SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

Damla Senol Cali, Ph.D.

damlasenolcali@gmail.com https://damlasenolcali.github.io/

Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie S. Kim, Nika Mansouri Ghiasi, Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser, Sreenivas Subramoney, Can Alkan, Saugata Ghose, Onur Mutlu

Carnegie Mellon

Genome Sequencing

- Genome sequencing: Enables us to determine the order of the DNA sequence in an organism's genome
 - Plays a pivotal role in:
 - Personalized medicine
 - Outbreak tracing
 - Understanding of evolution

Genome DNA

- Modern genome sequencing machines extract smaller randomized fragments of the original DNA sequence, known as reads
 - \circ Short reads: a few hundred base pairs, error rate of \sim 0.1%
 - Long reads: thousands to millions of base pairs, error rate of 10–15%

Genome Sequence Analysis

Mapping the reads to a reference genome (i.e., read mapping) is a critical step in genome sequence analysis

Linear Reference: ACGTACGT

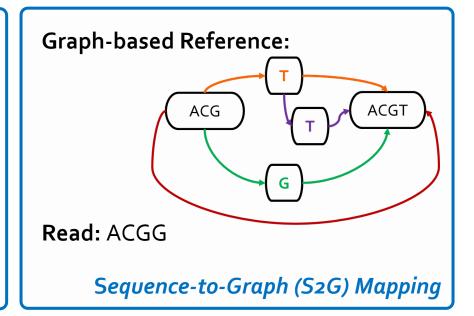
Read: ACGG

Alternative Sequence: ACGGACGT

Alternative Sequence: ACGTTACGT

Alternative Sequence: ACG-ACGT

Sequence-to-Sequence (S2S) Mapping



Sequence-to-graph mapping results in notable quality improvements.

However, it is a more difficult computational problem, with no prior hardware design.

SeGraM: First Graph Mapping Accelerator

Our Goal:

Specialized, high-performance, scalable, and low-cost algorithm/hardware co-design that alleviates bottlenecks in multiple steps of sequence-to-graph mapping

SeGraM: First universal algorithm/hardware co-designed genomic mapping accelerator that can effectively and efficiently support:

- Sequence-to-graph mapping
- Sequence-to-sequence mapping
- Both short and long reads

Use Cases & Key Results

- (1) Sequence-to-Graph (S2G) Mapping
- 5.9×/106× speedup, 4.1×/3.0× less power than **GraphAligner** for long and short reads, respectively (state-of-the-art **SW**)
- 3.9×/742× speedup, 4.4×/3.2× less power than vg for long and short reads, respectively (state-of-the-art SW)
- (2) Sequence-to-Graph (S2G) Alignment
- 41×-539× speedup over PaSGAL with AVX-512 support (state-of-the-art SW)
- (3) Sequence-to-Sequence (S2S) Alignment
- 1.2×/4.8× higher throughput than GenASM and GACT of Darwin for long reads (state-of-the-art HW)
- 1.3×/2.4× higher throughput than GenASM and SillaX of GenAX for short reads (state-of-the-art HW)

Outline

- Introduction
- Background
 - Genome Graphs
 - Sequence-to-Graph Mapping
- ☐ SeGraM: Universal Genomic Mapping Accelerator
 - High-Level Overview
 - o MinSeed
 - BitAlign
 - Use Cases
- Evaluation
- Conclusion

Genome graphs:

- ☐ Combine the linear reference genome with the known genetic variations in the entire population as a graph-based data structure
- Enable us to move away from aligning with a single linear reference genome (reference bias) and more accurately express the genetic diversity in a population

Sequence #1: ACGTACGT

ACGTACGT

Genome graphs:

- ☐ Combine the linear reference genome with the known genetic variations in the entire population as a graph-based data structure
- Enable us to move away from aligning with a single linear reference genome (reference bias) and more accurately express the genetic diversity in a population

Sequence #1: ACGTACGT

Sequence #2: ACGGACGT

ACGTACGT

Genome graphs:

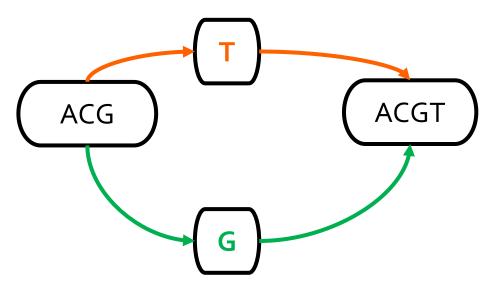
☐ Combine the linear reference genome with the known genetic variations in the entire population as a graph-based data structure

■ Enable us to move away from aligning with a single linear reference genome (reference bias) and more accurately express the genetic

diversity in a population

Sequence #1: ACGTACGT

Sequence #2: ACGGACGT



Genome graphs:

☐ Combine the linear reference genome with the known genetic variations in the entire population as a graph-based data structure

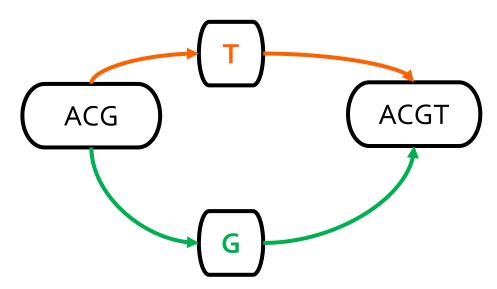
 Enable us to move away from aligning with a single linear reference genome (reference bias) and more accurately express the genetic

diversity in a population

Sequence #1: ACGTACGT

Sequence #2: ACGGACGT

Sequence #3: ACGTTACGT



Genome graphs:

☐ Combine the linear reference genome with the known genetic variations in the entire population as a graph-based data structure

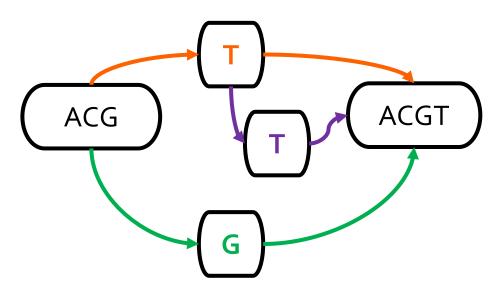
 Enable us to move away from aligning with a single linear reference genome (reference bias) and more accurately express the genetic

diversity in a population

Sequence #1: ACGTACGT

Sequence #2: ACGGACGT

Sequence #3: ACGTTACGT



Genome graphs:

☐ Combine the linear reference genome with the known genetic variations in the entire population as a graph-based data structure

 Enable us to move away from aligning with a single linear reference genome (reference bias) and more accurately express the genetic

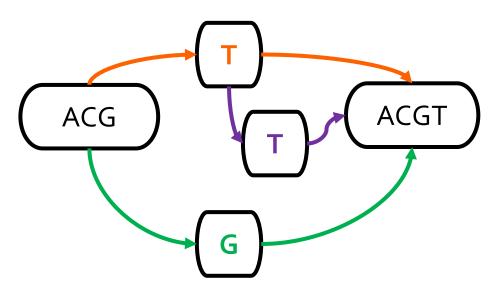
diversity in a population

Sequence #1: ACGTACGT

Sequence #2: ACGGACGT

Sequence #3: ACGTTACGT

Sequence #4: ACGACGT



Genome graphs:

☐ Combine the linear reference genome with the known genetic variations in the entire population as a graph-based data structure

■ Enable us to move away from aligning with a single linear reference genome (reference bias) and more accurately express the genetic

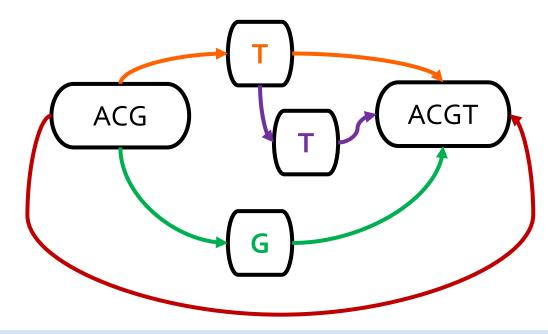
diversity in a population

Sequence #1: ACGTACGT

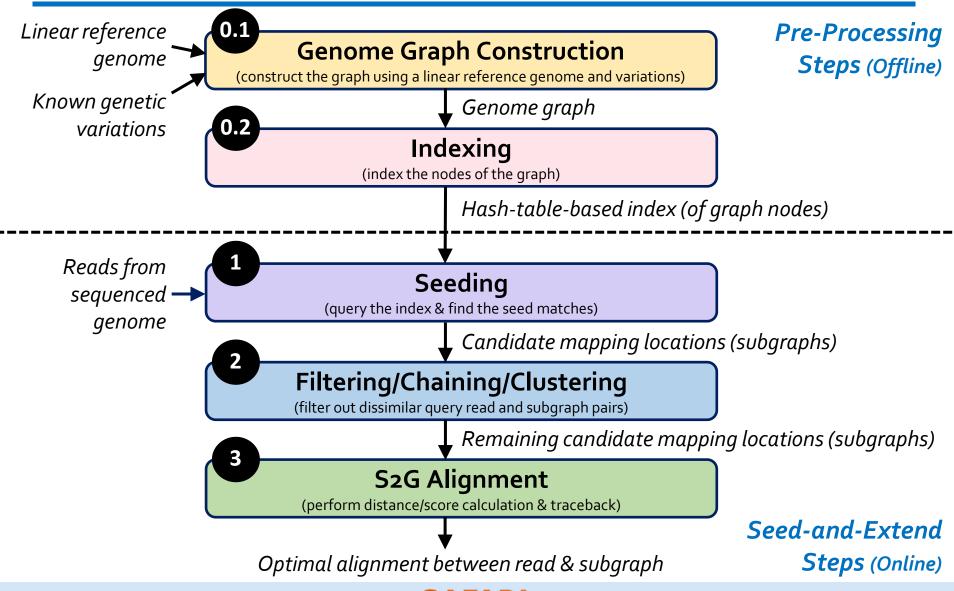
Sequence #2: ACGGACGT

Sequence #3: ACGTTACGT

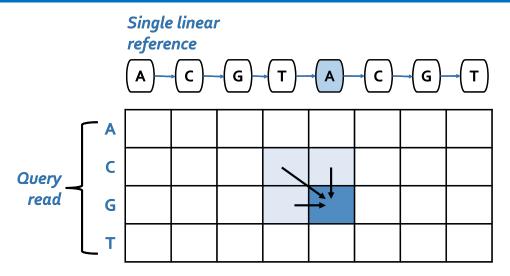
Sequence #4: ACGACGT



Sequence-to-Graph Mapping Pipeline

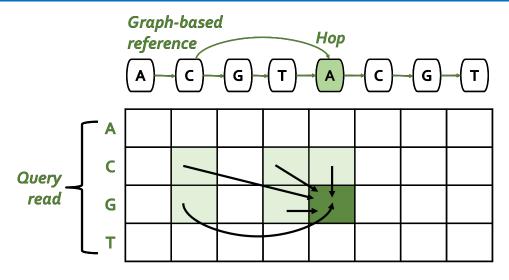


S2S vs. S2G Alignment



Sequence-to-Sequence (S2S) Alignment

S2S vs. S2G Alignment



Sequence-to-Graph (S2G) Alignment

In contrast to S2S alignment,

S2G alignment must incorporate non-neighboring characters as well whenever there is an edge (i.e., hop) from the non-neighboring character to the current character

