vector Product on GPUs,” in HPDC, 2018.

K. Hsieh, S. M. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand, S. Ghose, and
O. Mutlu, “Accelerating Pointer Chasing in 3D-Stacked memory: Challenges,
Mechanisms, Evaluation,” 2016.

E.-]. Im, K. Yelick, and R. Vuduc, “Sparsity: Optimization Framework for Sparse
Matrix Kernels,” ITHPCA, 2004.

E.-J.Im and K. A. Yelick, “Optimizing Sparse Matrix Vector Multiplication on
SMP.” in PPSC, 1999.

J. Kestyn, V. Kalantzis, E. Polizzi, and Y. Saad, “PFEAST: A High Performance
Sparse Eigenvalue Solver Using Distributed-memory Linear Solvers,” in SC,
2016.

F. Kjolstad, S. Chou, D. Lugato, S. Kamil, and S. Amarasinghe, “taco: A Tool to
Generate Tensor Algebra Kernels,” in ASE, 2017.

K. Kourtis, G. Goumas, and N. Koziris, “Optimizing Sparse Matrix-Vector Multi-
plication using Index and Value Compression,” in CF, 2008.

K. Kourtis, V. Karakasis, G. Goumas, and N. Koziris, “CSX: An Extended Com-
pression Format for SpMV on Shared Memory Systems,” in PPoPP, 2011.

N. Kurd, S. Bhamidipati, C. Mozak, J. L. Miller, T. M. Wilson, M. Nemani, and
M. Chowdhury, “Westmere: A Family of 32nm IA Processors,” in ISSCC, 2010.
D. Langr and P. Tvrdik, “Evaluation Criteria for Sparse Matrix Storage Formats,”
in TPDS, 2016.

J. Leskovec and R. Sosi¢, “Snap: A General-Purpose Network Analysis and
Graph-Mining Library,” TIST, 2016.

J. Li, G. Tan, M. Chen, and N. Sun, “SMAT: An Input Adaptive Auto-tuner for
Sparse Matrix-vector Multiplication,” in PLDI, 2013.

S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “CACTI-P:
Architecture-Level Modeling for SRAM-Based Structures with Advanced Leak-
age Reduction Techniques,” in CAD, 2011.

C. Y. Lin, N. Wong, and H. K.-H. So, “Design Space Exploration for Sparse
Matrix-Matrix Multiplication on FPGAs,” FPT, 2013.

G. Linden, B. Smith, and J. York, “Amazon.com Recommendations: Item-to-Item
Collaborative Filtering,” IC, 2003.

B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky, “Sparse Convolutional
Neural Networks,” in CVPR, 2015.

W. Liu and B. Vinter, “An Efficient GPU General Sparse Matrix-Matrix Multipli-
cation for Irregular Data,” in IPDPS, 2014.

W. Liu and B. Vinter, “A Framework for General Sparse Matrix-matrix Multipli-
cation on GPUs and Heterogeneous Processors,” JPDC, 2015.

W. Liu and B. Vinter, “CSR5: An Efficient Storage Format for Cross-Platform
Sparse Matrix-Vector Multiplication,” in ICS, 2015.

X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, “Efficient Sparse Matrix-Vector
Multiplication on x86-Based Many-Core Processors,” in SC, 2013.

K. K. Matam, S. R. K. B. Indarapu, and K. Kothapalli, “Sparse Matrix-Matrix
Multiplication on Modern Architectures,” in HiPC, 2012.

J. Mellor-Crummey and J. Garvin, “Optimizing Sparse Matrix-Vector Product
Computations using Unroll and Jam,” IJHPCA, 2004.

D. Merrill and M. Garland, “Merge-Based Parallel Sparse Matrix-Vector Multi-
plication,” in SC, 2016.

D. Merrill and M. Garland, “Merge-Based Sparse Matrix-Vector Multiplication
(SpMV) using the CSR Storage Format,” in PPoPP, 2016.

A. K. Mishra, E. Nurvitadhi, G. Venkatesh, J. Pearce, and D. Marr, “Fine-Grained
Accelerators for Sparse Machine Learning Workloads,” in ASP-DAC, 2017.

