

Spatial Acceleration for Efficient and Scalable Horizontal Diffusion Weather Stencil Computation

Gagandeep Singh, Alireza Khodamoradi, Kristof Denolf, Jack Lo, Juan Gómez-Luna, Joseph Melber, Andra Bisca, Henk Corporaal, and Onur Mutlu

> 37th International Conference on Supercomputing (ICS) Orlando, Florida

ETHZURICH TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

AMD together we advance_

Talk Outline

Background and Motivation

SPARTA: Design and Implementation

Evaluation of SPARTA and Key Results

Summary

SAFARI

Stencil Computations and Applications

- Stencil computations update values in a grid using a fixed pattern of grid points
- Stencils are used in ~30% of high-performance computing applications

Fluid Dynamics

Image Processing

Climate/Weather Simulations

Image sources: http://www.flometrics.com/fluid-dynamics/computational-fluid-dynamics Naoe, Kensuke et al., "Secure Key Generation for Static Visual Watermarking by Machine Learning in Intelligent Systems and Services," IJSSOE, 2010

Stencil Computations in Weather Applications

COSMO (Consortium for Small-Scale Modeling) weather prediction application [Thaler+, PASC'19]

- The essential part of the weather prediction models is called the **dynamical core (dycore)**
- Around **80 different** stencil compute motifs
- ~30 variables and ~70 temporary arrays
- Complex stencil computation

Fundamental Complex Stencil: Horizontal Diffusion

- Compound stencil kernel consists of a collection of elementary stencil kernels
- Iterates over a 3D grid performing Laplacian and flux operations
- Complex memory access behavior with low arithmetic intensity

Fundamental Complex Stencil: Horizontal Diffusion

- Compound stencil kernel consists of a collection of elementary stencil kernels
- Iterates over a 3D grid performing Laplacian and flux operations

Roofline Analysis

<13.5% peak floating-point performance on current computing systems

Spatial Architecture: Al Engine

- High compute density
- Allows for tailoring of the dataflow to optimize data movement

Spatial Architecture: Al Engine

- High compute density
- Allows for tailoring of the dataflow to optimize data movement

 2D layout of spatial architectures maps well to processing multidimensional stencil grids

Our Goal

Mitigate the performance bottleneck of compound weather prediction kernels by taking advantage of the characteristics of spatial computing systems

Our Proposal

Novel spatial accelerator for efficient and scalable horizontal diffusion weather stencil computation

Talk Outline

Background and Motivation

SPARTA: Design and Implementation

Evaluation of SPARTA and Key Results

Summary

SAFARI

SPARTA Design: Single AIE Core Mapping

SPARTA Design: Single AIE Core Mapping

Imbalanced computation and memory demands

Flux stencils have lower compute-to-memory ratio than Laplacian stencils

SPARTA Design: Multi-AIE Core Mapping

Divide computation over multiple AIE Cores: dual-AIE and tri-AIE design

Compute-bound distributed among multiple cores

Parallel execution of multiple AIE cores per shimDMA

SAFARI

AMD, 15

SPARTA Design: Scaling Challenges

- **1.** Balancing computation and memory resources
- 2. Limited external memory channels
- **3. Gathering and ordering of calculated results** before sending them back to the external memory
- **4. Placing input and output cores** close to the external memory interface to optimize data transfer

Balance compute and memory resources

Maximize the usage of shimDMA channels

Efficient gathering and reordering of output

Exploit data-reuse by broadcasting input data to multiple cores

AMD, 18

SAFARI

SPARTA Application Toolflow

MLIR (Multi-Level Intermediate Representation) to separate the AIE core computation optimization and the effective dataflow management

https://github.com/Xilinx/mlir-aie

Talk Outline

Background and Motivation

SPARTA: Design and Implementation

Evaluation of SPARTA and Key Results

Summary

SAFARI

Evaluation Methodology (1/2)

Real system evaluation

Versal AIE Configuration

- Frequency: 1 GHz
- Cores: 400

Evaluation Methodology (2/2)

- State-of-the-art baselines on all major computing platforms
 - CPU [Singh+, FPL'21]
 - GPU [Licht+, CGO'21]
 - FPGA [Singh+, FPL'21]

• Programming tools

- MLIR-AIE
- Vitis Chess Compiler v2022.2

• Elementary stencil benchmarks

- jacobi-1d
- jacobi-2d-3pt
- Laplacian
- jacobi-2d-9pt
- seidel-2d

SPARTA Performance: Single and Multi-AIE Design (1/2)

AMD, 26

SPARTA Performance: Single and Multi-AIE Design (1/2)

SPARTA Performance: Single and Multi-AIE Design (1/2)

SPARTA Performance: Scaling Accelerator Design

SPARTA Performance: Scaling Accelerator Design

C)	7	6.53		
Se	5		Each B-block has dedicated	i
Ä	5		shimDMA channel assigned	- I

Single B-block provides 4.3x higher performance compared to a single-tri-AIE-based design