Analysis of State-of-the-Art Tools

Based on our analysis with **GraphAligner** and vg:

SW

Observation 1: Alignment step is the bottleneck

Observation 2: Alignment suffers from high cache miss rates

Observation 3: Seeding suffers from the DRAM latency bottleneck

Observation 4: Baseline tools scale sublinearly

Observation 5: Existing S2S mapping accelerators are unsuitable for the S2G mapping problem

HW

Observation 6: Existing graph accelerators are unable to handle S2G alignment

Outline

- Introduction
- □ Background
 - Genome Graphs
 - Sequence-to-Graph Mapping
- □ SeGraM: Universal Genomic Mapping Accelerator
 - High-Level Overview
 - MinSeed
 - BitAlign
 - Use Cases
- Evaluation
- Conclusion

SeGraM: Universal Genomic Mapping Accelerator

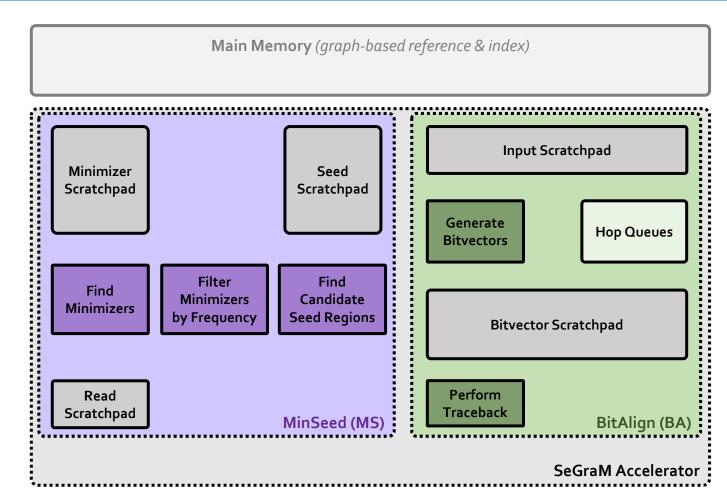
- □ First universal genomic mapping accelerator that can support both sequence-to-graph mapping and sequence-to-sequence mapping, for both short and long reads
- □ *First algorithm/hardware co-design* for accelerating sequence-to-graph mapping
- ☐ We base SeGraM upon a minimizer-based seeding algorithm
- We propose a novel bitvector-based alignment algorithm to perform approximate string matching between a read and a graph-based reference genome

SW

■ We co-design both algorithms with high-performance, scalable, and efficient hardware accelerators

HW

SeGraM Hardware Design



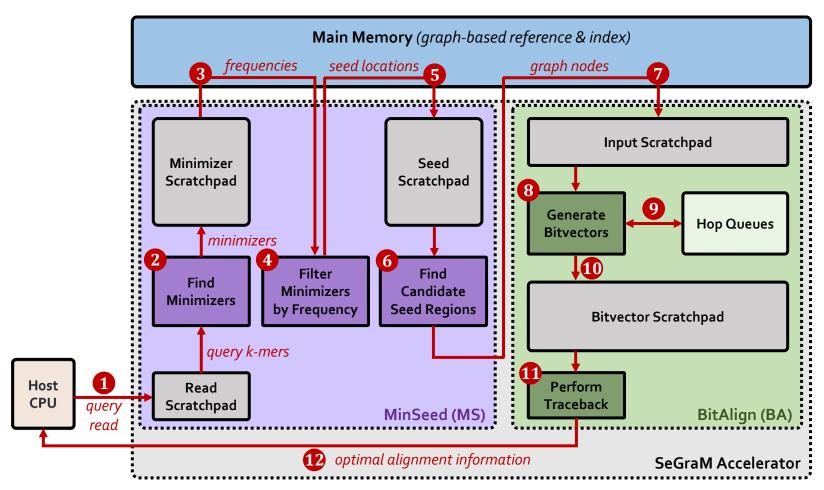
MinSeed: first hardware accelerator for Minimizer-based Seeding

Host

CPU

BitAlign: *first* hardware accelerator for (**Bit**vector-based) sequence-to-graph **Align**ment

SeGraM Hardware Design

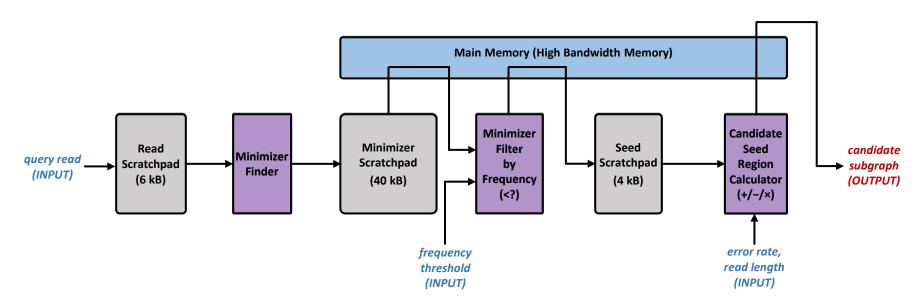


MinSeed: first hardware accelerator for Minimizer-based Seeding

BitAlign: first hardware accelerator for (Bitvector-based) sequence-to-graph Alignment

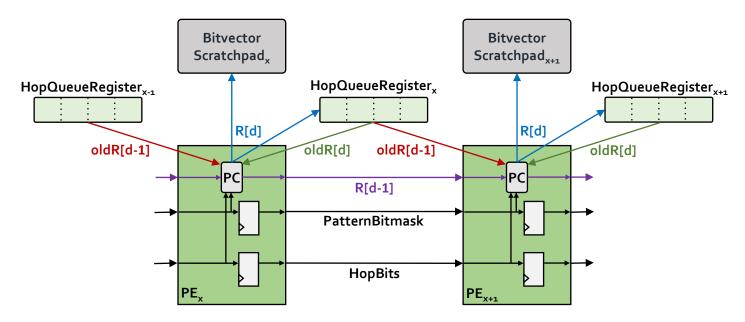
MinSeed HW

- ☐ MinSeed = 3 computation modules + 3 scratchpads + memory interface
 - Computation modules: Implemented with simple logic
 - Scratchpads: 50kB in total; employ double buffering technique to hide the latency of MinSeed
 - High-Bandwidth Memory (HBM): Enables low-latency and highly-parallel memory access



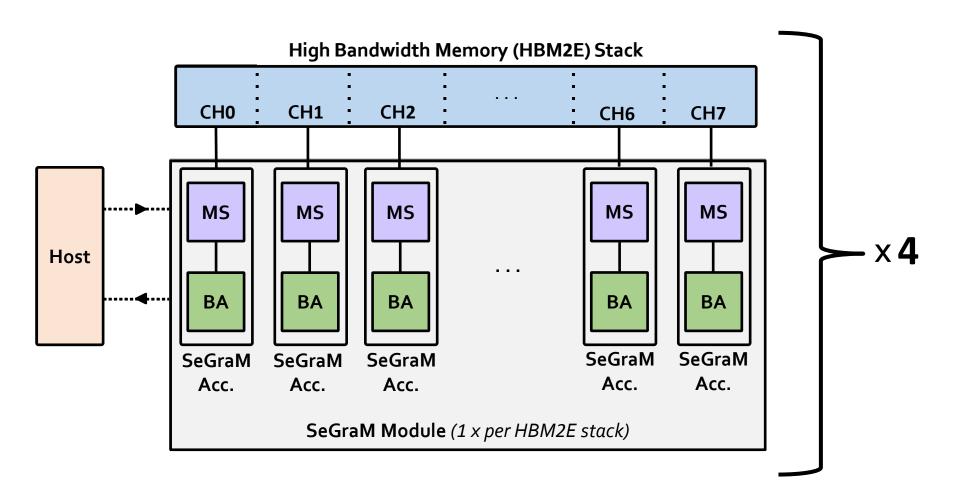
BitAlign HW

- ☐ Linear cyclic systolic array-based accelerator
- Based on the GenASM hardware design*
- Incorporates hop queue registers to feed the bitvectors of non-neighboring characters/nodes (i.e., hops)



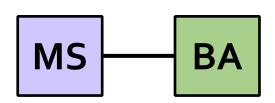
[*] D. Senol Cali *et al.* "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis" (MICRO'20)

