
SPECTR: Formal Supervisory Control and Coordination
for Many-core Systems Resource Management

Amir M. Rahmani†‡* Bryan Donyanavard†* Tiago Mück†* Kasra Moazzemi†* Axel Jantsch‡
Onur Mutlu§ Nikil Dutt†

†University of California, Irvine, USA ‡TU Wien, Austria §ETH Zurich, Switzerland

Abstract
Resource management strategies for many-core systems need to
enable sharing of resources such as power, processing cores, and
memory bandwidthwhile coordinating the priority and significance
of system- and application-level objectives at runtime in a scalable
and robust manner. State-of-the-art approaches use heuristics or
machine learning for resource management, but unfortunately lack
formalism in providing robustness against unexpected corner cases.
While recent efforts deploy classical control-theoretic approaches
with some guarantees and formalism, they lack scalability and
autonomy to meet changing runtime goals.

We present SPECTR, a new resource management approach for
many-core systems that leverages formal supervisory control the-
ory (SCT) to combine the strengths of classical control theory with
state-of-the-art heuristic approaches to efficiently meet changing
runtime goals. SPECTR is a scalable and robust control architecture
and a systematic design flow for hierarchical control of many-core
systems. SPECTR leverages SCT techniques such as gain sched-
uling to allow autonomy for individual controllers. It facilitates
automatic synthesis of the high-level supervisory controller and
its property verification.

We implement SPECTR on an Exynos platform containingARM’s
big.LITTLE-based heterogeneousmulti-processor (HMP) and demon-
strate that SPECTR’s use of SCT is key to managing multiple in-
teracting resources (e.g., chip power and processing cores) in the
presence of competing objectives (e.g., satisfying QoS vs. power
capping). The principles of SPECTR are easily applicable to any
resource type and objective as long as the management problem
can be modeled using dynamical systems theory (e.g., difference
equations), discrete-event dynamic systems, or fuzzy dynamics.

CCS Concepts • Computer systems organization → Self-
organizing autonomic computing;

Keywords Adaptive Control Theory, Supervisory Control, Auton-
omy, Heterogeneous Multi-core Processor, Power Management

1 Introduction
Runtime resource management for many-core systems is increas-
ingly challenging due to the complex interaction of: i) integrating
hundreds of (heterogeneous) cores and uncore components on a

* These authors contributed equally to this work.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4911-6/18/03. . . $15.00
https://doi.org/10.1145/3173162.3173199

single chip, ii) limited amount of system resources (e.g., power,
cores, interconnects), iii) diverse workload characteristics with con-
flicting constraints and demands, and iv) increasing pressure on
shared system resources from data-intensive workloads.

In this context, autonomy is crucial: multiple system goals vary-
ing over time need to be adaptively managed and objectives holisti-
cally coordinated. As a result, designers face a large space of config-
uration parameters that often are controlled by a limited number
of actuation knobs, which in turn generate a very large number
of cross-layer actuation configurations. For instance, Zhang and
Hoffman [93] show that for an 8-core Intel Xeon processor, com-
bining only a handful of actuation knobs (such as clock frequency
and Hyperthreading levels) generates over 1000 different actuation
configurations; they use binary search to efficiently explore the
configuration space for achieving a single goal: cap the Thermal
Design Power (TDP) while maximizing performance. Searching
the configuration space is common practice in many similar single-
goal, heuristic-based, runtime resource management approaches
[10, 11, 69, 82, 86].While there is a large body of literature on ad-hoc
resource management approaches for processors using heuristics
and thresholds [15, 17, 24, 46], rules [18, 44], solvers [34, 65], and
predictive models [7, 19–21], there is a lack of formalism in provid-
ing guarantees for resource management of complex many-core
systems. We find that prior art focuses primarily on performance,
reliability, and adaptivity (learning from feedback), with relatively
little research on the following critical questions:

1. Robustness: How can we provide guarantees and perform
robustness analysis?

2. Formalism:What formalisms facilitate reasoning about and
synthesis of resource management strategies?

3. Efficiency: How can we design lightweight, yet responsive
controllers?

4. Coordination:How do we control and coordinate (possibly
conflicting) actuations while tracking multiple objectives
simultaneously (e.g., frame rate and chip power)?

5. Scalability:How canwe properly design control hierarchies
to manage large and complex systems?

6. Autonomy: How can controllers automatically respond to
abrupt runtime changes in objectives (e.g., changing the
priority of objectives)?

Table 1 shows the coverage of existing on-chip resource manage-
ment approaches in handling these key issues. Some machine learn-
ing based and heuristic approaches (e.g., [7, 21, 24, 32] in Rows A
and B) focus on efficiency (3) and coordination (4), but fail to
address other attributes such as formalism in providing robustness
against unexpected corner cases. Single-Input-Single-Output (SISO)
control theoretic approaches (e.g., [56] in Row C) provide means to
address robustness (1), formalism (2), and efficiency (3), while
lacking the ability to concurrently coordinate and control multiple
objectives in a non-conflicting manner. Although multiple SISOs

https://doi.org/10.1145/3173162.3173199

Table 1. Major on-chip resource management approaches and the
key questions they address (∗ = partially addressed)

Methods 1.
Ro

bu
st
ne
ss

2.
Fo
rm

al
ism

3.
Effi

ci
en
cy

4.
Co

or
di
na
tio

n

5.
Sc
al
ab
ili
ty

6.
Au

to
no
m
y

A Machine learning [7, 21, 32] ✓ ✓ ✓
B Estimation/Model based

✓ ✓heuristics [15, 17, 19, 24, 46]
C SISO Control Theory [40, 55, 56, 70, 71] ✓ ✓ ✓ ∗

D MIMO Control Theory [66, 67] ✓ ✓ ✓ ✓
E Supervisory Control Theory [SPECTR] ✓ ✓ ✓ ✓ ✓ ✓

have been used in nested loops to achieve scalability in simple
control problems [40, 55], they suffer from scalability issues in com-
plex resource management problems for many-core systems where
coordination of multiple actuators is necessary. Recently-proposed
Multiple-Input-Multiple-Output (MIMO) control [66, 67] (Row D)
enables coordination (4), addressing attributes (1) to (4). For exam-
ple, such control is able to simultaneously and robustly track (i.e.,
meet) the reference (i.e., target) power consumption and instruc-
tions per second (IPS) on a single-core processor. However, MIMO
control lacks scalability (5) for heterogeneous multi-processing
(HMP) architectures due to 1) the exponential growth in computa-
tional complexity with increasing numbers of inputs and outputs,
and 2) the difficulty of performing Dynamic System Model iden-
tification for large systems. Furthermore, both SISO and MIMO
controllers lack autonomy (6), which enables rapid responses to
abrupt runtime changes: while SISO is a single objective controller,
MIMO deploys a design-time-configured Tracking Error Cost ma-
trix that captures the priority of tracking each output; and both
are unable to adapt to runtime changes. Autonomous operation of
such classic controllers requires an external entity to coordinate
their set-points and schedule their gains dynamically.1

Our goal is to address all six key challenges in HMP resource
management. To this end, we propose SPECTR, a scalable (5) and
autonomous (6) approach based on Supervisory Control Theory
(SCT) [73, 84]. SPECTR provides formal and systematic supervision
of classical MIMO/SISO controllers, thereby holistically addressing
all six key attributes (Row E in Table 1). SCT uses modular decom-
position of control problems to manage their complexity. SCT is
widely used for higher-level control of complex systems such as
communication and transportation networks, computer databases,
and manufacturing systems in order to achieve higher performance
and predictable operation [73]. SCT’s application scope is wider
than classical control theory, since supervisory controllers have
the ability to integrate logic (i.e., discrete-event dynamic system)
with continuous/discrete dynamics (i.e., differential/difference
equations) in the control of complex systems [49]. Therefore, SCT is
suitable for any resource management problem (such as managing
power, thermal, QoS, and interconnects) that can be modeled using
logic and discrete system dynamics.

SPECTR enables dynamic management of multiple shared many-
core system resources in a coordinated and autonomous fashion by
enforcing higher-level objectives using the formal SCT approach
for global resource management at the highest level, with the local
resource allocators formulated as traditional control problems (e.g.,
PID-based SISO [36], LQG-based MIMO [75]). To our knowledge,
1 Set-points are reference values tracked by a controller to reach a particular target (e.g.,
a desired frame rate), and gains are internal controller parameters (e.g., the coefficients
of the proportional, integral and derivative (PID) terms in a PID controller) [36].

SPECTR is the first attempt to leverage SCT in the on-chip resource
management domain to achieve both scalability and autonomy.

We implement SPECTR on an ODROID-XU3 platform [35] which
contains an ARM big.LITTLE based Exynos 5422 Octa-core SoC that
has heterogeneous multi-processing cores.2 We show experimental
results to demonstrate the effectiveness of SPECTR in orchestrating
multiple low-level classic controllers using SCT techniques such as
gain scheduling, precompensation, and reference regulation. Our
experiments compare SPECTR’s ability to meet quality of service
(QoS) references (i.e., targets) while operating under a power budget
against two alternative resource-management techniques adapted
from state-of-the-art solutions [66, 93]. The resource managers
control both the operating frequency (DVFS) and the number of
active cores in an HMP. We evaluate the different resource man-
agers on their accuracy and autonomy when managing a system
under varying conditions with different goals. Our results show
that SPECTR not only matches or surpasses the performance of the
best state-of-the-art techniques in all cases, but also uniquely and
efficiently adapts to both workload variation and dynamic system
requirements.

Key contributions of this paper are:
• Scalability: We quantify the scalability deficiency of clas-
sical control-theoretic approaches in managing resources
of complex many-core systems. We do so by analyzing the
challenges of building models (i.e., system identification) for
such controllers. We present the benefits of SCT in managing
the complexity of control problems for HMPs, primarily via
modular decomposition.

• Autonomy: We show that lack of resource management
autonomy in response to changing system goals can either
endanger the safety of the system or under-utilize shared
resources. We deploy the idea of gain scheduling from SCT
to achieve autonomy through dynamic goal management by
updating the policy (i.e., parameters) of low-level controllers
according to high-level goal(s).

• Experimental Case Study:We demonstrate the effective-
ness of SPECTR via real system implementation on the
Exynos platform, showing SPECTR’s accuracy in maintain-
ing QoS and responsiveness to dynamic power constraints
for workloads with unpredictable background task interfer-
ence.