Performance scales linearly with the number of B-blocks

SPARTA Performance: Comparison to SOTA

Stencil	Work	Year	Platform	Device	Mem. Tech.	Peak Perf. (TFLOPS)	Peak B/W (GB/s)	Perf. (GOp/s)	Arch. Roof. (%)
hdiff	[23]	2019	FPGA	XCVU3P [97]	DDR4	0.97	25.6	129.9	13.4%
hdiff	[16]	2021	CPU	Xeon E5-2690V3 [98]	DDR4	0.24	68.0	32.0	13.0%
hdiff	[24]	2021	CPU	POWER9 [31]	DDR4	0.49	110.0	58.5	11.8%
hdiff	[16]	2021	GPU	V100 [32]	HBM2	14.1	900.0	849.0	6.1%
hdiff	[16]	2021	FPGA	Stratix 10 [99]	DDR4	9.2	76.8	145.0	1.6%
hdiff	[24]	2021	FPGA	XCVU37P [97]	HBM	3.6	410.0	485.4	13.5%
hdiff	SPARTA	2023	AIE	XCVC1902 [83]	DDR4	3.1	25.6	995.7	32.2%

SPARTA outperforms state-of-the-art CPU, GPU, and FPGA implementations by 17.1x, 1.2x, and 2.1x, respectively

SPARTA Performance: Comparison to SOTA

Stencil	Work	Year	Platform	Device	Mem. Tech.	Peak Perf. (TFLOPS)	Peak B/W (GB/s)	Perf. (GOp/s)	Arch. Roof. (%)
hdiff	[23]	2019	FPGA	XCVU3P [97]	DDR4	0.97	25.6	129.9	13.4%
hdiff	[16]	2021	CPU	Xeon E5-2690V3 [98]	DDR4	0.24	68.0	32.0	13.0%
hdiff	[24]	2021	CPU	POWER9 [31]	DDR4	0.49	110.0	58.5	11.8%
hdiff	[16]	2021	GPU	V100 [32]	HBM2	14.1	900.0	849.0	6.1%
hdiff	[16]	2021	FPGA	Stratix 10 [99]	DDR4	9.2	76.8	145.0	1.6%
hdiff	[24]	2021	FPGA	XCVU37P [97]	HBM	3.6	410.0	485.4	13.5%
hdiff	SPARTA	2023	AIE	XCVC1902 [83]	DDR4	3.1	25.6	995.7	32.2%

State-of-the-art implementations achieve only 1.6%-13.5% of the peak theoretical performance of a platform

SPARTA achieves the highest peak roofline performance of 32.2%

SPARTA Performance: Comparison to SOTA

Stencil	Work	Year	Platform	Device	Mem. Tech.	Peak Perf. (TFLOPS)	Peak B/W (GB/s)	Perf. (GOp/s)	Arch. Roof. (%)
hdiff	[23]	2019	FPGA	XCVU3P [97]	DDR4	0.97	25.6	129.9	13.4%
hdiff	[16]	2021	CPU	Xeon E5-2690V3 [98]	DDR4	0.24	68.0	32.0	13.0%
hdiff	[24]	2021	CPU	POWER9 [31]	DDR4	0.49	110.0	58.5	11.8%
hdiff	[16]	2021	GPU	V100 [32]	HBM2	14.1	900.0	849.0	6.1%
hdiff	[16]	2021	FPGA	Stratix 10 [99]	DDR4	9.2	76.8	145.0	1.6%
hdiff	[24]	2021	FPGA	XCVU37P [97]	HBM	3.6	410.0	485.4	13.5%
hdiff	SPARTA	2023	AIE	XCVC1902 [83]	DDR4	3.1	25.6	995.7	32.2%

SPARTA is 2.4x more energy-efficient with 42.2 GOps/Watt than the state-of-the-art FPGA design

More in the Paper

- Results for elementary stencil benchmarks
- Analytical modeling for computation and memory requirements

• Implementation details for single and multi-AIE core mapping

- Managing data transfer using MLIR
- Discussion and key takeaways

More in the Paper

Results for elementary stencil benchmarks

SPARTA: Spatial Acceleration for Efficient and Scalable Horizontal Diffusion Weather Stencil Computation

Gagandeep Singh^{a,b}Alireza Khodamoradi^aKristof Denolf^aJack Lo^aJuan Gómez-Luna^bJoseph Melber^aAndra Bisca^aHenk Corporaal^cOnur Mutlu^b^aAMD Research^bETH Zürich^cEindhoven University of Technology

https://arxiv.org/pdf/2303.03509.pdf

Discussion and key takeaways

Full Paper

SPARTA is Open Sourced

https://github.com/CMU-SAFARI/SPARTA

https://github.com/Xilinx/mlir-aie

AMD 36

Talk Outline

Background and Motivation

SPARTA: Design and Implementation

Evaluation of SPARTA and Key Results

SAFARI

Summary

Mitigate the performance bottleneck of compound weather prediction kernels by taking advantage of the characteristics of spatial computing systems

SPARTA is a novel spatial accelerator for efficient and scalable horizontal diffusion weather stencil computation

SPARTA outperforms state-of-the-art CPU, GPU, and FPGA horizontal diffusion implementations by 17.1x, 1.2x, and 2.1x, respectively

Spatial Acceleration for Efficient and Scalable Horizontal Diffusion Weather Stencil Computation

Gagandeep Singh, Alireza Khodamoradi, Kristof Denolf, Jack Lo, Juan Gómez-Luna, Joseph Melber, Andra Bisca, Henk Corporaal, and Onur Mutlu

> 37th International Conference on Supercomputing (ICS) Orlando, Florida

ETHZURICH TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

AMD together we advance_