Overall System Design of SeGraM

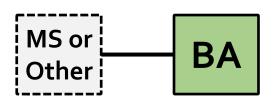


Use Cases of SeGraM

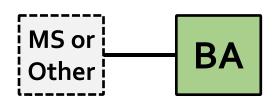
(1) Sequence-to-Graph Mapping



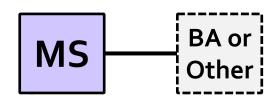
(2) Sequence-to-Graph Alignment



(3) Sequence-to-Sequence Alignment



(4) Seeding



Outline

- Introduction
- □ Background
 - Genome Graphs
 - Sequence-to-Graph Mapping
- ☐ SeGraM: Universal Genomic Mapping Accelerator
 - High-Level Overview
 - MinSeed
 - BitAlign
 - Use Cases
- Evaluation
- Conclusion

Evaluation Methodology

■ Performance, Area and Power Analysis:

- Synthesized SystemVerilog models of the MinSeed and BitAlign accelerator datapaths
- Simulation- and spreadsheet-based performance modeling

■ Baseline Comparison Points:

- GraphAligner, vg, and HGA for sequence-to-graph mapping
- PaSGAL for sequence-to-graph alignment
- Darwin, GenAx, and GenASM for sequence-to-sequence alignment

Datasets:

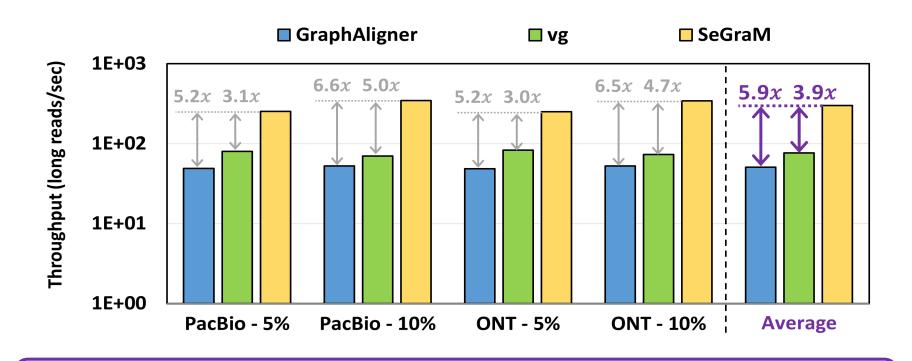
- Graph-based reference: GRCh38 + 7 VCF files for HG001-007
- Simulated datasets for both short and long reads

Key Results – Area & Power

■ Based on our **synthesis** of **MinSeed** and **BitAlign** accelerator datapaths using the Synopsys Design Compiler with a **28nm** process (**a 1GHz**):

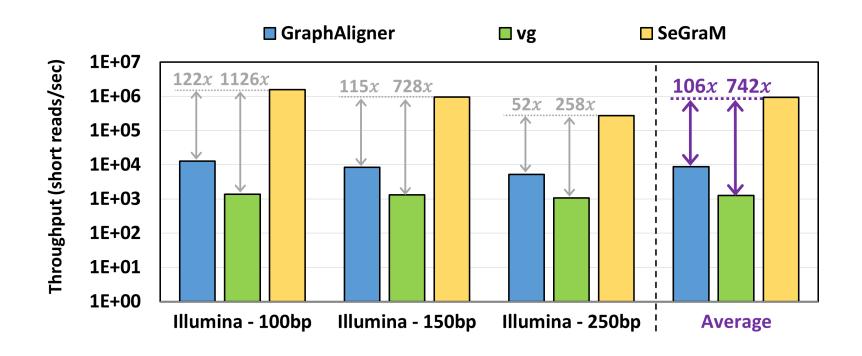
Component	Area (mm²)	Power (mW)
MinSeed – Logic	0.017	10.8
Read Scratchpad (6 kB)	0.012	7.9
Minimizer Scratchpad (40 kB)	0.055	22.7
Seed Scratchpad (4 kB)	0.008	6.4
BitAlign – Edit Distance Calculation Logic with Hop Queue Registers (64 PEs)	0.393	378.0
BitAlign – Traceback Logic	0.020	2.7
Input Scratchpad (24 kB)	0.033	13.3
Bitvector Scratchpads (128 kB)	0.329	316.2
Total – 1 SeGraM Accelerator	0.867	758.0 (0.8 W)
Total – 4 SeGraM Modules (32 SeGraM Accelerators)	27.744	24.3 W
HBM2E (4 stacks)		3.8 W

Key Results – SeGraM with Long Reads



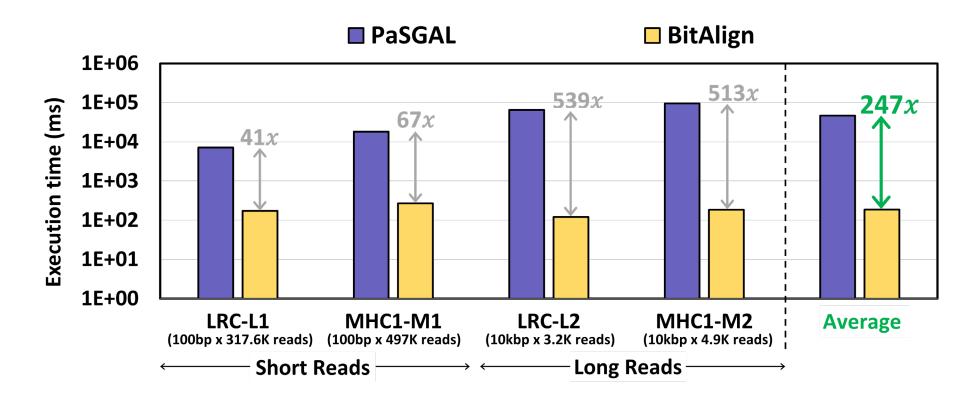
SeGraM provides **5.9**× and **3.9**× throughput improvement over GraphAligner and vg, while reducing the power consumption by **4.1**× and **4.4**×

Key Results – SeGraM with Short Reads



SeGraM provides 106× and 742× throughput improvement over GraphAligner and vg, while reducing the power consumption by 3.0× and 3.2×

Key Results – BitAlign (S2G Alignment)



BitAlign provides 41×-539× speedup over PaSGAL

Key Results – BitAlign (S2S Alignment)

- ☐ BitAlign can also be used for sequence-to-sequence alignment
 - The cost of more functionality: extra hop queue registers
 - We do not sacrifice any performance
- □ For long reads (over GACT of Darwin and GenASM):
 - 4.8× and 1.2× throughput improvement,
 - 2.7× and 7.5× higher power consumption, and
 - 1.5× and 2.6× higher area overhead
- For short reads (over SillaX of GenAx and GenASM):
 - 2.4× and 1.3× throughput improvement

Outline

- Introduction
- □ Background
 - Genome Graphs
 - Sequence-to-Graph Mapping
- ☐ SeGraM: Universal Genomic Mapping Accelerator
 - High-Level Overview
 - MinSeed
 - BitAlign
 - Use Cases
- Evaluation
- □ Conclusion

Additional Details in the Paper

- Details of the pre-processing steps of SeGraM
- Details of the MinSeed and BitAlign algorithms
- Details of the MinSeed and BitAlign hardware designs
- Bottleneck analysis of the existing tools
- Evaluation methodology details
 (datasets, baselines, performance model)
- Additional results for the three evaluated use cases
- Sources of improvements in SeGraM
- □ Comparison of GenASM and SeGraM

Conclusion

- □ **SeGraM**: First universal algorithm/hardware co-designed genomic mapping accelerator that supports:
 - Sequence-to-graph (S2G) & sequence-to-sequence (S2S) mapping
 - Short & long reads
 - MinSeed: First minimizer-based seeding accelerator
 - BitAlign: First (bitvector-based) S2G alignment accelerator
- SeGraM supports multiple use cases:
 - End-to-end S2G mapping
 - S2G alignment
 - S2S alignment
 - Seeding
- SeGraM outperforms state-of-the-art software & hardware solutions

SeGraM [ISCA 2022]

<u>Damla Senol Cali</u>, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie S. Kim, Nika Mansouri Ghiasi, Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu

<u>"SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping"</u>

Proceedings of <u>the 49th International Symposium on Computer Architecture (ISCA)</u>, New York City, NY, June 2022.

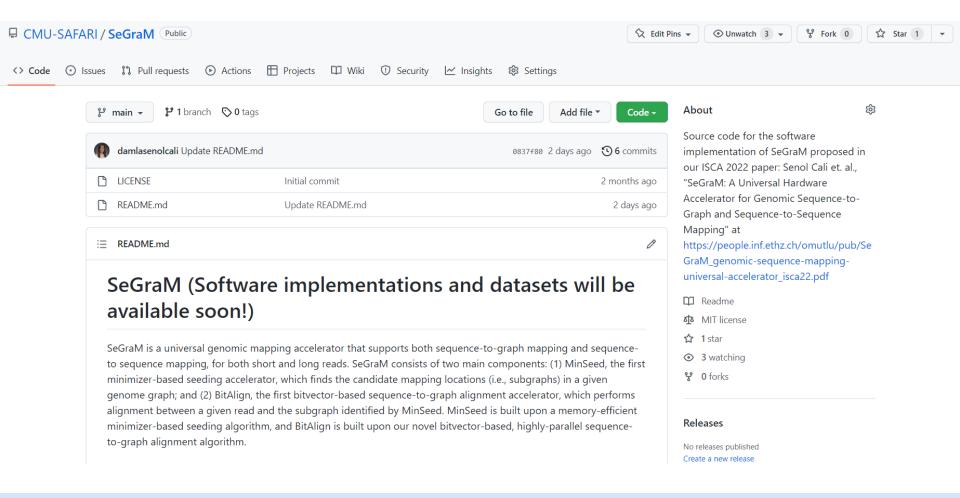
SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

Damla Senol Cali¹ Konstantinos Kanellopoulos² Joël Lindegger² Zülal Bingöl³ Gurpreet S. Kalsi⁴ Ziyi Zuo⁵ Can Firtina² Meryem Banu Cavlak² Jeremie Kim² Nika Mansouri Ghiasi² Gagandeep Singh² Juan Gómez-Luna² Nour Almadhoun Alserr² Mohammed Alser² Sreenivas Subramoney⁴ Can Alkan³ Saugata Ghose⁶ Onur Mutlu²