• Systematic Design Flow:We present a systematic design
flow for HMP architects to ease the task of hierarchical SCT
design and verification, simplifying the development of re-
source managers with autonomy and scalability while pre-
serving the other beneficial properties of control theory such
as formalism, robustness analysis, and efficiency.

2 Motivation
We motivate the need for supervisory control of multiple low-level
controllers (e.g., MIMOs) to provide autonomy and scalability in
resource management.

2.1 Autonomy: Managing Dynamic System-Wide Goals
Controllers may behave non-optimally, or even detrimentally, in
meeting a shared goal without knowledge of the presence or be-
havior of seemingly orthogonal controllers [7, 13, 24, 25, 72, 86].
2 In the remainder of this work, we refer to this as the Exynos platform.

Consider theMIMO controller in Figure 1 that controls a single-core
system with two control inputs (u(t)) and interdependent measured
outputs (y(t)) [66]. The controller tracks two objectives (frames
per second, or FPS, and power consumption) by controlling two
actuators (operating frequency and cache size). We implement the
MIMO using a Linear Quadratic Gaussian (LQG) controller [75]
similarly to [66]:

x(t + 1) = A × x(t) + B × u(t) (1)
y(t) = C × x(t) + D × u(t) (2)

where x is the system state, y is the measured output vector, and u
is the control input vector.3

Controller System

Freq

Cache Size

FPS

Power

+

+_

_

R
ef

er
en

ce
 V

al
ue

s

(u)
(x)

(y)

Actuators
(Control Inputs)

Sensors
(Measured Outputs)

Figure 1. Basic 2×2MIMO for single-core system. Clock frequency
and cache size are used as control inputs. FPS and power are mea-
sured outputs that are compared with reference (i.e., target) values.

LQG control allows us to specify 1) the relative sensitivity of a
system to control inputs, and 2) the relative priority of measured
outputs. This is done using 1) a weighted Tracking Error Cost matrix
(Q) and 2) a Control Effort Cost matrix (R). The weights are specified
during the design of the controller. While this is convenient for
achieving a fixed goal, it can be problematic for goals that change
over time (e.g., minimizing power consumption before a predicted
thermal emergency).

The controller must choose an appropriate trade-off when we
cannot achieve both desirable performance and power concurrently.
Unfortunately, classical MIMOs fix control weights at design time,
and thus cannot perform runtime tradeoffs that require changing
output priorities. Even with constant reference values, i.e., desired
output values, unpredictable disturbances (e.g., changing workload
and operating conditions) may cause the reference values to become
unachievable. It is also plausible for the reference values themselves
to change dynamically at runtime with system state and operating
conditions (e.g., a thermal event).

Let us now consider a more complex scenario: a multi-threaded
application running on Linux, executing on a mobile processor,
where the system needs to track both the performance (FPS) and
power simultaneously. Figure 2 shows the 2 × 2MIMO model for
this system with operating frequency and the number of active
cores as control inputs, and FPS and power as measured outputs.

Both the FPS and power reference values are trackable individ-
ually, but not jointly. We implement and compare two different
MIMO controllers in Linux to show the effect of competing objec-
tives. One controller prioritizes FPS, and the other prioritizes power.
Figure 3 shows the power and performance (in FPS) achieved by
each MIMO controller using typical reference values for a mobile
device: 60 FPS and 5 Watts. The application is x264, and the mobile
processor consists of an ARM Cortex-A15 quad-core cluster. Each
3We interchangeably use the terms (measured output and sensor), as well as the terms
(control input and actuator), as shown in Figure 1.

CPU Cluster

Clock Frequency

Active Cores

FPS

Power

Figure 2. 2 × 2 MIMO model for a quad-core ARM cluster.

MIMO controller is designed with a different Q matrix to prioritize
either FPS or power: Figure 3a’s controller favors FPS over power
by a ratio of 30:1 (i.e., only 1% deviation from the FPS reference is
acceptable for a 30% deviation from the power reference), while
Figure 3b uses a ratio of 1:30. We observe that neither controller is
able to manage changing system goals. Thus, there is a need for a
supervisor to autonomously orchestrate the system while consid-
ering the significance of competing objectives, user requirements,
and operating conditions.

The use of supervisory control presents at least three additional
advantages over conventional controllers. First, fully-distributed
MIMO or SISO controllers cannot address system-wide goals such
as power capping. Second, conventional controllers cannot model
actuation effects that require system-wide perspective, such as
task migration. Third, classical control theory cannot address prob-
lems requiring optimization (e.g., minimizing an objective function)
alone [49, 66].

2.2 Scalability Issue 1: System Identification Complexity
Using a single MIMO controller for coordinated management of a
large system comprised of several parallel subsystems (e.g., multi-
core systems) is often not possible. The first step in controller design
is to construct the dynamic system model by using either analytical
models or black-box system identification methods. Constructing
analytical models for complex structures such as processors is very
challenging [36, 67] and is often performed for simple first-order
SISO systems. Quantifying the effect of frequency scaling on mea-
sured power consumption is one example [55]. It is more practical
to use statistical or black-box methods based on System Identifica-
tion Theory [52, 53] for isolating the deterministic and stochastic
components of the system and building the model for complex sys-
tems. An Uncertainty Factor is added to the model and Robustness
Analysis [75] is performed to guarantee that the controller will
correctly work with this level of uncertainty.

Each control input should have an impact on all measured out-
puts to properly identify a target system. This is not always the
case in multi-core systems. Figure 4 (left) shows a 4 × 4 MIMO for
a generic multi-core system. Actuators 1 and 4 affect the entire
system, while Actuators 2 and 3 are limited to different specific

(a) FPS-oriented controller. (b) Power-oriented controller.

Figure 3. x264 running on a quad-core cluster controlled by 2 × 2
MIMOs with different output priorities.

Little cluster

Idle cycles

Frequency

FPS

Power

4

Big cluster

Idle cycles

Frequency

FPS

Power

4

4

4

Sub-System 1

Sub-System 2

System
Actuator 1

Actuator 2

Actuator 3

Actuator 4

Sensor 1

Sensor 2

Sensor 3

Sensor 4

System for 4 X 4 MIMO System for 10 X 10 MIMO

Figure 4. System for 4 × 4 (left) and 10 × 10 (right) MIMOs. The
10 × 10 has 8 per-core idle cycle insertion + 2 per-cluster frequency
inputs, and 8 per-core FPS + 2 per-cluster power outputs.

subsystems. Similarly, Sensors 1 and 4 measure system-wide met-
rics, while Sensors 2 and 3 measure metrics at the subsystem level.
This is problematic in designing a MIMO, because we must identify
the system as a black box without any knowledge of subsystems.
Multi-core systems often contain actuators and sensors with vary-
ing granularity in this manner. For example, consider the Exynos
platform [30] that contains eight cores divided into two clusters:
DVFS frequency settings and power sensors are applied at the
cluster level, while performance counters are deployed per-core,
which requires a 10 × 10 MIMO (Figure 4, right). An HMP has
the additional property of incorporating non-uniform cores, which
means system-wide actuators can have greatly different effects on
subsystems.

The number of inputs and their subsystem scope has a significant
impact on the difficulty of identifying an accurate system model.
Figure 5 shows the modeled vs. observed system behavior of the
power output for two MIMOs: the left plot is for a 2 × 2 controller
(system in Figure 2) with per-cluster inputs and outputs; the right
plot is for a 10 × 10 controller (system in Figure 4), showing sig-
nificant deviation in accuracy. Section 5.2 quantifies and discusses
system scalability in detail. We conclude that a single MIMO for
controlling a multi-core system is not practical; instead, we propose
using multiple coordinated MIMOs to control a multi-core platform.

0 50 100

Time

-2

0

2

N
or

m
al

iz
ed

 P
ow

er

Power output of 2x2 MIMO model

Predicted model for 2x2 system
Measured output for 2x2 system

10 20 30 40

Time

-0.5

0

0.5

N
or

m
al

iz
ed

 P
ow

er

Cluster power of 10x10 multicluster MIMO model

Predicted model for 10x10 system
Measured output for 10x10 system

Figure 5. The accuracy of identified system models for a 2 × 2
MIMO (Figure 2) compared to a 10 × 10MIMO (Figure 4). Shown
is a single cluster-wide measured output for power, normalized
around mean values.

2.3 Scalability Issue 2: Unmanageable State Space
Prior MIMO controller coordination in computer systems [66] is
limited to small, simple systems, such as a single-core processor,
and does not scale well. The complexity of a MIMO controller grows
exponentially with the number of inputs and outputs due to the
size of the state space.

During the design of an LQG controller, we must generate coef-
ficient matrices A, B, C , D (Equations 1,2) in order to characterize

the system [75]. Whenever the controller is invoked, the matrix
multiplication operations in Equations 1 and 2 are executed. The
largest of these matrices is A, whose dimensions are determined by
#inputs + order and #outputs + order . In a discrete controller, the
order of a controller model determines how observed output history
is stored in the model, and directly impacts both the controller size
and complexity. For a 2× 2MIMO, these matrices are up to 4× 4 for
a second-order model. An LQG controller’s order must be larger
than its number of outputs to work efficiently [36].

The coefficient matrices grow as we increase the order of the
model. For instance, consider the fourth-ordermodel used by Pothukuchi
et al. [66], resulting in amaximummatrix size 6×6. Assume a fourth-
order model for the remainder of this example. If we add one more
actuator (e.g., reorder buffer size) to the control system inputs, the
matrices grow to 7 × 6 for just a single-core processor [66]. Now,
if we use the same technique to design a single MIMO for a multi-
core processor, the size of the controller will grow to unmanageable
sizes, complicating the controller design through system identifica-
tion, and impacting the size and computational complexity of the
controller implementation. To manage the same objectives for a
dual-core system, our 2 × 2MIMO would turn into a 4 × 4MIMO
(duplicate control inputs and measured outputs for each core). This
would require matrices of size 8 × 8, and even larger for a multi-
cluster HMP (Figure 4). Figure 6 shows the number of operations
required each time the LQG controller in Equation 1 is invoked for
different numbers of cores and orders. The number of multiply and
add operations required for matrix multiplication grows exponen-
tially along with the number of cores (i.e., number of inputs and
outputs). The order becomes insignificant once #cores >> order .
Designing a single controller for runtime management of a many-
core processor is therefore infeasible.