A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez, “Exploiting Lo-
cality in Graph Analytics Through Hardware-Accelerated Traversal Scheduling,”
in MICRO, 2018.

M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman, J. Park, X. Wang,
U. Gupta, C. Wu, A. G. Azzolini, D. Dzhulgakov, A. Mallevich, I. Cherniavskii,
Y. Lu, R. Krishnamoorthi, A. Yu, V. Kondratenko, S. Pereira, X. Chen, W. Chen,
V. Rao, B. Jia, L. Xiong, and M. Smelyanskiy, “Deep Learning Recommendation
Model for Personalization and Recommendation Systems,” CoRR, 2019.

R. Nishtala, R. W. Vuduc, J. W. Demmel, and K. A. Yelick, “When Cache Blocking
of Sparse Matrix Vector Multiply Works and Why,” AAECC, 2007.

E. Nurvitadhi, A. Mishra, and D. Marr, “A Sparse Matrix Vector Multiply Accel-
erator for Support Vector Machine,” in CASES, 2015.

E. Nurvitadhi, A. Mishra, Y. Wang, G. Venkatesh, and D. Marr, “Hardware
Accelerator for Analytics of Sparse Data,” in DAC, 2016.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank Citation Ranking:
Bringing Order to the Web.” Stanford InfoLab, Tech. Rep., 1999.

S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng, C. Chakrabarti, H.-S. Kim,
D. Blaauw, T. Mudge, and R. Dreslinski, “OuterSPACE: An Outer Product Based
Sparse Matrix Multiplication Accelerator,” in HPCA, 2018.

G. Penn, “Efficient Transitive Closure of Sparse Matrices over Closed Semirings,”
AMILP, 2006.

A. Pinar and M. T. Heath, “Improving Performance of Sparse Matrix-Vector
Multiplication,” in SC, 1999.

http://software.intel.com/en-us/articles/intel-mkl/
https://ark.intel.com/content/www/us/en/ark/products/120473/intel-xeon-gold-5118-processor-16-5m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120473/intel-xeon-gold-5118-processor-16-5m-cache-2-30-ghz.html
https://github.com/CMU-SAFARI/SMASH

[100

L. Ren, X. Chen, Y. Wang, C. Zhang, and H. Yang, “Sparse LU Factorization for
Parallel Circuit Simulation on GPU.” in DAC, 2012.

Y. Saad, Iterative Methods for Sparse Linear Systems, 2003.

D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchitectural
Simulation of Thousand-Core Systems,” in ISCA, 2013.

S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens, “Scan Primitives for GPU
Computing,” in GH, 2007.

V. Seshadri, G. Pekhimenko, O. Ruwase, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
T. C. Mowry, and T. Chilimbi, “Page Overlays: An Enhanced Virtual Memory
Framework to Enable Fine-grained Memory Management,” in ISCA, 2015.

J. Shun and G. E. Blelloch, “Ligra: A Lightweight Graph Processing Framework
for Shared Memory,” in PPoPP, 2013.

A. Smith. 6 New Facts About Facebook. http://mediashift.org

L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “GraphR: Accelerating Graph
Processing using ReRAM,” in HPCA, 2018.

B.-Y. Su and K. Keutzer, “cISpMV: A Cross-Platform OpenCL SpMV Framework
on GPUs,” in ICS, 2012.

P. D. Sulatycke and K. Ghose, “Caching-Efficient Multithreaded Fast Multiplica-
tion of Sparse Matrices,” in IPPS, 1998.

S. Toledo, “Improving the Memory-System Performance of Sparse-Matrix Vector
Multiplication,” IBM Journal of research and development, 1997.

P.-A. Tsai, Y. L. Gan, and D. Sanchez, “Rethinking the Memory Hierarchy for
Modern Languages,” in MICRO, 2018.

P.-A. Tsai and D. Sanchez, “Compress Objects, Not Cache Lines: An Object-Based
Compressed Memory Hierarchy,” in ASPLOS, 2019.