¹Bionano Genomics ²ETH Zürich ³Bilkent University ⁴Intel Labs ⁵Carnegie Mellon University ⁶University of Illinois Urbana-Champaign

SeGraM – GitHub Page

https://github.com/CMU-SAFARI/SeGraM



SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

Damla Senol Cali, Ph.D.

damlasenolcali@gmail.com https://damlasenolcali.github.io/

Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie S. Kim, Nika Mansouri Ghiasi, Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser, Sreenivas Subramoney, Can Alkan, Saugata Ghose, Onur Mutlu

Carnegie Mellon

Backup Slides

(SeGraM)

Genome Sequence Analysis

Mapping the reads to a reference genome (i.e., read mapping) is a critical step in genome sequence analysis (GSA)

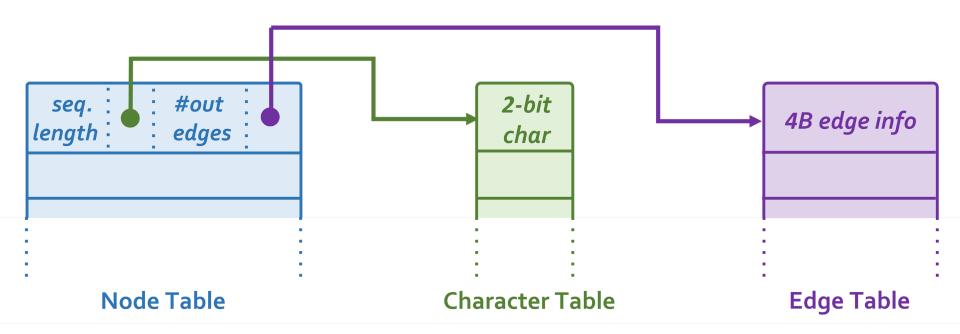
Sequence-to-Sequence (S2S) Mapping

- Maps reads collected from an individual to a known linear reference genome sequence
- Emphasizes the genetic variations that are **present** in the single reference genome
- ☐ Ignores other variations that are not represented in the single linear reference sequence
- ☐ Introduces reference bias
- Well studied with many available tools and accelerators

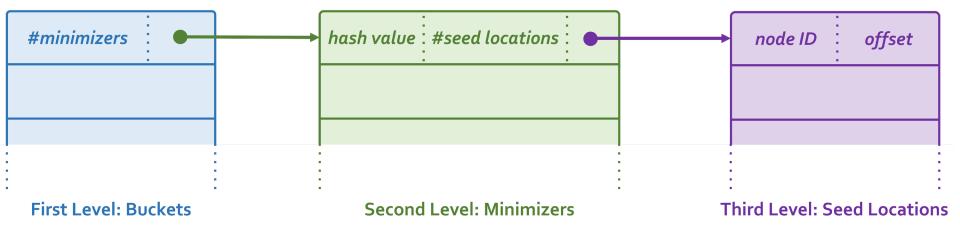
Sequence-to-Graph (S2G) Mapping

- Replaces the linear reference sequence with a graph-based representation of the reference genome (genome graph)
- ☐ Captures the genetic variations and diversity across many individuals in a population
- ☐ Results in **notable quality improvements** in GSA
- ☐ More difficult computational problem
- No prior hardware design for graphbased GSA

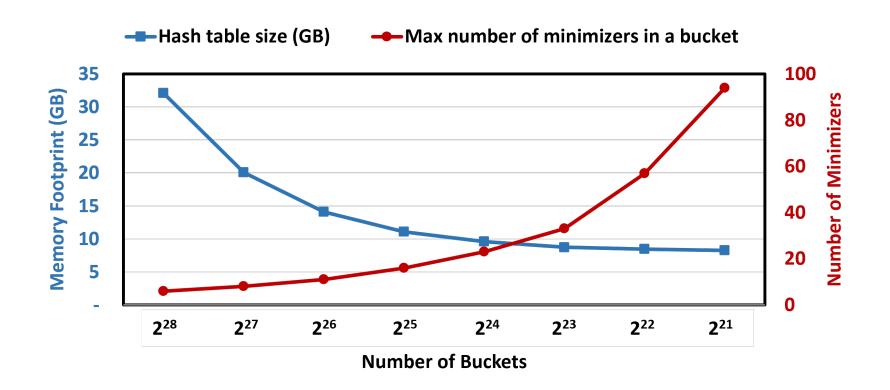
SeGraM – Graph Structure



SeGraM – Index Structure



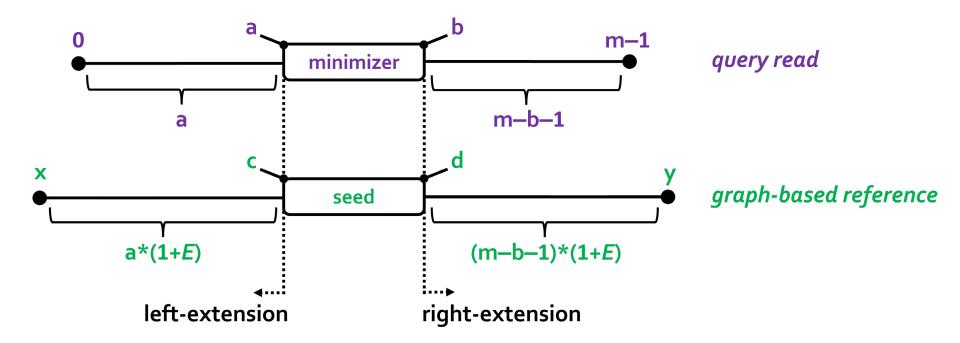
SeGraM – Selection of #Buckets



Minimizers

Position	1	2	3	4	5	6	7	
Sequence	Α	G	Т	Α	G	С	Α	
k-mer ₁	Α	G	Т					
k-mer ₂		G	Т	Α				
k-mer₃			Т	Α	G			
<i>k</i> -mer₄				Α	G	C -		lexicographically smallest k-mer
k-mer ₅					G	C	Α	 Sindings & Their

MinSeed – Region Calculation



BitAlign Algorithm

Algorithm 1 BitAlign Algorithm

```
Inputs: linearized and topologically sorted subgraph (reference),
                 query-read (pattern), k (edit distance threshold)
    Outputs: editDist (minimum edit distance), CIGARstr (traceback output)

 n ← length of linearized reference subgraph

 2: m ← length of query read
 PM ←genPatternBitmasks(query-read)
                                                      pre-process the query read
 4:
 5: allR[n][d] ← 111...111  binit R[d] bitvectors for all characters with 1s
 6:
 7: for i in (n-1):-1:0 do

    iterate over each subgraph node

       curChar ← subgraph-nodes[i].char
       curPM ← PM[curChar]

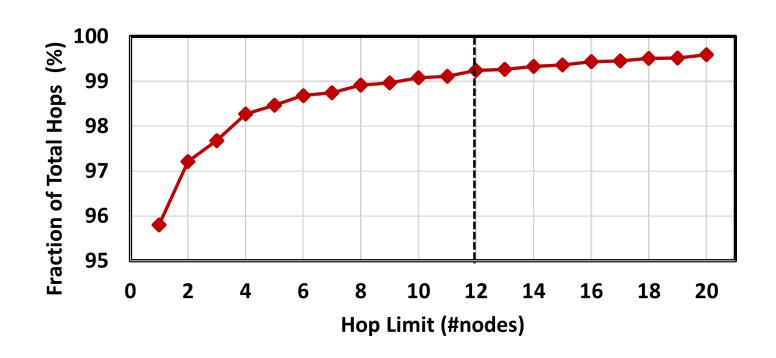
    retrieve the pattern bitmask

 9:
10:
                                                 ▶ status bitvector for exact match
       R0 ← 111...111
11:
12:
       for j in subgraph-nodes[i].successors do
          R0 \leftarrow ((R[j][0] << 1) \mid curPM) \& R0
                                                         ▶ exact match calculation
13:
       allR[i][0] \leftarrow R0
14:
15:
       ford in 1:k do
16:
           I \leftarrow (allR[i][d-1] \ll 1)
17:
                                                                        ▶ insertion
                                                      ▶ status bitvector for d errors
           Rd \leftarrow I
18:
           for j in subgraph-nodes[i].successors do
19:
              D \leftarrow allR[j][d-1]
                                                                         ▶ deletion
20:
                                                                     ▶ substitution
              S \leftarrow allR[j][d-1] << 1
21:
              M \leftarrow (allR[j][d] << 1) \mid curPM
22:
                                                                           ▶ match
              Rd \leftarrow D & S & M & Rd
23:
           allR[i][d] \leftarrow Rd
24:
25: <editDist, CIGARstr> ← traceback(allR, subgraph, query-read)
```

BitAlign – HopBits



BitAlign – Hop Length Selection



Use Cases of SeGraM

(1) End-to-End Sequence-to-Graph Mapping

- The whole SeGraM design (MinSeed + BitAlign) should be employed
- We can use SeGraM to perform mapping with both short and long reads

(2) Sequence-to-Graph Alignment

- BitAlign can be used as a standalone sequence-to-graph aligner without the need of an initial seeding tool/accelerator (e.g., MinSeed)
- BitAlign is orthogonal to and can be coupled with any seeding (or filtering) tool/accelerator

(3) Sequence-to-Sequence Alignment

 BitAlign can also be used for sequence-to-sequence alignment, as it is a special and simpler variant of sequence-to-graph alignment

(4) Seeding

- MinSeed can be used as a standalone seeding accelerator for both graph-based mapping and traditional linear mapping
- MinSeed is orthogonal to and can be coupled with any alignment tool/accelerator

Sources of Improvement

□ Co-design approach for both seeding and alignment:

- Efficient and hardware-friendly algorithms for seeding and for alignment
- Eliminating the data transfer bottleneck between the seeding and alignment steps of the genome sequence analysis pipeline, by placing their individual accelerators (MinSeed and BitAlign) adjacent to each other
- Pipelining of the two accelerators within a SeGraM accelerator, which allows us to completely hide the latency of MinSeed
- Overcoming the high cache miss rates observed from the baseline tools by carefully designing and sizing the on-chip scratchpads and the hop queue registers and matching the rate of computation for the logic units with memory bandwidth and memory capacity

Sources of Improvement (cont'd.)