By deploying multiple MIMOs to manage a multi-core platform,
we risk the same pitfalls as any uncoordinated management scheme.
We must therefore provide coordination of the MIMOs. In order to
preserve the benefits of MIMO control, we choose to deploy a local
SISO/MIMO for each subsystem to manage identical objectives.
This local SISO/MIMO is designed for its specific subsystem (e.g.,
core or cluster). This does not solve the issue of actuators and sen-
sors applied and observed at different granularities in the platform.
To manage hierarchy and system-wide inputs and outputs, we need
either a supervisor on top of our local controllers, or a nested con-
troller approach. A nested controller is not scalable, and is unable
to manage the multiple modes of operation we may encounter due

10 20 30 40 50 60 70
102

103

104

105

106

107

108

109

Cores

#
O
pe
ra
tio

ns

2nd order
4th order
8th order

Figure 6. The total number of multiply-add operations required
for matrix multiplication of a MIMO for different orders and core
counts (input/output sizes).

to conflicting objectives [66]. Therefore, we propose a system-wide
supervisor to coordinate and control objectives within and between
each local controller.

3 Background on Supervisory Control Theory
Supervisory control utilizes modular decomposition to mitigate
the complexity of control problems, enabling automatic control of
many individual controllers or control loops. Supervisory control
theory (SCT) [73] benefits from formal synthesis methods to define
principal control properties for controllability and observability.
The emphasis on formal methods in addition to modularity leads
to hierarchical consistency and non-conflicting properties.

3.1 Scalability via Supervisory Control
SCT solves complex synthesis problems by breaking them into
small-scale sub-problems, known as modular synthesis. The results
of modular synthesis characterize the conditions under which de-
composition is effective. In particular, results identify whether a
valid decomposition exists. A decomposition is valid if the solutions
to sub-problems combine to solve the original problem, and the
resulting composite supervisors are non-blocking and minimally re-
strictive. Decomposition also adds robustness to the design because
nonlinearities in the supervisor do not directly affect the system
dynamics.

Figure 7 illustrates how a supervisory control structure can hi-
erarchically manage control loops. As shown in the figure, super-
vision is vertically decomposed into tasks performed at different
levels of abstraction [84]. The supervisory controller is designed
to control the high-level plant model Phi , which represents an ab-
straction of the system. The plant is the pre-existing system that
does not (without the aid of a controller or a supervisor) meet the
given specifications. Information channel Infhi provides informa-
tion about the updates in the high-level model to the supervisory
controller, and the supervisory controller uses the Conhi channel to
control this model. However, due to the fact that Phi is an abstract
model, the controlling channel Conhi is only a virtual channel. In
other words, the control decisions of the supervisory controller
will be implemented by controlling the low-level controller(s) Clo
through commands transmitted via the communication channel
Comhi_lo. Consequently, the low-level controller(s) Clo can control
one or multiple subsystems using the Conlo channel and gather
information via the observation channel Inflo. The changes in the
low-level plant Plo can trigger updates in the state of the high-level
model Phi through the information channel Inflo_hi. These updates
would reflect the results of low-level controller Clo’s controlling ac-
tions. The scheme of Figure 7 describes the division of supervision
into high-level management and low-level operational supervision.

Inflo

Conlo

Comhi_lo

Infhi

Conhi

Inflo_hi

Supervisory

Controller (Chi)

High-level

Plant Model (Phi)

Low-level

Controller (Clo)
Plant (Plo)

Figure 7. Scalability via Supervisory Control Structure.

Virtual control exercised via the Conhi high-level control channel
can be implemented via Comhi_lo to adaptively coordinate the low-
level controllers, for example by adjusting their operating modes
according to the system goal. The important requirement of this
hierarchical control scheme is control consistency and hierarchi-
cal consistency between the high-level model and the low-level
plant, as defined in the standard Ramadge-Wonham control mecha-
nism [84]. For a detailed description of SCT, we refer the reader to
[5, 73, 74, 84].

3.2 Autonomy via Supervisory Control
Supervisory controllers are preferable to adaptive (self-tuning) con-
trollers for complex system control due to their ability to integrate
logic with continuous dynamics. Specifically, supervisory con-
trol has two key properties: i) rapid adaptation in response to abrupt
changes in management policy [37], and ii) low computational
complexity by computing control parameters for different policies
offline. New policies and their corresponding parameters can be
added to the supervisor on demand (e.g., by upgrading the firmware
or OS), rendering online learning-based self-tuning methods, e.g.,
least-squares estimation [3], unnecessary.

Figure 8 depicts the two mechanisms that enable SCT-based man-
agement via low-level controllers: gain scheduling and dynamic
references. Gain scheduling is a nonlinear control technique that
uses a set of linear controllers predesigned for different operating
regions. Gain scheduling enables the appropriate linear controller
based on runtime observations [51]. Scheduling is implemented by
switching between sets of control parameters, i.e.,A1→A2, B1→B2,
C1→C2, andD1→D2 in Equations 1 and 2. In this case, the controller
gains are the values of the control parameters A, B,C , and D. Gains
are useful to change objectives at runtime in response to abrupt
and sudden changes in management policy. In LQG controllers,
this is done by changing priorities of outputs using the Q and R
matrices (Section 2.1). This is what we call the Hierarchical Control
structure, in which local controllers solve specified tasks while the
higher-level supervisory controller coordinates the global objective
function. In this structure, the supervisory controller receives infor-
mation from the plant (e.g., the presence of a thermal emergency)
or the user/application (e.g., new QoS reference value), and steers
the system towards the desired policy using its design logic and
high-level model. Thanks to its top-level perspective, the supervisor
can update reference values for each low-level controller to either
optimize for a certain goal (e.g., getting to the optimum energy-
efficient point) or manage resource allocation (e.g., allocating power
budget to different cores).

Supervisory Controller

Plant

Gains 1

Controller

Gains N

User/Application level policies

System
variables

Control
inputs

Measured outputs

Selected Gains

Ref

+_

Figure 8. Autonomy via gain scheduling in SCT.

4 SPECTR: On-chip Resource Management
We present SPECTR’s supervisory control architecture (Section 4.1),
describe an experimental case study demonstrating the design and
verification of SPECTR on the Exynos HMP platform (Section 4.2),
and outline SPECTR’s control synthesis process (Section 4.3).

4.1 Hierarchical System Architecture
Figure 9 depicts a high-level view of SPECTR for many-core sys-
tem resource management. Either the user or the system software
may specify Variable Goals and Policies. The Supervisory Controller
aims to meet system goals by managing the low-level controllers.
High-level decisions are made based on the feedback given by the
High-level Plant Model, which provides an abstraction of the en-
tire system. Various types of Classic Controllers, such as PID or
state-space controllers, can be used to implement each low-level
controller based on the target of each subsystem. The flexibility
to incorporate any pre-verified off-the-shelf controllers without
the need for system-wide verification is essential for the modular-
ity of this approach. The supervisor provides parameters such as
output references or gain values to each low-level controller dur-
ing runtime according to the system policy. Low-level controller
subsystems update the high-level model to maintain global system
state, and potentially trigger the supervisory controller to take
action. The high-level model can be designed in various fashions
(e.g., rule-based or estimator-based [74][37][61]) to track the sys-
tem state and provide the supervisor with guidelines. We illustrate
the steps for designing a supervisory controller using the following
experimental case study in which SCT is deployed on a real HMP
platform, and we then outline the entire design flow from modeling
of the high-level plant to generating the supervisory controller.

Classic

Controller 1

Classic

Controller 2

Classic

Controller N

P
h

y
s

ic
a

l

 P
la

n
t

Con_lo1

Inf_lo1

Refs1

Con_lo2

Inf_lo2

Con_los

Inf_los

In
f_

lo
_

h
i

High-level Plant

Model

Con_hi

Inf_hi

L
e

a
f

C
o

n
tr

o
ll
e

rs

S
y
s

te
m

 e
v

e
n

ts

Selected

Gains1 Refs2 Refss

Selected

Gains2

Selected

Gainss

Supervisory

Controller

Sub-plant 1 Sub-plant 2 Sub-plant N

Variable Goals and PoliciesUser inputs

SPECTR

Figure 9. SPECTR overview.

4.2 Experimental Case Study
Figure 10 shows an overview of our experimental setup. We target
the Exynos platform [35], which contains an HMP with two quad-
core clusters: the Big core cluster provides high-performance out-
of-order cores, while the Little core cluster provides low-power
in-order cores. Memory is shared across all cores, so application
threads can transparently execute on any core in any cluster. We
consider a typical mobile scenario in which a single foreground
application (theQoS application) is running concurrentlywithmany
background applications (the Non-QoS applications). This mimics
a typical mobile use-case in which gaming or media processing is
performed in the foreground in conjunction with background email
or social media syncs.

Figure 10. SPECTR implementation on the Exynos HMP with two
heterogeneous quad-core clusters. Representing a typical mobile
scenario with a single foreground application running concurrently
with many background applications.

The system goals are twofold: i) meet the QoS requirement of
the foreground application while minimizing its energy consump-
tion; and ii) ensure the total system power always remains below
the Thermal Design Power (TDP).

The subsystems are the two heterogeneous quad-core (Big and
Little) clusters. Each cluster has two actuators: one actuator to
set the operating frequency (Fnext) and associated voltage of the
cluster; and one to set the number of active cores (ACnext) on the
cluster. We measure the power consumption (Pcurr) of each cluster,
and simultaneously monitor the QoS performance (QoScurr) of the
designated application to compare it to the required QoS (QoSref).4

Supervisory control commands guide the low-levelMIMO con-
trollers in Figure 10 to determine the number of active cores and
the core operating frequency within each cluster.

Supervisory control minimizes the system-wide power con-
sumption while maintaining QoS. In our scenario, the QoS appli-
cation runs only on the Big cluster, and the supervisor determines
whether and how to adjust the cluster’s power budget based on
QoS measurements.

Gain scheduling is used to switch the priority objective of the
low-level controllers. We define two sets of gains for this case-study:
1) QoS-based gains are tuned to ensure that the QoS application can
meet the performance reference value, and 2) Power-based gains are
tuned to limit the power consumption while possibly sacrificing
some performance if the system is exceeding the power budget
threshold.

4.3 Supervisor Synthesis Process
The supervisory controller is responsible for coordinating the
low-level controllers shown in Figure 10. The supervisory control
synthesis, illustrated on Figure 11, follows five steps [5]:

1. Develop high-level Plant Model (P) as a discrete-event dy-
namic system.

2. Develop Intended Behavior Specification of the plant (SP) (i.e.,
desired control behavior).

3. Perform Synthesis of the Supervisor (S) from the plant model
and behavioral specifications.

4. Perform Nonblocking Property Checks to remove any logi-
cal/blocking conflicts.

4 The Exynos platform provides only per-cluster power sensors and DVFS; hence our
use of cluster-level sensors and actuators.

