SPECTR: Formal Supervisory Control and Coordination for Many-core Systems Resource Management

Amir M. Rahmani[†], Bryan Donyanavard[†], Tiago Mück[†], Kasra Moazzemi[†], Axel Jantsch[‡], Onur Mutlu§, Nikil Dutt†

†University of California, Irvine, USA ‡TU Wien, Austria **§**ETH Zurich, Switzerland {amirr1,bdonyana,tmuck,moazzemi,dutt}@uci.edu, axel.jantsch@tuwien.ac.at, onur.mutlu@inf.ethz.ch

Challenges in resource management of many-cores systems

• Several conflicting goals/constraints

Problem **Current resource management** solutions use Ad hoc heuristics

• Can be sub-optimal

MIMO Control Theory

- Formal methodology
- Provides guarantees

- Heterogeneous resources
- Multiple tunable knobs

- Hard to add learning
- No guarantees \bullet
- No formal methodology
- Lack of flexibility

- Fixed policies/goals X
- Not scalable

SPECTR

X Supports only continuous

systems dynamics

Solution

Scalability via Supervisory control

Autonomy via

- Models discrete system dynamics
- Hierarchical system decomposition
- Automatic synthesis and verification
- High-level policy management

- Allows gain scheduling and dynamic references
- low computational complexity
- Integrate logic with continuous dynamics

Results

System goals

- Meet the QoS requirement of foreground app
- Stay below Thermal Design Power (TDP) and save energy
- QoS task: x264

3-phase execution scenario:

- 1) Only foreground app runs
- 2) Thermal emergency (max power decreases)
- 3) Background apps triggered