■ Addressing the DRAM latency bottleneck by taking advantage of the natural channel subdivision exposed by HBM and eliminating any inter-accelerator interference-related latency in the memory system

☐ Scaling linearly across three dimensions:

- Within a single BitAlign accelerator, by incorporating processing elements (i.e., iteration-level parallelism),
- Executing multiple seeds in parallel by using pipelined execution with the help of our double buffering approach (i.e., seed-level parallelism), and
- Processing multiple reads concurrently without introducing interaccelerator memory interference with the help of multiple HBM stacks that each contain the same content (i.e., read-level parallelism)

Backup Slides

(GenASM)

Approximate String Matching

Sequenced genome may not exactly map to the reference genome due to genetic variations and sequencing errors

- Approximate string matching (ASM):
 - Detect the differences and similarities between two sequences
 - In genomics, ASM is required to:
 - Find the *minimum edit distance* (i.e., total number of edits)
 - Find the optimal alignment with a traceback step
 - Sequence of matches, substitutions, insertions and deletions, along with their positions
 - Usually implemented as a dynamic programming (DP) based algorithm

Bitap Algorithm

- Bitap¹,² performs ASM with fast and simple bitwise operations
 - Amenable to efficient hardware acceleration
 - Computes the minimum edit distance between a text (e.g., reference genome) and a pattern (e.g., read) with a maximum of k errors
- Step 1: Pre-processing (per pattern)
 - Generate a pattern bitmask (PM) for each character in the alphabet
 (A, C, G, T)
 - Each PM indicates if character exists at each position of the pattern
- Step 2: Searching (Edit Distance Calculation)
 - Compare all characters of the text with the pattern by using:
 - Pattern bitmasks
 - Status bitvectors that hold the partial matches
 - Bitwise operations

R. A. Baeza-Yates and G. H. Gonnet. "A New Approach to Text Searching." CACM, 1992.
 S. Wu and U. Manber. "Fast Text Searching: Allowing Errors." CACM, 1992.

Bitap Algorithm (cont'd.)

☐ Step 2: Edit Distance Calculation

```
Large number of
For each character of the text (char):
                                                              iterations
     Copy previous R bitvectors as oldR
     R[0] = (oldR[0] << 1) | PM [char]
     For d = 1...k:
              deletion = oldR[d-1]
              substitution = oldR[d-1] << 1
              insertion
                           = R[d-1] << 1
              match
                           = (oldR[d] << 1) | PM [char]
              R[d] = deletion & mismatch & insertion & match
              Check MSB of R[d]:
                       If 1, no match.
                       If 0, match with d many errors.
```

Bitap Algorithm (cont'd.)

Step 2: Edit Distance Calculation

```
For each character of the text (char):
```

Copy previous R bitvectors as oldR

```
R[0] = (oldR[0] << 1) | PM [char]
```

Data dependency between iterations (i.e., no parallelization)

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match.

If 0, match with d many errors.

Bitap Algorithm (cont'd.)

Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1...k:

deletion

= oldR[d-1]

substitution = oldR[d-1] << 1</pre>

insertion

= R[d-1] << 1

match

= (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match.

If 0, match with d many errors.

Does *not* store and process these intermediate bitvectors to find the optimal alignment (i.e., no traceback)

Example for the Bitap Algorithm

```
Text Region:

CGTGA

Query Pattern:

CTGA

Edit Distance
Threshold (k):
```

```
PREPROCESSING (0)
Pattern Bitmasks:

CTGA

PM(A) = 1110
PM(C) = 0111
PM(G) = 1101
PM(T) = 1011

State Vectors:

R0 = 1111
R1 = 1111
```

```
Text[4]: CGTGA

oldR0 = 1111
oldR1 = 1111

R0 = (oldR0 << 1) | PM(A)
= 1110

D : oldR0 = 1111

R1 = I : R0 << 1 = 1110

M : (oldR1 << 1) | PM(A) = 1110

= D & S & I & M = 1100
```

```
Text[3]: CGTGA (2)

oldR0 = 1110
oldR1 = 1100

R0 = (oldR0 << 1) | PM(G)
= 1101

D : oldR0 = 1110
S : oldR0 << 1 = 1100
R1 = I : R0 << 1 = 1010
M : (oldR1 << 1) | PM(G) = 1101
= D & S & I & M = 1000
```

```
Alignment Found @ Location=2
```

```
Text[1]: CGTGA 4

oldR0 = 1011
oldR1 = 0000

R0 = (oldR0 << 1) | PM(G)
= 1111

D : oldR0 = 1011
S : oldR0 << 1 = 0110
R1 = I : R0 << 1 = 0110
M : (oldR1 << 1) | PM(G) = 1101
= D & S & I & M = 0000
```

```
Alignment Found @ Location=1
```

```
Text[0]: CGTGA

oldR0 = 1111
oldR1 = 0000

R0 = (oldR0 << 1) | PM(C)
= 1111

D : oldR0 = 1111

S : oldR0 <= 1110

R1 = I : R0 << 1 = 1110

M : (oldR1 << 1) | PM(C) = 0111

= D & S & I & M = 0110
```

Alignment Found @ Location=0

Limitations of Bitap

1) Data Dependency Between Iterations:

Algorithm

 Two-level data dependency forces the consecutive iterations to take place sequentially

2) No Support for Traceback:

Bitap does not include any support for optimal alignment identification

3) No Support for Long Reads:

- Each bitvector has a length equal to the length of the pattern
- Bitwise operations are performed on these bitvectors

4) Limited Compute Parallelism:

Hardware

- Text-level parallelism
- Limited by the number of compute units in existing systems

5) Limited Memory Bandwidth:

 High memory bandwidth required to read and write the computed bitvectors to memory

GenASM: ASM Framework for GSA

Our Goal:

Accelerate approximate string matching by designing a fast and flexible framework, which can accelerate *multiple steps* of genome sequence analysis

- ☐ GenASM: First ASM acceleration framework for GSA
 - Approximate string matching (ASM) acceleration framework based on the Bitap algorithm
- We overcome the five limitations that hinder Bitap's use in GSA:
 - Modified and extended ASM algorithm

SW

- Highly-parallel Bitap with long read support
- Novel bitvector-based algorithm to perform traceback
- Specialized, low-power and area-efficient hardware for both HW modified Bitap and novel traceback algorithms

GenASM Algorithm

☐ GenASM-DC Algorithm:

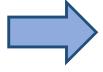
- Modified Bitap for Distance Calculation
- Extended for efficient long read support
- Besides bit-parallelism that Bitap has, extended for parallelism:
 - Loop unrolling
 - Text-level parallelism

☐ GenASM-TB Algorithm:

- Novel Bitap-compatible TraceBack algorithm
- Walks through the intermediate bitvectors (match, deletion, substitution, insertion) generated by GenASM-DC
- Follows a divide-and-conquer approach to decrease the memory footprint

Loop Unrolling in GenASM-DC

Cycle _#	Thread ₁ <i>Ro/1/2/</i>		
#1	To-Ro		
#8	To-R ₇		
#9	T1-Ro		
#16	T1-R7		
#17	T2-Ro		
#24	T2-R7		
#25	T ₃ -Ro		
#32	T3-R7		



Cycle _#	Thread ₁ Ro/4	Thread₂ R1/5	Thread ₃ R2/6	Thread ₄ R ₃ / ₇
#1	To-Ro	-	-	_
#2	T1-Ro	To-R1	I	-
#3	T2-Ro	T1-R1	To-R2	-
#4	T ₃ -Ro	T2-R1	T1-R2	To-R ₃
#5	To-R4	T ₃ -R ₁	T2-R2	T1-R3
#6	T1-R4	To-R5	T3-R2	T2-R3
#7	T2-R4	T1-R5	To-R6	T3-R3
#8	T3-R4	T2-R5	T1-R6	To-R ₇
#9	-	T3-R5	T2-R6	T1-R7
#10	-	-	T3-R6	T2-R7
#11	_	_	-	T3-R7

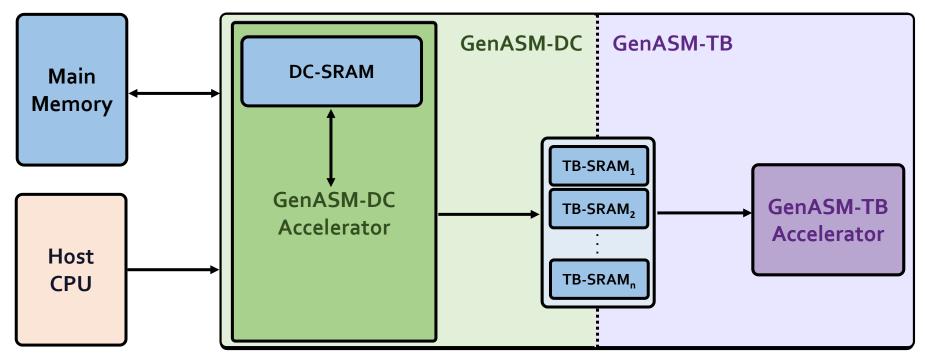
data written to memory data read from memory

target cell (R_d) cells target cell depends on (old R_d , R_{d-1} , old R_{d-1})