SSPP

Verified

Synthesized

Supervisor

(SVerified)

Plant

Model

Intended

Behavior

Specification

Synthesis

Nonblocking

Property

Checks

Controllability

Property

Checks

1 2 3 4 5

Figure 11. Synthesis process for a Supervisory Controller

5. Perform Controllability Property Checks to ensure that the
supervisor meets controllability properties.

In Sections 4.3.1-4.3.3, we discuss each step of modeling, specifi-
cation, synthesis and verification of the supervisory controller. All
steps are automated by the Supremica SCT tool-set [1]. For ease
of visualization, we show the automaton generated by Supremica
in each step. We integrate the two goals described in Section 4.2
for the system in Figure 10. We ensure autonomy of the system to
meet the QoS requirements while the total power remains within
the defined boundaries by using gain scheduling.

4.3.1 Plant Model
Any physical plant G can be described using an infinite number of
attributes, while the plant model P can capture only a finite number
of attributes. Therefore, we begin by capturing the platform’s most
relevant characteristics (power consumption and QoS in our study)
to build a plant model. Given the formal underpinnings of SCT, we
exploit automata theory [41] to automatically generate the plant
model from simpler models of its constituent subsystems (i.e., sub-
plants).

Now, consider an automaton A defined as a 5-tuple
A = ⟨QA, ΣA,δA, iA,MA⟩, where QA is the set of states, ΣA is the
set of events consumed by A, δA : QA × ΣA → QA is the state
transition function, iA is the initial state andMA is the set of final
states. The synchronous composition of two automata A and B, A||B,
is then defined as [58]:

A ∥ B = ⟨QA ×QB , ΣA ∪ ΣB , δ, iA · iB , MA ×MB ⟩, with

QA ×QB = {qA · qB |qA ∈ Qa, qB ∈ QB }

δ (qA · qB , e) =

δA(qA, e) · δB (qB , e) if δA(qA, e) and δB (qB , e)defined
δA(qA, e) · qB ifδA(qA, e) defined and e < ΣB
qA · δB (qB , e) if e < ΣA and δB (qB , e) defined
undefined otherwise

Synchronous composition (operator ||) synchronizes the operations
of two automata such that common events are synchronized but
private events are not affected by the other automaton. This pre-
serves the main characteristics of each automaton while including
their interactions that affect the whole plant.

Figure 12a shows two simple examples for the Big cluster au-
tomata (examplifying two of many possible ways to define our
systems control solution). In states S1 and S2 of the top automaton,
we prioritize QoS: the power reference is updated to meet the QoS
reference in a power-efficient manner. Upon detection of a power
budget violation, a critical signal is generated. The signal results
in a transition to the SwitchGains state where power-driven gains
replace the performance-driven gains. This updates the low-level
controller’s priority objective from QoS to power. The supervisor
also has the opportunity to enforce a reduced power reference have
depending on the severity of the situation (S0 in bottom automa-
ton of Figure 12a). Once the power of the Big cluster returns to
a safe region, gains are switched back to prioritize QoS. We can
make suitable plant models in a similar manner for the Little clus-
ter and its interaction with the whole system. Figure 12b shows

the synchronous composition of the two Big cluster plant models
and specifies all possible interactions for these two automata. In
this model, all states are accessible and all events are accepted.5
However, such complete freedom might not be desirable for the
system. We now describe the specification that restricts this model
to fit the intended behaviour of the system.

4.3.2 Intended Behavior Specification
While the plant model sets the physical boundaries for all possible
actions, the specification defines the accepted (i.e., ideal) and forbid-
den states through restrictions on the behavior of the plant model.
These restrictions are then transformed into a formal description
for the synthesis process.

Figure 12c shows a sample specification for the Big cluster in our
case study. The plant model shown in Figure 12b has no limitations
on exceeding the power budget; our specification prevents exceed-
ing the power budget for no more than three control intervals (i.e.,
Threshold state is a forbidden state6). Similarly, we can limit the
chip power consumption using a specification that restricts the sum
of the power budgets of both clusters to be below a safe threshold
defined by thermal design power (TDP). In our case study, we use
a three-band (i.e., uncapping threshold, capping target and above
capping threshold) algorithm similar to [90] for making power cap-
ping decisions. While we are below the first threshold (uncapping
threshold), controllers focus on meeting their QoS requirements.
When we exceed this threshold, gain scheduling ensures that we
remain in the capping target region.

4.3.3 Synthesis
Once we have a plant model and a formal specification of intended
behavior, a synthesis algorithm is guaranteed to generate a cor-
rect controller [27]. Hence, a correct plant P and specification SP
are crucial to synthesize a supervisory controller S such that the
closed-loop system fulfills the specification SP . Figure 12d shows
an example supervisor that was automatically synthesized for the
Exynos platform using the Supremica tool, given as input the plant
model and the intended behavioral specification capturing desired
outcomes and restricting undesired behavior (e.g., Figure 12c). Note
that the models built for plant P and the intended behavior specifi-
cation SP are design artifacts, and only the final synthesized and
verified supervisor Sver if ied is implemented in the system. We
now describe the verification of additional properties for ensuring
correctness of the entire supervisory controller.

4.3.4 Non-blocking and Controllability Property Checks
We must ensure that the synthesized supervisor is both
non-blocking and controllable. The non-blocking property guar-
antees that some accepted states (e.g., the ideal state shown in Figure
12d) can always be reached, so that at least one of the tasks can al-
ways be completed. On the other hand, the controllability property
guarantees that the supervisor can always keep the plant within
the boundaries set by the specification. In our example, there is one
accepted (i.e., ideal) state that satisfies the QoS requirement while
maintaining the power consumption under the limit. The SCT tool
ensures that in the generated supervisor (Figure 12d) there is a path
to this accepted state from every other valid state. In addition, the

5Accepted states are shown with solid dark circles.
6A red cross identifies a forbidden state.

Switchgains

S0

S2

S1

SwitchGains

decreaseCriticalPower

controlPower

decreaseBigPower

QoSmet

critical

powerSafeQoSNotMet

powerSafeQoSMet

increaseBigPower

QoSnotMet1

safePower

critical

(a) Models for Big cluster:
Top: QoS management,
Bottom: Power Capping.

S2.SwitchGains

S1.SwitchGains

SwitchGains.S0

S1.S0

SwitchGains

S2.S0

controlPower

QoSnotMet

critical

increaseBigPower

powerSafeQoSNotMet

QoSmet

decreaseCriticalPower

decreaseCriticalPower

QoSnotMet

decreaseBigPower

critical

controlPower
powerSafeQoSMet

decreaseBigPower

critical

powerSafeQoSMet

critical

decreaseCriticalPower

safePower

controlPower

QoSmet

powerSafeQoSNotMet

safePower

safePower

increaseBigPower

(b) Automatically generated
Big cluster plant P using
the || operator on two
models described in Fig. 12a.

Threshold

SwitchGains

UnderCapping

AboveCapping

bellowTarget

switchQoS

decreaseCriticalPower

maintain

safePower

switchPower

aboveTarget

critical

(c) Example of intended
behavior Specification SP .
Red cross indicates
forbidden state.

S7

S2

S4

Stable
S5

S0

SwitchGains

P0

P1

S3

S6

S1

increaseLittlePower

increaseBigPower

powerSafeQoSNotMet2

critical

powerSafeQoSMet2

QoSmet

powerSafeQoSMet1

critical

decreaseBigPower
increaseBigPower

powerSafeQoSNotMet2

QoSmet

critical

powerSafeQoSMet2

QoSmet

powerSafeQoSMet1

powerSafeQoSMet2

critical

powerSafeQoSMet1 powerSafeQoSNotMet1

QoSmet

decreaseLittlePower

QoSmet

powerSafeQoSNotMet1

decreaseCriticalPower2

decreaseCriticalPower1

safePower

powerSafeQoSNotMet2

QoSnotMet

QoSnotMet

safePowercritical

increaseLittlePower

powerSafeQoSNotMet1

safeEval

controlPower

QoSnotMet

increaseLittlePower

QoSnotMet

QoSmet

decreaseBigPower

QoSnotMet

QoSnotMet
Power capping

Gain scheduling

Ideal state

(d) Synthesized supervisor S generated
from plant model and specification using
the Supremica tool [1]. Checked for non-
blocking and controllability properties.

Figure 12. Supervisor Synthesis Process. Figures 12b and 12d are automatically generated by the SCT tool, and the state details are not
important.

plant model is pruned by the specification to make it adhere to de-
sired behavior. The closed-loop system will never reach a state such
that an uncontrollable event causes it to violate the specification.
These two properties are provided by two different algorithms: the
trimming algorithm [27] provides the non-blocking property, and
the extension algorithm [37] provides the controllability property.
However, these two algorithms interfere with each other, with trim-
ming possibly impairing controllability, and vice versa. Therefore,
the two algorithms must be run successively and iteratively, until
they return the same result.

Uncontrollable states. The search for the largest controllable
sub-automaton of the specification begins with identifying the
uncontrollable states. Subsequently, any state that reaches an un-
controllable state via an uncontrollable event is identified. This
forms the basis for the algorithms that construct a controller given
a specification and a plant.

Non-blocking. The supervisory controller is non-blocking if
the closed-loop system is always able to reach some marked state
(i.e., Ideal state shown in Figure 12d). In order to find a lean non-
blocking supervisor, we must find the set of accessible states. It is
desirable to find the largest possible sub-automaton that has this
property.

5 Experimental Evaluation
We compare SPECTR with three alternative resource managers.
The first two managers use two uncoordinated 2×2 MIMOs, one
for each cluster: MM-Pow uses power-oriented gains, and MM-Perf
uses performance-oriented gains. These fixed MIMO controllers
act as representatives of a state-of-the-art solution, as presented in
[66], one prioritizing power and the other prioritizing performance.
The third manager consists of a single full-system controller (FS):
a system-wide 4×2 MIMO with individual control inputs for each
cluster. FS uses power-oriented gains and its measured outputs
are chip power and QoS. This single system-wide MIMO acts as
a representative for [93], maximizing performance under a power
cap.

We analyze an execution scenario that consists of three different
phases of execution:

1. Safe Phase: In this phase, only the QoS application executes
(with an achievable QoS reference within the TDP). The goal
is to meet QoS and minimize power consumption.

2. Emergency Phase: In this phase, the QoS reference remains
the same as that in the Safe Phase while the power envelope
is reduced (emulating a thermal emergency). The goal is to
adapt to the change in reference power while maintaining
QoS (if possible).