Y. Umuroglu and M. Jahre, “An Energy Efficient Column-major Backend for
FPGA SpMV Accelerators,” in ICCD, 2014.

S. Van Dongen, “Graph Clustering via a Discrete Uncoupling Process,” SIMAX,
2008.

N. Vijaykumar, E. Ebrahimi, K. Hsieh, P. B. Gibbons, and O. Mutlu, “The Locality
Descriptor: A Holistic Cross-Layer Abstraction to Express Data Locality In
GPUs,” in ISCA, 2018.

N. Vijaykumar, A. Jain, D. Majumdar, K. Hsieh, G. Pekhimenko, E. Ebrahimi,
N. Hajinazar, P. B. Gibbons, and O. Mutlu, “A Case for Richer Cross-layer
Abstractions: Bridging the Semantic Gap with Expressive Memory,” in ISCA,
2018.

R. W. Vuduc and H.-J. Moon, “Fast Sparse Matrix-vector Multiplication by
Exploiting Variable Block Structure,” in HPCC, 2005.

Q. Wang, X. Zhang, Y. Zhang, and Q. Yi, “AUGEM: Automatically Generate
High Performance Dense Linear Algebra Kernels on x86 CPUs,” in SC, 2013.

J. B. White and P. Sadayappan, “On Improving the Performance of Sparse Matrix-
Vector Multiplication,” in HiPC, 1997.

J. Willcock and A. Lumsdaine, “Accelerating Sparse Matrix Computations via
Data Compression,” in ICS, 2006.

S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel, “Optimization
of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms,” in
SC, 2007.

T. Wu, B. Wang, Y. Shan, F. Yan, Y. Wang, and N. Xu, “Efficient PageRank and
SpMV Computation on AMD GPUs,” in ICPP, 2010.

Z. Xianyi, W. Qian, and Z. Yunquan, “Model-driven Level 3 BLAS Performance
Optimization on Loongson 3A processor,” in ICPADS, 2012.

S. Yan, C. Li, Y. Zhang, and H. Zhou, “yaSpMV: Yet Another SpMV Framework
on GPUs,” in PPoPP, 2014.

L. Yavits and R. Ginosar, “Sparse Matrix Multiplication on CAM Based Acceler-
ator,” CoRR, 2017.

M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis, and X. Qian,
“GraphP: Reducing Communication for PIM-based Graph Processing with Effi-
cient Data Partition,” in HPCA, 2018.

S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen,
“Cambricon-X: An Accelerator for Sparse Neural Networks,” in MICRO, 2016.
Y. Zhao, J. Li, C. Liao, and X. Shen, “Bridging the Gap between Deep Learning
and Sparse Matrix Format Selection,” in PPoPP, 2018.

X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou, L. Li, T. Chen, and
Y. Chen, “Cambricon-S: Addressing Irregularity in Sparse Neural Networks
Through a Cooperative Software/Hardware Approach,” in MICRO, 2018.

Q. Zhu, T. Graf, H. E. Sumbul, L. Pileggi, and F. Franchetti, “Accelerating Sparse
Matrix-Matrix Multiplication with 3D-Stacked Logic-in-Memory Hardware,” in
HPEC, 2013.

Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and X. Qian, “GraphQ:
Scalable PIM-Based Graph Processing,” in MICRO, 2019.

15

http://mediashift.org

	Abstract
	1 Introduction
	2 Motivation
	2.1 Compressed Storage Formats
	2.2 Limitations of Existing Compressed Storage Formats
	2.3 Other Approaches to Sparse Matrix Compression

	3 SMASH : Design Overview
	3.1 Design Challenges
	3.2 SMASH: Key Components

	4 SMASH: Detailed Design
	4.1 Software Compression (Hierarchical Bitmap Compression)
	4.2 Hardware Indexing (Bitmap Management Unit)
	4.3 SMASH ISA: Software/Hardware Interface
	4.4 An Alternative: Software-only SMASH

	5 SMASH Example Use Cases
	5.1 Example Use Case 1: SpMV
	5.2 Example Use Case 2: SpMM

	6 Experimental Setup
	7 Evaluation Results
	7.1 Software-only Approaches
	7.2 Sparse Matrix Kernels
	7.3 Graph Applications
	7.4 Storage Efficiency
	7.5 Format Conversion Overhead
	7.6 SMASH Area Overhead

	8 Related Work
	9 Conclusion
	References