Traceback Example with GenASM-TB

```
Deletion Example (Text Location=0)
                                                                   (a)
Text[0]: C
              Text[1]: G
                             Text[2]: T
                                            Text[3]: G
                                                          Text[4]: A
                            RO-M: 1011
                                         [ RO-M : 1101 ]
                                                         RO-M: 1110
             R1-D : 1011 | R1-
                                                         R1-
                Del(-)
                                            Match(G)
Match(C)
                              Match(T)
                                                            Match(A)
<3,0,1>
                              <2,2,0>
                                                            <0,4,0>
               <2,1,1>
                                             <1,3,0>
              Substitution Example (Text Location=1)
                                                                   (b)
Text[1]: G
              Text[2]: T
                             Text[3]: G
                                           Text[4]: A
                            RO-M: 1101
             RO-M: 1011
                                         RO-M: 1110
                    .... || R1-
                                : .... || R1-
               Match(T)
                             Match(G)
                                            Match(A)
Subs(C)
 <3,1,1>
               <2,2,0>
                             <1,3,0>
                                             <0,4,0>
                Insertion Example (Text Location=2)
                                                                   (c)
 Text[-]
              Text[2]: T
                             Text[3]: G
                                           Text[4]: A
                            RO-M: 1101
             RO-M: 1011
                                          RO-M: 1110
                   : .... || R1-
  Ins(C)
               Match(T)
                             Match(G)
                                            Match(A)
                                             <0,4,0>
 <3,2,1>
               <2,2,0>
                              <1,3,0>
```

GenASM Hardware Design



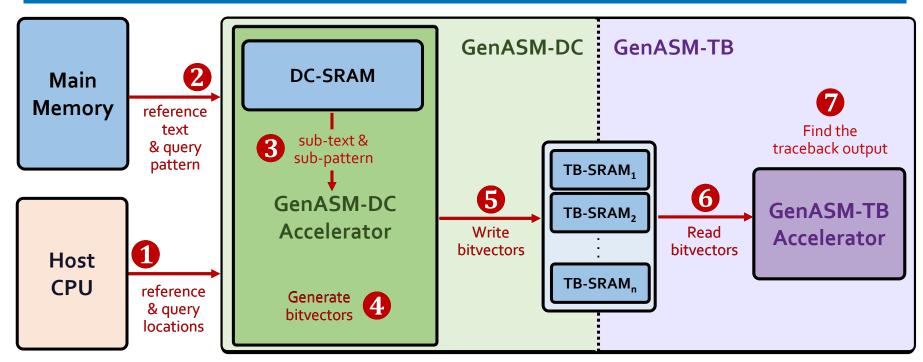
GenASM-DC:

generates bitvectors and performs edit Distance Calculation

GenASM-TB:

performs TraceBack and assembles the optimal alignment

GenASM Hardware Design



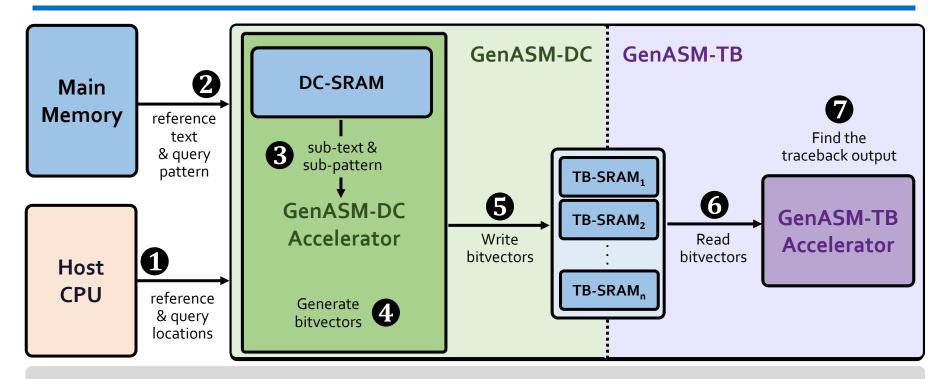
GenASM-DC:

generates bitvectors and performs edit Distance Calculation

GenASM-TB:

performs TraceBack and assembles the optimal alignment

GenASM Hardware Design



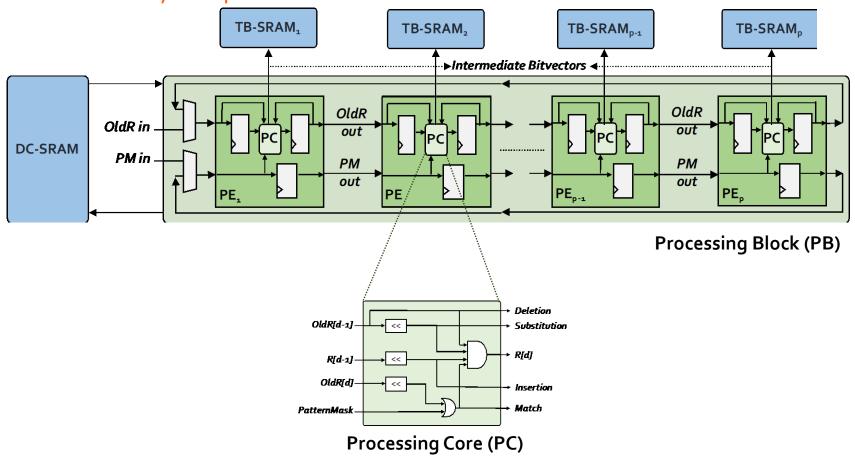
Our specialized compute units and on-chip SRAMs help us to:

- → Match the rate of computation with memory capacity and bandwidth
 - → Achieve high performance and power efficiency
 - → Scale linearly in performance with

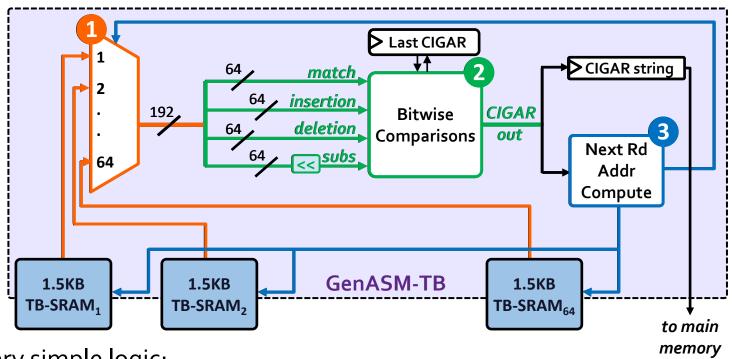
the number of parallel compute units that we add to the system

GenASM-DC: Hardware Design

- Linear cyclic systolic array based accelerator
 - Designed to maximize parallelism and minimize memory bandwidth and memory footprint



GenASM-TB: Hardware Design



- Very simple logic:
 - 1 Reads the bitvectors from one of the TB-SRAMs using the computed address
 - 2 Performs the required bitwise comparisons to find the traceback output for the current position
 - 3 Computes the next TB-SRAM address to read the new set of bitvectors

Use Cases of GenASM

(1) Read Alignment Step of Read Mapping

 Find the optimal alignment of how reads map to candidate reference regions

(2) Pre-Alignment Filtering for Short Reads

 Quickly identify and filter out the unlikely candidate reference regions for each read

(3) Edit Distance Calculation

- Measure the similarity or distance between two sequences
- We also discuss other possible use cases of GenASM in our paper:
 - Read-to-read overlap finding, hash-table based indexing, whole genome alignment, generic text search

Evaluation Methodology

- We evaluate GenASM using:
 - Synthesized SystemVerilog models of the GenASM-DC and GenASM-TB accelerator datapaths
 - Detailed simulation-based performance modeling
- 16GB HMC-like 3D-stacked DRAM architecture
 - 32 vaults
 - 256GB/s of internal bandwidth, clock frequency of 1.25GHz
 - In order to achieve high parallelism and low power-consumption
 - Within each vault, the logic layer contains a GenASM-DC accelerator, its associated DC-SRAM, a GenASM-TB accelerator, and TB-SRAMs.

Evaluation Methodology (cont'd.)

	SW Baselines	HW Baselines
Read Alignment	Minimap2 ¹ BWA-MEM ²	GACT (Darwin) ³ SillaX (GenAx) ⁴
Pre-Alignment Filtering	_	Shouji ⁵
Edit Distance Calculation	Edlib ⁶	ASAP ⁷

^[1] H. Li. "Minimap2: Pairwise Alignment for Nucleotide Sequences." In Bioinformatics, 2018.

^[2] H. Li. "Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM." In arXiv, 2013.

^[3] Y. Turakhia et al. "Darwin: A genomics co-processor provides up to 15,000 x acceleration on long read assembly." In *ASPLOS*, 2018.

[4] D. Fujiki et al. "GenAx: A genome sequencing accelerator." In *ISCA*, 2018.

^[5] M. Alser. "Shouji: A fast and efficient pre-alignment filter for sequence alignment." In Bioinformatics, 2019.

^[6] M. Šošić et al. "Edlib: A C/C++ library for fast, exact sequence alignment using edit distance." In *Bioinformatics*, 2017.

^[7] S.S. Banerjee et al. "ASAP: Accelerated short-read alignment on programmable hardware." In TC, 2018.

Evaluation Methodology (cont'd.)

- ☐ For Use Case 1: Read Alignment, we compare GenASM with:
 - Minimap2 and BWA-MEM (state-of-the-art SW)
 - Running on Intel® Xeon® Gold 6126 CPU (12-core) operating
 @2.60GHz with 64GB DDR4 memory
 - Using two simulated datasets:
 - Long ONT and PacBio reads: 10Kbp reads, 10-15% error rate
 - Short Illumina reads: 100-250bp reads, 5% error rate
 - GACT of Darwin and SillaX of GenAx (state-of-the-art HW)
 - Open-source RTL for GACT
 - Data reported by the original work for SillaX
 - GACT is best for long reads, SillaX is best for short reads

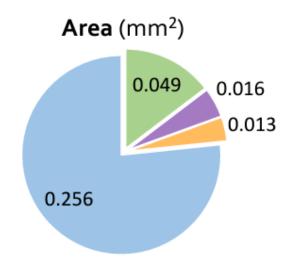
Evaluation Methodology (cont'd.)