3. Workload Disturbance Phase: In this phase, the power en-
velope returns to TDP and background tasks are added (to
induce interference from other tasks). The goal is to meet the
QoS reference value without exceeding the power envelope.

This execution scenario with three different phases allows us to
evaluate how SPECTR compares with state-of-the-art resource man-
agers when facing workload variation and system-wide changes in
state (e.g., thermal emergency) and goals.

Evaluated resource manager configurations. We generate
stable low-level controllers for each resource manager using the
Matlab System Identification Toolbox [59].7 We use the Control
Effort Cost matrix (R) to prioritize changing clock frequency over
number of cores at a ratio of 2:1, as frequency is a finer-grained
and lower-overhead actuator than core count. We generate train-
ing data by executing an in-house microbenchmark and vary-
ing control inputs in the format of a staircase test (i.e., a sine
wave), both with single-input variation and all-input variation. The
micro-benchmark consists of a sequence of independent multiply-
accumulate operations performed over both sequentially and ran-
domly accessed memory locations, thus yielding various levels of
instruction-level and memory-level parallelism. The range of exer-
cised behavior resembles or exceeds the variation we expect to see
in typical mobile workloads, which is the target application domain
of our case studies.

Experimental setup.We perform our evaluations on the ARM
big.LITTLE [2] based Exynos SoC (ODROID-XU3 board [35]) as
described in our case study (Figure 10). We implement a Linux

7 We generate the models with a stability focus. All systems are stable according to
Robust Stability Analysis. We use Uncertainty Guardbands of 50% for QoS and 30% for
power, as in [66].

userspace daemon process that invokes the low-level controllers ev-
ery 50ms . When evaluating SPECTR, the daemon invokes the super-
visor every 100ms . We use ARM’s Performance Monitor Unit (PMU)
and per-cluster power sensors for the performance and power mea-
surements required by the resource managers. The userspace dae-
mon also implements the Heartbeats API [39] monitor to measure
QoS. By periodically issuing heartbeats, the application informs
the system about its current performance. The user provides a
performance reference value using the Heartbeats API.

To evaluate the resource managers, we use the following bench-
marks from the PARSEC benchmark suite [6] as QoS applications
(i.e., the applications that issue heartbeats to the controller): x264,
bodytrack, canneal, and streamcluster. The selected applica-
tions consist of the most CPU-bound along with the most cache-
bound PARSEC benchmarks, providing varied responses to change
in resource allocation. Speedups from 3.2X (streamcluster) to
4.5X (x264) are observed with the maximum resource allocation
values compared to the minimum. We also use one of four machine-
learning workloads as our QoS application: k-means, KNN, least
squares, and linear regression. These four workloads provide
a wide range of data-intensive use cases. For all experiments, each
QoS application uses four threads. The background (non-QoS) tasks
used in the third execution phase are single-threaded microbench-
marks, and have no runtime restrictions, i.e., the Linux scheduler
can freely migrate them between and within clusters.

5.1 Comparison of Resource Managers
For brevity, we focus our discussion on the x264 benchmark results.
Other results are summarized at the end of this section. We use
heartbeats to measure the frames per second (FPS) as our QoS
metric. Figure 13 shows the measured FPS and power for x264with
respect to their reference values over the course of execution for
all of the resource management controllers.

5.1.1 x264 Benchmark
To show the energy efficiency of SPECTR, we study the Safe Phase.
The Safe Phase consists of the first 5 seconds of execution during
which only the QoS application executes on the Big cluster. In this
phase, all controllers are able to achieve the FPS reference value
within the power envelope. Figures 14a and 14b show the aver-
age steady-state error (%) of QoS and power respectively for each
resource manager in Phase 1. Steady-state error is used to define
accuracy in feedback control systems [36]. Steady-state error values
are calculated as re f erence −measured output . Negative values
indicate that the power/QoS exceeds the reference value, positive
values indicate power savings or failure to meet QoS. We make two
key observations. First, both MM-Perf and SPECTR reduce power
consumption by 25% (Fig. 14b) while maintaining FPS within 10%
(Fig. 14a) of the reference value. The MM-Perf controller operates
efficiently because the reference FPS value is achievable within
the TDP threshold. The SPECTR controller similarly operates ef-
ficiently: it is able to recognize that the FPS is achievable within
TDP and, as a result, lower the reference power. Second, the FS and
MM-Pow controllers unnecessarily exceed the reference FPS value
and, as a result, consume excessive power. This is because these con-
trollers prioritize meeting the power reference value, consuming
the entire available power budget to maximize performance.

To show SPECTR’s ability to adapt to a sudden change in oper-
ating constraints, we study the Emergency Phase. The Emergency

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

20
30
40
50
60
70
80
90

FP
S

Measured FPS
Reference FPS

(a)MM-Pow FPS

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

Po
w

er
 (W

)

Ref. phase 1

Ref. phase 2

Ref. phase 3

Measured Power
Reference Power

(b)MM-Pow Power

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

20
30
40
50
60
70
80
90

FP
S

Measured FPS
Reference FPS

(c) MM-Perf FPS

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

Po
w

er
 (W

)

Ref. phase 1

Ref. phase 2

Ref. phase 3

Measured Power
Reference Power

(d) MM-Perf Power

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

20
30
40
50
60
70
80
90

FP
S

Measured FPS
Reference FPS

(e) FS FPS

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

Po
w

er
 (W

)

Ref. phase 1

Ref. phase 2

Ref. phase 3

Measured Power
Reference Power

(f) FS Power

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

20
30
40
50
60
70
80
90

FP
S

Measured FPS
Reference FPS

(g) SPECTR FPS

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

Po
w

er
 (W

)

Ref. phase 1

Ref. phase 2

Ref. phase 3

Measured Power
Reference Power

(h) SPECTR Power

Figure 13. Measured FPS and Power of all four resource managers
for three Phases of 5 seconds each, for the x264 benchmark.

Phase of execution emulates a thermal emergency, during which,
the TDP is lowered to ensure that the system operates in a safe
state. This occurs during the second 5-second period of execution
in Figure 13. We observe that all controllers are able to react to
the change in power reference value and maintain QoS. However,
compared to the other controllers, FS has a sluggish reaction (Fig-
ure 13f) to the change in power reference, despite the fact that it
is designed to prioritize tracking the power output. Settling time
is a property used to quantify responsiveness of feedback control
systems [36]. Settling time is the time it takes to reach sufficiently
close to the steady-state value after the reference values are set.
The average settling time for the power output of FS is 2.07 sec-
onds, while SPECTR has an average settling time of 1.28 seconds.
The larger size of the state-space (x(t) matrix in Equation 1 and 2)
and the higher number of control inputs in the 4×2 FS compared
to those of 2×2 controllers in SPECTR is the reason for the slow
settling time of FS. This is also the reason why SISO controllers are
generally faster that MIMOs [36].

To show SPECTR’s ability to adapt to workload disturbance and
changing system goals, we study the Workload Disturbance Phase.
The Workload Disturbance Phase occurs in seconds 10-15 of execu-
tion in Figure 13. In this phase, 1) the QoS reference value and the
power envelope return to the same values as in Phase 1, and 2) we
introduce disturbance in the form of background tasks. As a result
of the workload disturbance, the QoS reference is not achievable
within the TDP. We make two observations regarding the steady-
state error in Figures 14e and 14f. First, SPECTR behaves similarly to

btrack
canneal

kMeans knn lesq lr
scluster x264

Benchmark

50
40
30
20
10

0
10
20
30
40

Qo
S

st
ea

dy
-s

ta
te

 e
rro

r (
%

)

FS MM-Perf MM-Pow SPECTR

(a) QoS steady-state error in Phase 1.

btrack
canneal

kMeans knn lesq lr
scluster x264

Benchmark

50
40
30
20
10

0
10
20
30
40

Po
we

r s
te

ad
y-

st
at

e
er

ro
r (

%
)

(b) Power steady-state error in Phase 1.

btrack
canneal

kMeans knn lesq lr
scluster x264

Benchmark

50
40
30
20
10

0
10
20
30
40

Qo
S

st
ea

dy
-s

ta
te

 e
rro

r (
%

)

(c) QoS steady-state error in Phase 2.

btrack
canneal

kMeans knn lesq lr
scluster x264

Benchmark

50
40
30
20
10

0
10
20
30
40

Po
we

r s
te

ad
y-

st
at

e
er

ro
r (

%
)

(d) Power steady-state error in Phase 2.

btrack
canneal

kMeans knn lesq lr
scluster x264

Benchmark

50
40
30
20
10

0
10
20
30
40

Qo
S

st
ea

dy
-s

ta
te

 e
rro

r (
%

)

(e) QoS steady-state error in Phase 3.

btrack
canneal

kMeans knn lesq lr
scluster x264

Benchmark

50
40
30
20
10

0
10
20
30
40

Po
we

r s
te

ad
y-

st
at

e
er

ro
r (

%
)

(f) Power steady-state error in Phase 3.

Figure 14. Steady-state error for all benchmarks, grouped by phase. A negative value indicates the amount of power/QoS exceeding the
reference value (bad), a positive value indicates the amount of power saved (good) or QoS degradation (bad).

MM-Pow, even though in Phase 1 it behaved similarly to MM-Perf.
The SPECTR supervisor is able to recognize the change in execution
scenario and constraints, and adapt its priorities appropriately. In
this case, SPECTR achieves much higher FPS than all controllers
except MM-Perf (Fig. 14e), while obeying the TDP limit (Fig. 14f).
Second, both FS and MM-Pow operate at the TDP limit, but achieve
a significantly lower FPS than the reference value. MM-Perf comes
within ~5% of the reference FPS (Fig. 14e) while exceeding the TDP
by more than 30% (Fig. 14f), which is undesirable.

5.1.2 Other Benchmarks
Weperform the same experiments for PARSEC benchmarks bodytrack,
canneal, streamcluster, as well as machine-learning benchmarks
k-means, KNN, least squares, and linear regression. For these
workloads, we use the generic heartbeat rate (HB) directly as the
QoS metric, as FPS is not an appropriate metric. Figures 14a, 14c,
and 14e show the average steady-state error (%) of QoS for Phases
1, 2, and 3 respectively. Figures 14b, 14d, and 14f show the average
steady-state error (%) of power for Phases 1, 2, and 3 respectively.

We summarize the observations for the additional experiments with
respect to x264 for the three phases. In the Safe Phase, the behavior
of bodytrack, streamcluster, k-means, KNN, least squares, and
linear regression is similar to that of x264 (Figures 14a and 14b).
canneal follows the same pattern with respect to power as all other
benchmarks (Fig. 14b). canneal’s QoS steady-state error is the only
difference in behavior we observe in Phase 1. None of the managers
are able to meet the QoS reference value for canneal in Phase 1
(Fig. 14a). This is due to the fact that the phase of canneal captured
in the experiment primarily consists of serialized input process-
ing, so the number of idle cores has reduced affect on QoS. In the
Emergency Phase, our observations from x264 hold for nearly all
benchmarks regarding response to change in power reference value,
achieving less than 10% power steady-state error (Fig. 14d). The
only exceptions are canneal and k-means: the MM-Perf manager
is unable to react to change in TDP for canneal and k-means. The
MM-Perf manager lacks a supervisory coordinator and prioritizes
performance, and was unable to find a configuration for canneal
and k-means that satisfied the QoS reference value within TDP.

In the Workload Disturbance Phase, SPECTR, FS, and MM-Pow
all achieve near-reference power (Fig. 14f). As expected, MM-Perf
violates the TDP in all cases, but always achieves the highest QoS
(Fig. 14e).

We conclude that SPECTR is effective at (1) efficiently meeting
multiple system objectives when it is possible to do so, (2) appro-
priately balancing multiple conflicting objectives, and (3) quickly
responding to sudden and unpredictable changes in constraints due
to workload or system state.

5.2 Scalability Evaluation
To evaluate the scalability of SPECTR with respect to single or
nested MIMO solutions, we compare the identified models for con-
trolled systems of different sizes. After an estimated system dy-
namics is produced using system identification techniques, it is
cross-validated using different data sets. The common practice is to
assess the model by analyzing residual auto-correlation [67]. Resid-
ual is the stochastic component (e.g., disturbance, noise, etc.) of the
system output, which is not supposed to be included in the model.
When validating the model, the model output is compared to noisy
system outputs. Therefore we expect the residual to be pure noise.
To verify this, the residual is analyzed for correlation. If there is no
correlation between the residual and itself or any inputs, the model
is accurate enough. Confidence can be used to specify a range. A
confidence level is the probability with which the true output will
fall into a range called a confidence interval. The confidence interval
provides a range of values that is likely to contain the population
parameter of interest [64]. A confidence level of 99% results in a
confidence interval that spans three standard deviations. In our
case, a higher confidence level means more confidence in where
the true output will lie, and a model output within the confidence
interval indicates that the deterministic component of the model
output will be near the true output.

Figure 15 compares the autocorrelation of residuals for instruc-
tions per second (IPS) and power of three systems: 1) 2×2 Big cluster
MIMO used in SPECTR, 2) 4×2 MM-Pow, and 3) 10×10 controller
that represents a large system (Figure 4). The 2×2 controller for
the Little cluster shows similar behavior to the 2×2 controller for
the Big cluster in Figure 15a. MM-Perf controller shows similar
behavior to MM-Pow in Figure 15c.

The two main properties desired while checking the autocorre-
lation of residuals are for the controller to: 1) stay inside the confi-
dence interval, and 2) avoid sharp peaks and drops. While the 2×2
controller stays within the confidence interval for IPS and power
(Figure 15a,15b), the 4×2 controller exhibits sharp peaks that violate
the confidence interval for multiple sample inputs (Figure 15c,15d).
The controller for the large 10×10 system has difficulty staying
within the confidence interval, especially for IPS (Figure 15e,15f).
Controllers for large MIMO systems with more complex behavior
are not only slower in terms of settling time, but also often infea-
sible to design due to the lack of a sufficiently accurate system
dynamics model.

We conclude that SPECTR supports scalability for resource man-
agement that classical controllers do not. Classical controllers can-
not accurately model large systems. SPECTR solves this issue by
deploying many simple controllers for decomposed subsystems,
and coordinating them with a high-level supervisor.

-20 -10 0 10 20
Samples

-0.1

0

0.1

C
o
n

fid
e
n

ce

Autocorrelation of residuals for Big IPS

Confidence interval Sample model

(a) 2×2 system model for
the Big cluster controller of
SPECTR, total IPS output.

-20 -10 0 10 20
Samples

-0.04
-0.02

0
0.02
0.04

C
o

n
fid

e
n

ce

Autocorrelation of residuals for Big Power

Confidence interval Sample model

(b) 2×2 system model for
the Big cluster controller of
SPECTR, total power output.

-20 -10 0 10 20
Samples

-0.1

0

0.1

0.2

C
on

fid
en

ce

Autocorrelation of residuals for IPS

Confidence interval Sample model

(c) 4×2 system model for the
FS controller, total IPS output.

-20 -10 0 10 20
Samples

-0.05

0

0.05

0.1

C
on

fid
en

ce

Autocorrelation of residuals for Power

Confidence interval Sample model

(d) 4×2 system model for the
FS controller, total power out-
put.

-20 -10 0 10 20
Samples

-0.2

0

0.2

0.4

C
on

fid
en

ce

Autocorrelation of residuals for IPS

Confdence interval Sample model

(e) 10×10 system model for a
large-system controller (e.g.,
Fig. 4), single-core IPS output.

-20 -10 0 10 20
Samples

-0.1

0

0.1

0.2

C
on

fid
en

ce

Autocorrelation of residuals for Big Power

Confidence interval Sample model

(f) 10×10 system model for a
large-system controller (e.g.,
Fig. 4), Big cluster power out-
put.

Figure 15. Autocorrelation of residuals for identified system mod-
els of different sized MIMO controllers. We show a single perfor-
mance and power output for each modeled system across multiple
sample inputs.

5.3 Overhead Evaluation
To show the overhead of the low-level MIMO controllers, we study
their execution time. We measure the MIMO controller execution
time to be 2.5ms , on average, over 30 seconds. The MIMO controller
is invoked every 50ms resulting in a 5% overhead, which is expe-
rienced by all evaluated controllers. We measure the runtime of
the supervisor to be 30µs , which is negligible even with respect
to the MIMO controller execution time. The supervisor is invoked
less frequently than the MIMO controllers (2× the period in our
case), executes in parallel to the workload and MIMO controllers,
and simply evaluates the system state in order to determine if the
MIMO controller gains need changing. State changes that result
in interventions on the low-level controllers occur only due to
system-wide changes in the state (e.g., thermal emergency) or goals
(e.g., change in performance reference value or execution mode),
which are infrequent. When the supervisor needs to change the
MIMO gains, it simply points the coefficient matrices to a different
set of stored values. In our case study, we have two sets of gains
(QoS and power oriented) that are generated when the controllers
are designed and stored during system initialization. Changing the
coefficient arrays at runtime takes effect immediately, and has no
additional overhead.

To show the overhead of SPECTR’s supervisory controller, we
compare the total execution time of identical workloads with and
without SPECTR. With respect to the preemption overhead due
to globally managing resources, Linux’s HMP scheduler typically

maps SCT threads to a core on the low-power Little cluster. There-
fore, the SCT threads are executed without preempting the QoS
application, which always executes on the Big cluster. We verify
the overall impact of the control system overhead by running the
benchmarks on two different systems: i) a vanilla Linux setup8
and ii) vanilla Linux with SPECTR running in the background. For
(ii), SPECTR controllers perform all the required computations but
do not change the system knobs (thus only the SPECTR overhead
affects the system). When comparing the QoS of the applications
across multiple runs, we verify a negligible average difference of
0.1% between the two systems.

We conclude that the benefits of SPECTR come at a negligible
performance overhead.

6 Systematic Design Flow of SPECTR
Figure 16 presents SPECTR’s design flow to streamline the pro-
cess for HMP architects to build supervisory controllers for new
platforms and resource types.

The top part of Figure 16 illustrates the design process of the
Supervisory Controller. In Step 1, we need to define the high-level
goals (e.g., power capping, QoS) for coordination and resource
management for the entire system. In Step 2, we create a plant
model for our system to generate the supervisory controller. For
small systems, this can be done in a single step by describing all
possible variations of the system, but more complex systems can
be modeled via the modular decomposition of the system. This
enables specification of each subsystem as an individual sub-plant
in a formal manner, with individual sub-plants combined later to
automatically generate the full plant model. These sub-plants can be
also broken down into smaller elements for ease of modeling. This
step is crucial because the scope of sensors and actuators have to
be determined to ensure that i) the system is properly identifiable
and ii) subsystem controllers, to be designed in later steps, are
lightweight. The former condition is satisfied if the coefficient of
determination, also known as R2, is greater or equal than 80% [36]
(a rule of thumb in control theory), while the latter can be examined
by considering the number of control inputs, number of measured
outputs, and the order of the model. In Step 3, we describe the
desired system behavior using a specification that restricts the plant
model. Preventing the system from exceeding its power budget can
be an example of a specification. The supervisory synthesis process
in the third step checks the sanity of the supervisory controller
based on sub-plant models and the verified specification. SCT tools
use a formal methodology to analyze properties of the discrete-
event system and also generate the supervisor. In Step 4, we ensure
that the whole system behaves according to the given specification.
In this work, we use the Supremica tool [1] to synthesize and verify
the supervisory controller.

The bottom part of Figure 16 illustrates the design process of
the low-level (i.e., leaf) controllers. Each individual subsystem can
have a different number of control inputs and measured outputs.
Various types of controllers (e.g., SISO, MIMO) can be used for
leaf controllers. In this work, we focus on the design of a MIMO
controller for each leaf controller. In Step 5, during the low-level
controller design, after defining each subsystem’s inputs and out-
puts, we gather experimental data to perform black-box system

8 Ubuntu 16.04.2 LTS and Linux kernel 3.10.105 (https://dn.odroid.com/5422/ODROID-
XU3/Ubuntu/).

identification [53][26] to extract the dynamics of the system (e.g.,
state-space model, transfer function). Any system identification
toolbox, such as the ones available in MATLAB [59] or GNU Octave
[22], can be used for this purpose. MATLAB System Identification
toolbox also recommends a suitable order for the system. In Step 6,
we specify priorities associated with each <goal, condition> pair by
feedingMATLAB’s Control System toolbox with the relative weight
of inputs and outputs that are represented by Q and R matrices. For
instance, designers can emphasize the relative importance of total
power over IPS of one core as a <goal, condition> pair. Similarly,
other <goal, condition> pairs prioritizing different objectives can
defined and added.