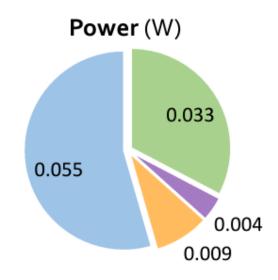
- ☐ For Use Case 2: Pre-Alignment Filtering, we compare GenASM with:
 - Shouji (state-of-the-art HW FPGA-based filter)
 - Using two datasets provided as test cases:
 - 100bp reference-read pairs with an edit distance threshold of 5
 - 250bp reference-read pairs with an edit distance threshold of 15
- ☐ For Use Case 3: Edit Distance Calculation, we compare GenASM with:
 - Edlib (state-of-the-art SW)
 - Using two 100Kbp and 1Mbp sequences with similarity ranging between 60%-99%
 - ASAP (state-of-the-art HW FPGA-based accelerator)
 - Using data reported by the original work

Key Results – Area and Power

- Based on our **synthesis** of **GenASM-DC** and **GenASM-TB** accelerator datapaths using the Synopsys Design Compiler with a **28nm** process:
 - Both GenASM-DC and GenASM-TB operate @ 1GHz

- GenASM-TB
- DC-SRAM (8 KB)
- TB-SRAMs (64 x 1.5 KB)





Total (1 vault): 0.334 mm²

Total (32 vaults): 10.69 mm²

% of a Xeon CPU core: 1%

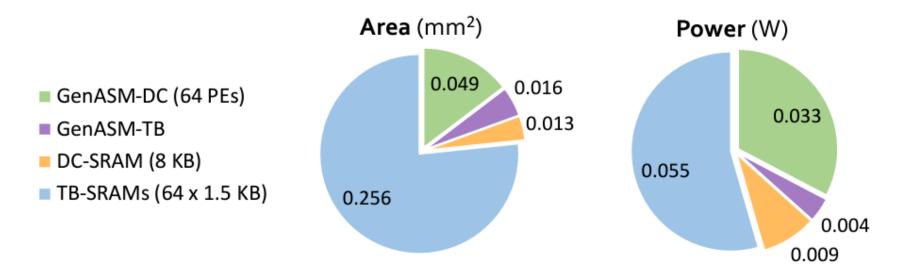
0.101 W

3.23 W

1%

Key Results – Area and Power

- Based on our **synthesis** of **GenASM-DC** and **GenASM-TB** accelerator datapaths using the Synopsys Design Compiler with a **28nm** process:
 - Both GenASM-DC and GenASM-TB operate @ 1GHz



GenASM has low area and power overheads

(1) Read Alignment Step of Read Mapping

 Find the optimal alignment of how reads map to candidate reference regions

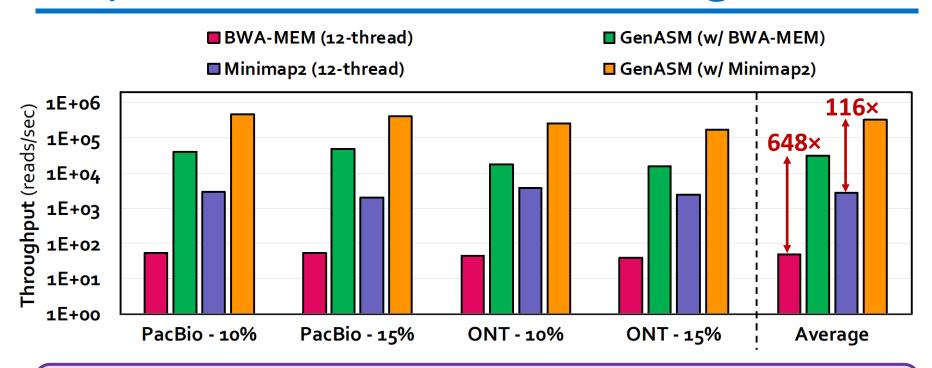
(2) Pre-Alignment Filtering for Short Reads

 Quickly identify and filter out the unlikely candidate reference regions for each read

(3) Edit Distance Calculation

o Measure the similarity or distance between two sequences

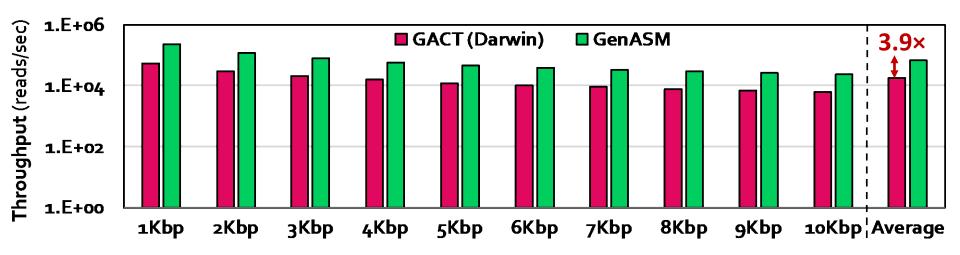
Key Results – Use Case 1 (Long Reads)



SW

GenASM achieves 648× and 116× speedup over 12-thread runs of BWA-MEM and Minimap2, while reducing power consumption by 34× and 37×

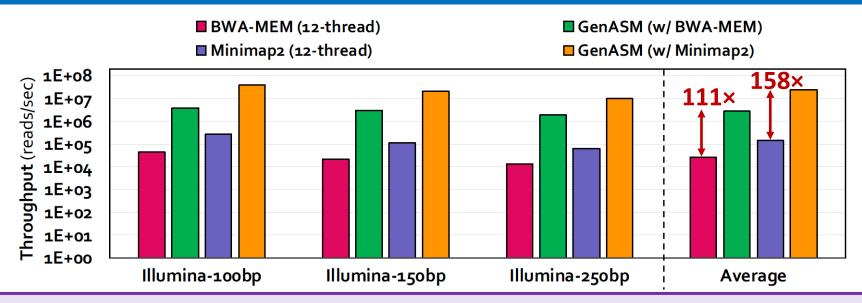
Key Results – Use Case 1 (Long Reads)



HW

GenASM provides 3.9× better throughput, 6.6× the throughput per unit area, and 10.5× the throughput per unit power, compared to GACT of Darwin

Key Results – Use Case 1 (Short Reads)



SW

GenASM achieves 111× and 158× speedup over 12-thread runs of BWA-MEM and Minimap2, while reducing power consumption by 33× and 31×

HW

GenASM provides 1.9× better throughput and uses 63% less logic area and 82% less logic power, compared to SillaX of GenAx

(1) Read Alignment Step of Read Mapping

 Find the optimal alignment of how reads map to candidate reference regions

(2) Pre-Alignment Filtering for Short Reads

 Quickly identify and filter out the unlikely candidate reference regions for each read

(3) Edit Distance Calculation

o Measure the similarity or distance between two sequences

- Compared to Shouji:
 - 3.7× speedup
 - 1.7× less power consumption
 - False accept rate of 0.02% for GenASM vs. 4% for Shouji
 - False reject rate of 0% for both GenASM and Shouji

HW

GenASM is more efficient in terms of both speed and power consumption, while significantly improving the accuracy of pre-alignment filtering

(1) Read Alignment Step of Read Mapping

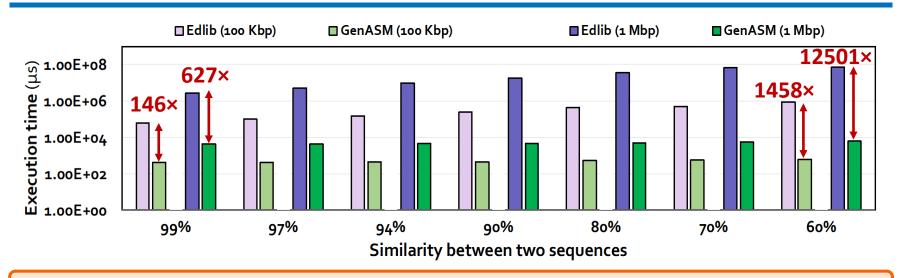
 Find the optimal alignment of how reads map to candidate reference regions

(2) Pre-Alignment Filtering for Short Reads

 Quickly identify and filter out the unlikely candidate reference regions for each read

(3) Edit Distance Calculation

Measure the similarity or distance between two sequences



SW

GenASM provides 146 – 1458× and 627 – 12501× speedup, while reducing power consumption by 548× and 582× for 100Kbp and 1Mbp sequences, respectively, compared to Edlib

HW

GenASM provides 9.3 – 400× speedup over ASAP, while consuming 67× less power

Key Results – Summary

(1) Read Alignment

- 116× speedup, 37× less power than Minimap2 (state-of-the-art SW)
- 111× speedup, 33× less power than BWA-MEM (state-of-the-art SW)
- 3.9× better throughput, 2.7× less power than Darwin (state-of-the-art HW)
- 1.9× better throughput, 82% less logic power than GenAx (state-of-the-art HW)

(2) Pre-Alignment Filtering

■ 3.7× speedup, 1.7× less power than Shouji (state-of-the-art HW)

(3) Edit Distance Calculation

- 22-12501× speedup, 548-582× less power than Edlib (state-of-the-art SW)
- 9.3–400× speedup, 67× less power than ASAP (state-of-the-art HW)

Additional Details in the Paper

- □ Details of the **GenASM-DC and GenASM-TB algorithms**
- ☐ Big-O analysis of the algorithms
- Detailed explanation of evaluated use cases
- Evaluation methodology details
 (datasets, baselines, performance model)
- □ Additional results for the three evaluated use cases
- □ Sources of improvements in GenASM
 (algorithm-level, hardware-level, technology-level)
- Discussion of four other potential use cases of GenASM

Summary of GenASM

Problem:

- Genome sequence analysis is bottlenecked by the computational power and memory bandwidth limitations of existing systems
- This bottleneck is particularly an issue for approximate string matching

□ Key Contributions:

- GenASM: An approximate string matching (ASM) acceleration framework to accelerate multiple steps of genome sequence analysis
 - *First* to enhance and accelerate Bitap for ASM with genomic sequences
 - Co-design of our modified scalable and memory-efficient algorithms with low-power and area-efficient hardware accelerators
 - Evaluation of three different use cases: read alignment, pre-alignment filtering, edit distance calculation
- **Key Results:** GenASM is significantly more efficient for all the three use cases (in terms of throughput and throughput per unit power) than state-of-the-art software and hardware baselines