In Step 7, usingMATLAB, we generate a set of MIMO controllers
for each <goal, condition> pair where gains of each controller are
stored in the subsystem controllers to be used for gain scheduling
at run-time. The goal of Step 8 is to ensure that the controller is
stable for all the uncertainties whose maximum sustained impact is
bounded by a designer-specified margin. Finally, in Step 9, Matlab’s
Simulink tool can be used as a hybrid simulation environment to
integrate and verify the full-fledged control system. If the overall
response of the system is acceptable, we generate the target code
for implementation and verification on the real platform. Other-
wise, as low-level controllers are already verified, we go back to
the supervisory control design and update the specification of the
supervisor in order to enhance the overall control behavior.

7 Related Work
To the best of our knowledge, there has been no prior work in
applying SCT to handle the scalability and autonomy issues facing
resource managers for (heterogeneous) multi-core systems. We
believe SPECTR is the first effort in exploiting SCT to provide
scalability and autonomy for on-chip HMP resource management.

Resource management approaches in the literature can be clas-
sified into five main classes: Optimization [29, 31, 34, 57, 65, 81,
83], Machine Learning [7, 16, 21, 32, 43], Model-based Heuris-
tics [4, 7, 9, 12, 13, 15, 17, 19–21, 23, 24, 46, 54, 62, 78–80, 87–
89, 92, 93], Rule-based Heuristics [18, 28, 44], and Control Theory
[25, 33, 38, 40, 47, 48, 55, 56, 60, 63, 68, 70, 71, 76, 91]. Pothukuchi
et al. [66] discuss the shortcomings of ad-hoc and heuristic-based
approaches in addressing some of the attributes, such as lack of
guarantees, and the need for exhaustive training and close-to-reality
models. In addition, there have been efforts to enable coordinated
management in computer systems in various ways [7, 10, 11, 13–
15, 21, 23, 24, 45, 50, 69, 77, 82, 85, 86, 90]. They coordinate and
control multiple goals and actuators in a non-conflicting manner by
adding an ad-hoc component to a controller or hierarchical loops.

Pothukuchi and Torrellas [67] present guidelines for designing
formal MIMO controllers that tune processor architectural parame-
ters to enhance coordination, and demonstrate coordinated man-
agement of multiple goals for unicore processors [66]. However,
MIMO control lacks scalability and autonomy in handling com-
plex control problems. The concept of SCT has been used in many
fields [8, 27, 42].

8 Conclusion
We develop SPECTR, a hierarchical supervisory control mechanism
for resource management in heterogeneous many-core systems.
SPECTR combines the strengths of classic control theory with

Initial

Describe the

desired

behavior

Decompose

the plant

Model each

sub-plant

Supremica

Define

goals

Input & output

Goal analysis

Matlab
Verify

Robustness

System

test

Simulink

(Functional

verification)

Implementation
Identify the

minimal

subsystems

Subsystem

model

System

identification

per subsystem

R
2
<80%

Supervisory

controller

design

Low-Level

controller

design

Process for each subsystem

S
te

p
 2

S
te

p
 3

Step 4

S
te

p
 9

S
te

p
 6

S
te

p
 5

Step 7 Step 8

S
te

p
 1

Plant (P)

Set of specifications (SP)

Initial Supervisor

(S)

Supervisor (Sverified)

Formal

verification

MIMO Controller 1

MIMO Controller 2

MIMO Controller N

[Q,R]N

[Q,R]1

Figure 16. SPECTR design flow. Low-level controller design process is repeated for every subsystem.

state-of-the-art heuristic approaches to efficiently manage com-
plex systems with multiple goals in a hierarchical manner. SPECTR
leverages formal Supervisory Control Theoretic techniques, such
as gain scheduling, to achieve autonomy for individual distributed
controllers and scalability for the entire system, while satisfying
higher-level system goals. We demonstrate the effectiveness of
SPECTR via a real system implementation on the Exynos platform
that consists of a heterogeneous multi-core processor. Our eval-
uations show that SPECTR successfully coordinates conflicting
objectives to achieve efficient execution of a dynamic QoS work-
load within a power budget, while state-of-the-art alternatives are
unable to do so. We conclude that SPECTR is a promising approach
to handle the complexity and scalability of managing the resources
of emerging heterogeneous many-core systems in the face of dy-
namically changing runtime goals such as QoS requirements, power
budgets, and thermal limits.

Acknowledgments
We acknowledge financial support from the following: NSF Grant
CCF-1704859; and the Marie Curie Actions of the European Union’s
H2020 Programme.

References
[1] K. Akesson, M. Fabian, H. Flordal, and R. Malik, “Supremica - An integrated

environment for verification, synthesis and simulation of discrete event systems,”
inWODES 2006.

[2] ARM, “big.LITTLE Technology: The Future of Mobile,” Tech. Rep., 2013. [Online].
Available: https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_
of_Mobile.pdf

[3] K. J. Astrom and B. Wittenmark, Adaptive Control. Addison-Wesley, 1995.
[4] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini, “A distributed and self-

calibrating model-predictive controller for energy and thermal management
of high-performance multicores,” in DATE, 2011.

[5] M. W. Bertil A. Brandin and B. Benhabib, “Discrete Event System Supervisory
Control Applied to the Management of Manufacturing Workcells,” in Computer-
Aided Production Engineering, C. Venkatesh and J.A. McGeough, eds. (Amsterdam:
Elsevier), 1991.

[6] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation, Princeton
University, 2011.

[7] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated Management of Multiple
Interacting Resources in Chip Multiprocessors: A Machine Learning Approach,”

in MICRO, 2008.
[8] J. Buerger and M. Cannon, “Nonlinear MPC for supervisory control of hybrid

electric vehicles,” in ECC, 2016.
[9] K. K. Chang, A. G. Yağlıkçı, S. Ghose, A. Agrawal, N. Chatterjee, A. Kashyap,

D. Lee, M. O’Connor, H. Hassan, and O. Mutlu, “Understanding Reduced-Voltage
Operation in Modern DRAM Devices: Experimental Characterization, Analysis,
and Mechanisms,” Proc. ACM Meas. Anal. Comput. Syst., 2017.

[10] S. Choi and D. Yeung, “Learning-Based SMT Processor Resource Distribution via
Hill-Climbing,” in ISCA, 2006.

[11] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda, “Pack & Cap: Adaptive
DVFS and Thread Packing Under Power Caps,” in MICRO, 2011.

[12] R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi, “Application-
to-core mapping policies to reduce memory system interference in multi-core
systems,” in HPCA, 2013.

[13] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, “Application-aware prioritization
mechanisms for on-chip networks,” in MICRO, 2009.

[14] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, “AéRgia: Exploiting Packet
Latency Slack in On-chip Networks,” in ISCA, 2010.

[15] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu, “Memory power
management via dynamic voltage/frequency scaling,” in ICAC, 2011.

[16] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and QoS-aware
Cluster Management,” in ASPLOS, 2014.

[17] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bianchini, “CoScale:
Coordinating CPU and Memory System DVFS in Server Systems,” in MICRO,
2012.

[18] A. S. Dhodapkar and J. E. Smith, “Managing Multi-configuration Hardware via
Dynamic Working Set Analysis,” in ISCA, 2002.

[19] B. Donyanavard, T. Mück, S. Sarma, and N. Dutt, “Sparta: Runtime task allocation
for energy efficient heterogeneous many-cores,” in CODES, 2016.

[20] C. Dubach, T.M. Jones, and E. V. Bonilla, “DynamicMicroarchitectural Adaptation
Using Machine Learning,” in TACO, 2013.

[21] C. Dubach, T. M. Jones, E. V. Bonilla, and M. F. P. O’Boyle, “A Predictive Model
for Dynamic Microarchitectural Adaptivity Control,” in MICRO, 2010.

[22] J. Eaton, D. Bateman, S. Hauberg, and R. Wehbring, GNU Octave version 3.8.1 man-
ual: a high-level interactive language for numerical computations. CreateSpace
Independent Publishing Platform, 2014.

[23] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Prefetch-aware shared-resource
management for multi-core systems,” in ISCA, 2011.

[24] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Fairness via source throttling: A
configurable and high-performance fairness substrate for multi-core memory
systems,” in ASPLOS, 2010.

[25] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, “Coordinated Control of Multiple
Prefetchers in Multi-core Systems,” in MICRO, 2009.

[26] L. P. Eric Walter, Identification of Parametric Models from experimental results.
Springer, 1997.

[27] M. Fabian and A. Hellgren, Desco — a Tool for Education and Control of Discrete
Event Systems. Springer, 2000.

[28] S. Fan, S. M. Zahedi, and B. C. Lee, “The Computational Sprinting Game,” in
ASPLOS, 2016.

https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf

[29] X. Fu, K. Kabir, and X. Wang, “Cache-Aware Utilization Control for Energy
Efficiency in Multi-Core Real-Time Systems,” in ECRTS, 2011.

[30] P. Greenhalgh, “Big. little processing with arm cortex-a15 & cortex-a7,” in ARM
White paper, 2011.

[31] U. Gupta, R. Ayoub, M. Kishinevsky, D. Kadjo, N. Soundararajan, U. Tursun, and
U. Ogras, “Dynamic Power Budgeting for Mobile Systems Running Graphics
Workloads,” in TMSCS, 2017.

[32] U. Gupta, J. Campbell, U. Y. Ogras, R. Ayoub, M. Kishinevsky, F. Paterna, and
S. Gumussoy, “Adaptive performance prediction for integrated GPUs,” in ICCAD,
2016.

[33] M. H. Haghbayan, A. Miele, A. M. Rahmani, P. Liljeberg, and H. Tenhunen,
“Performance/Reliability-Aware Resource Management for Many-Cores in Dark
Silicon Era,” IEEE Transactions on Computers, 2017.

[34] V. Hanumaiah, D. Desai, B. Gaudette, C.-J. Wu, and S. Vrudhula, “STEAM: A
Smart Temperature and Energy Aware Multicore Controller,” in TECS, 2014.

[35] Hardkernel, “ODROID-XU,” Tech. Rep. [Online]. Available: http://www.
hardkernel.com/main/main.php

[36] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback Control of Com-
puting Systems. John Wiley & Sons, 2004.

[37] J. P. Hespanha, “Tutorial on supervisory control,” in Lecture Notes for the workshop
Control using Logic and Switching for the 40th Conference on Decision and Control,
2011.

[38] H. Hoffmann, “Coadapt: Predictable behavior for accuracy-aware applications
running on power-aware systems,” in ECRTS, 2014.

[39] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and A. Agarwal, “A gener-
alized software framework for accurate and efficient management of performance
goals,” in EMSOFT, 2013.

[40] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and M. Rinard,
“Dynamic Knobs for Responsive Power-aware Computing,” in ASPLOS, 2011.

[41] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[42] Q. Hui, W. Qiao, and C. Peng, “Neuromorphic-computing-based feedback control:
A cognitive supervisory control framework,” in CDC, 2016.

[43] E. Ipek, O. Mutlu, J. F. Martínez, and R. Caruana, “Self-Optimizing Memory
Controllers: A Reinforcement Learning Approach,” in ISCA, 2008.

[44] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi, “An Anal-
ysis of Efficient Multi-Core Global Power Management Policies: Maximizing
Performance for a Given Power Budget,” in MICRO, 2006.

[45] P. Juang, Q. Wu, L.-S. Peh, M. Martonosi, and D. W. Clark, “Coordinated, dis-
tributed, formal energy management of chip multiprocessors,” in ISLPED, 2005.

[46] H. Jung, P. Rong, and M. Pedram, “Stochastic modeling of a thermally-managed
multi-core system,” in DAC, 2008.

[47] D. Kadjo, R. Ayoub, M. Kishinevsky, and P. V. Gratz, “A Control-theoretic Ap-
proach for Energy Efficient CPU-GPU Subsystem in Mobile Platforms,” in DAC,
2015.

[48] A. Kanduri, M. H. Haghbayan, A. M. Rahmani, P. Liljeberg, A. Jantsch, N. Dutt,
andH. Tenhunen, “Approximation knob: Power Cappingmeets energy efficiency,”
in ICCAD, 2016.

[49] C. Karamanolis, M. Karlsson, and X. Zhu, “Designing Controllable Computer
Systems,” in HoTOS, 2005.

[50] C. J. Lee, V. Narasiman, E. Ebrahimi, O. Mutlu, and Y. N. Patt, “DRAM-aware last-
level cache writeback: Reducing write-caused interference in memory systems,”
UT Austin, Tech. Rep., 2010.

[51] D. Leith and W. Leithead, “Survey of gain-scheduling analysis and design,” in
International Journal of Control, 2000.

[52] L. Ljung, “Black-box models from input-output measurements,” in I2MTC, 2001.
[53] L. Ljung, System Identification: Theory for the User. Prentice Hall PTR, 1999.
[54] D. Lo, T. Song, and G. E. Suh, “Prediction-guided Performance-energy Trade-off

for Interactive Applications,” in MICRO, 2015.
[55] K. Ma, X. Li, M. Chen, and X. Wang, “Scalable power control for many-core

architectures running multi-threaded applications,” in ISCA, 2011.
[56] M. Maggio, H. Hoffmann, M. D. Santambrogio, A. Agarwal, and A. Leva, “Con-

trolling software applications via resource allocation within the heartbeats frame-
work,” in CDC, 2010.

[57] D. Mahajan, A. Yazdanbakhsh, J. Park, B. Thwaites, and H. Esmaeilzadeh, “To-
wards Statistical Guarantees in Controlling Quality Tradeoffs for Approximate
Acceleration,” in ISCA, 2016.

[58] F. Maraninchi, “Operational and Compositional Semantics of Synchronous Au-
tomaton Compositions ,” in CONCUR, 1992, aug.

[59] MathWorks, “System Identification Toolbox,” Tech. Rep., 2017. [Online].
Available: https://www.mathworks.com/products/sysid.html

[60] A. K. Mishra, S. Srikantaiah, M. Kandemir, and C. R. Das, “CPM in CMPs: Coordi-
nated Power Management in Chip-Multiprocessors,” in SC, 2010.

[61] S. Morse, Control using logic-based switching. Springer, 1997.
[62] T. S. Muthukaruppan, A. Pathania, and T. Mitra, “Price Theory Based Power

Management for Heterogeneous Multi-cores,” in ASPLOS, 2014.
[63] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and S. Vishin,

“Hierarchical Power Management for Asymmetric Multi-core in Dark Silicon Era,”
in DAC, 2013.

[64] NIST, “Engineering Statistics Handbook,” Tech. Rep. [Online]. Available:
http://www.itl.nist.gov/div898/handbook/index.htm

[65] P. Petrica, A. M. Izraelevitz, D. H. Albonesi, and C. A. Shoemaker, “Flicker: A
Dynamically Adaptive Architecture for Power Limited Multicore Systems,” in
ISCA, 2013.

[66] R. P. Pothukuchi, A. Ansari, P. Voulgaris, and J. Torrellas, “Using Multiple Input,
Multiple Output Formal Control to Maximize Resource Efficiency in Architec-
tures,” in ISCA, 2016.

[67] R. P. Pothukuchi and J. Torrellas, “A Guide to Design MIMO Controllers for
Architectures,” in http://iacoma.cs.uiuc.edu/iacoma-papers/mimoTR.pdf.

[68] Q. Wu, P. Juang, M. Martonosi, D. W. Clark, “Formal Online Methods for Volt-
age/Frequency Control in Multiple Clock Domain Microprocessors,” in ASPLOS,
2004.

[69] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu, “No "Power"
Struggles: Coordinated Multi-level Power Management for the Data Center,” in
ISCA, 2008.

[70] A. M. Rahmani, M. H. Haghbayan, A. Kanduri, A. Y. Weldezion, P. Liljeberg,
J. Plosila, A. Jantsch, and H. Tenhunen, “Dynamic power management for many-
core platforms in the dark silicon era: A multi-objective control approach,” in
ISLPED, 2015.

[71] A. M. Rahmani, M. H. Haghbayan, A. Miele, P. Liljeberg, A. Jantsch, and H. Ten-
hunen, “Reliability-Aware Runtime Power Management for Many-Core Systems
in the Dark Silicon Era,” in TVLSI, 2017.

[72] A. M. Rahmani, A. Jantsch, and N. Dutt, “HDGM: Hierarchical Dynamic Goal
Management for Many-Core Resource Allocation,” in ESL, 2017.

[73] P. J. Ramadge and W. M. Wonham, “The control of discrete event systems,” in
Proceedings of the IEEE, 1989.

[74] M. H. Safanov, Focusing on the knowable: Controller invalidation and learning.
Springer, 1997.

[75] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and
Design. John Wiley & Sons, 2005.

[76] S. Srikantaiah, M. Kandemir, and Q. Wang, “SHARP control: Controlled shared
cache management in chip multiprocessors,” in MICRO, 2009.

[77] J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter, and L. K. John, “The virtual write
queue: Coordinating dram and last-level cache policies,” in ISCA, 2010.

[78] B. Su, J. Gu, L. Shen, W. Huang, J. L. Greathouse, and Z. Wang, “PPEP: On-
line Performance, Power, and Energy Prediction Framework and DVFS Space
Exploration,” in MICRO, 2014.

[79] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu, “Mise: Providing per-
formance predictability and improving fairness in shared main memory systems,”
in HPCA, 2013.

[80] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu, “The Application
Slowdown Model: Quantifying and Controlling the Impact of Inter-application
Interference at Shared Caches and Main Memory,” in MICRO, 2015.

[81] X. Sui, A. Lenharth, D. S. Fussell, and K. Pingali, “Proactive Control of Approxi-
mate Programs,” in ASPLOS, 2016.

[82] P. Tembey, A. Gavrilovska, and K. Schwan, “A Case for Coordinated Resource
Management in Heterogeneous Multicore Platforms,” in ISCA, 2012.

[83] R. Teodorescu and J. Torrellas, “Variation-Aware Application Scheduling and
Power Management for Chip Multiprocessors,” in ISCA, 2008.

[84] J. Thistle, “Supervisory control of discrete event systems,” in Mathematical and
Computer Modelling, 1996.

[85] V. Vardhan, W. Yuan, A. F. Harris, S. V. Adve, R. Kravets, K. Nahrstedt, D. Sachs,
and D. Jones, “GRACE-2: integrating fine-grained application adaptation with
global adaptation for saving energy,” in IJES, 2009.

[86] A. Vega, A. Buyuktosunoglu, H. Hanson, P. Bose, and S. Ramani, “Crank It Up or
Dial It Down: Coordinated Multiprocessor Frequency and Folding Control,” in
ISCA, 2013.

[87] X. Wang and J. F. Martínez, “ReBudget: Trading Off Efficiency vs. Fairness in
Market-Based Multicore Resource Allocation via Runtime Budget Reassignment,”
in ASPLOS, 2016.

[88] X. Wang, K. Ma, and Y. Wang, “Adaptive Power Control with Online Model
Estimation for Chip Multiprocessors,” in TPDS, 2011.

[89] Y. Wang, K. Ma, and X. Wang, “Temperature-constrained Power Control for Chip
Multiprocessors with Online Model Estimation,” in ISCA, 2009.

[90] Q. Wu, Q. Deng, L. Ganesh, C.-H. Hsu, Y. Jin, S. Kumar, B. Li, J. Meza, and Y. J.
Song, “Dynamo: Facebook’s Data Center-Wide Power Management System,” in
ISCA, 2016.

[91] Q. Wu, P. Juang, M. Martonosi, L.-S. Peh, and D. W. Clark, “Formal control
techniques for power-performance management, 2005,” in IEEE Micro, 2005.

[92] K. Yan, X. Zhang, J. Tan, and X. Fu, “Redefining QoS and customizing the power
management policy to satisfy individual mobile users,” in MICRO, 2016.

[93] H. Zhang and H. Hoffmann, “Maximizing Performance Under a Power Cap: A
Comparison of Hardware, Software, and Hybrid Techniques,” in ASPLOS, 2016.

http://www.hardkernel.com/main/main.php
http://www.hardkernel.com/main/main.php
https://www.mathworks.com/products/sysid.html
http://www.itl.nist.gov/div898/handbook/index.htm

	Abstract
	1 Introduction
	2 Motivation
	2.1 Autonomy: Managing Dynamic System-Wide Goals
	2.2 Scalability Issue 1: System Identification Complexity
	2.3 Scalability Issue 2: Unmanageable State Space

	3 Background on Supervisory Control Theory
	3.1 Scalability via Supervisory Control
	3.2 Autonomy via Supervisory Control

	4 SPECTR: On-chip Resource Management
	4.1 Hierarchical System Architecture
	4.2 Experimental Case Study
	4.3 Supervisor Synthesis Process

	5 Experimental Evaluation
	5.1 Comparison of Resource Managers
	5.2 Scalability Evaluation
	5.3 Overhead Evaluation

	6 Systematic Design Flow of SPECTR
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