GenASM [MICRO 2020]

<u>Damla Senol Cali</u>, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,

"GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis"

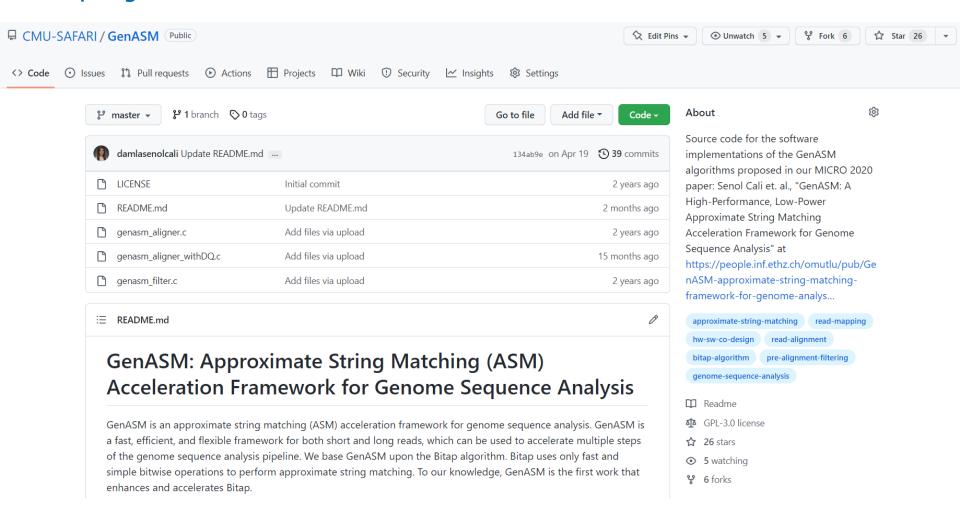
Proceedings of the <u>53rd International Symposium on Microarchitecture</u> (**MICRO**), Virtual, October 2020.

GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis

Damla Senol Cali^{†™} Gurpreet S. Kalsi[™] Zülal Bingöl[▽] Can Firtina[⋄] Lavanya Subramanian[‡] Jeremie S. Kim^{⋄†} Rachata Ausavarungnirun[⊙] Mohammed Alser[⋄] Juan Gomez-Luna[⋄] Amirali Boroumand[†] Anant Nori[™] Allison Scibisz[†] Sreenivas Subramoney[™] Can Alkan[▽] Saugata Ghose^{*†} Onur Mutlu^{⋄†▽} [†] Carnegie Mellon University [™] Processor Architecture Research Lab, Intel Labs [¬] Bilkent University [⋄] ETH Zürich [‡] Facebook [⊙] King Mongkut's University of Technology North Bangkok ^{*} University of Illinois at Urbana–Champaign

GenASM – GitHub Page

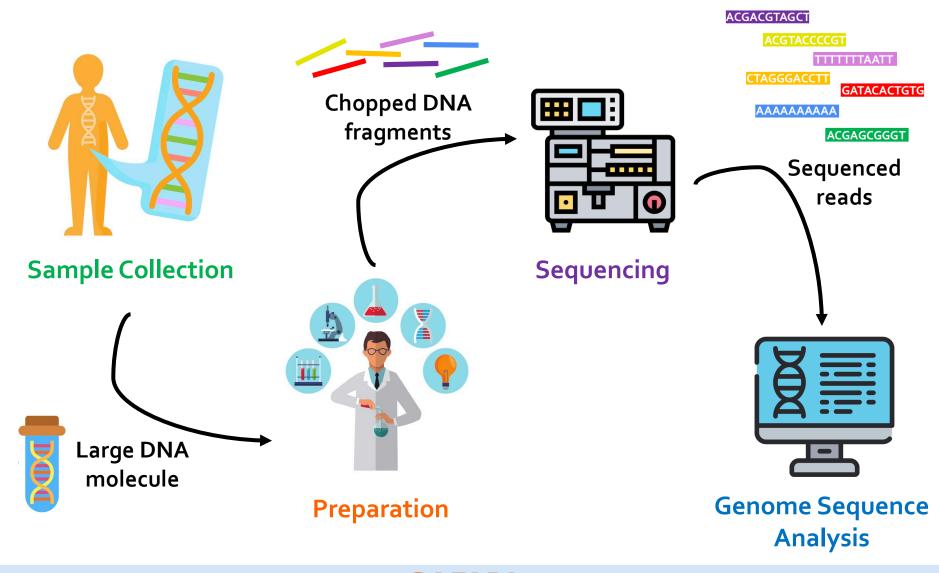
https://github.com/CMU-SAFARI/GenASM



Backup Slides

(Sequencing)

Genome Sequencing

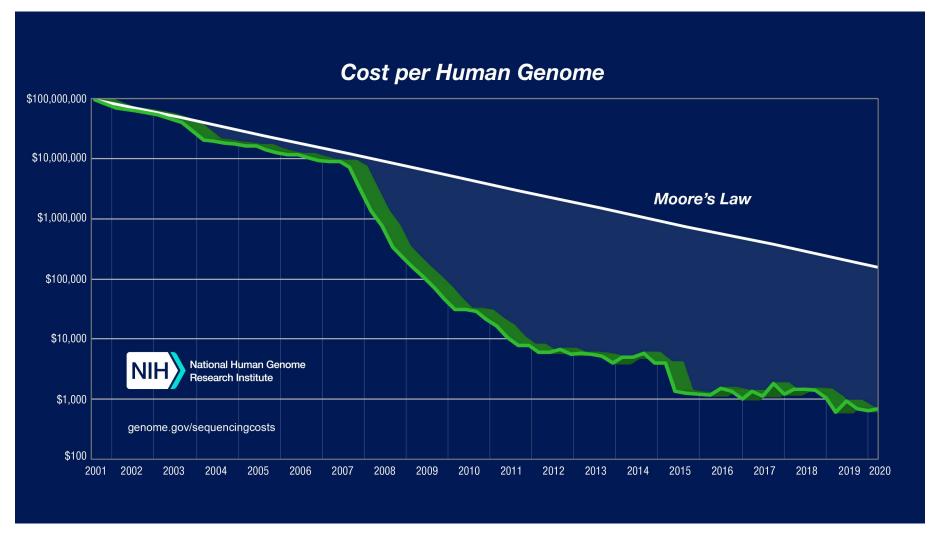


Sequencing Technologies

Short reads: a few hundred base pairs and error rate of ~0.1%

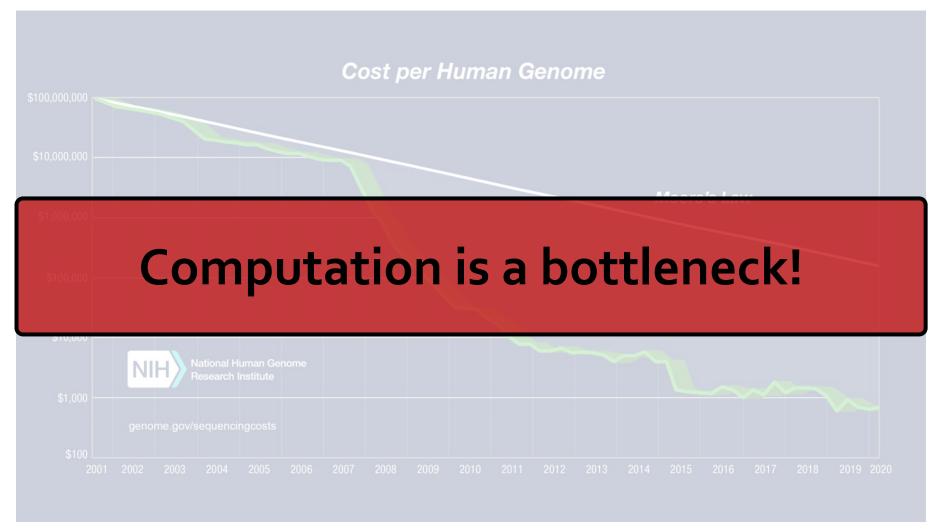
Long reads: thousands to millions of base pairs and error rate of 5–10%

Current State of Sequencing (cont'd.)



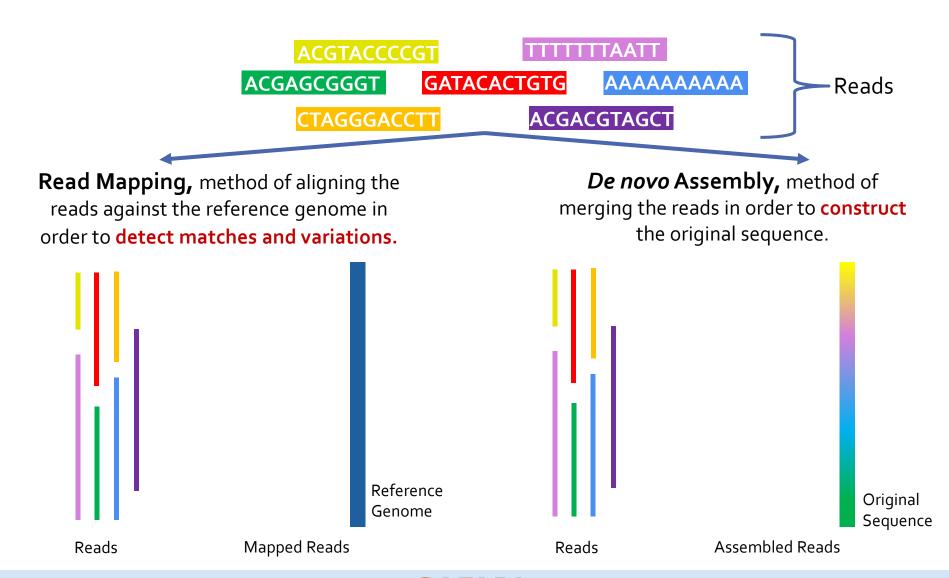
*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)

Current State of Sequencing (cont'd.)

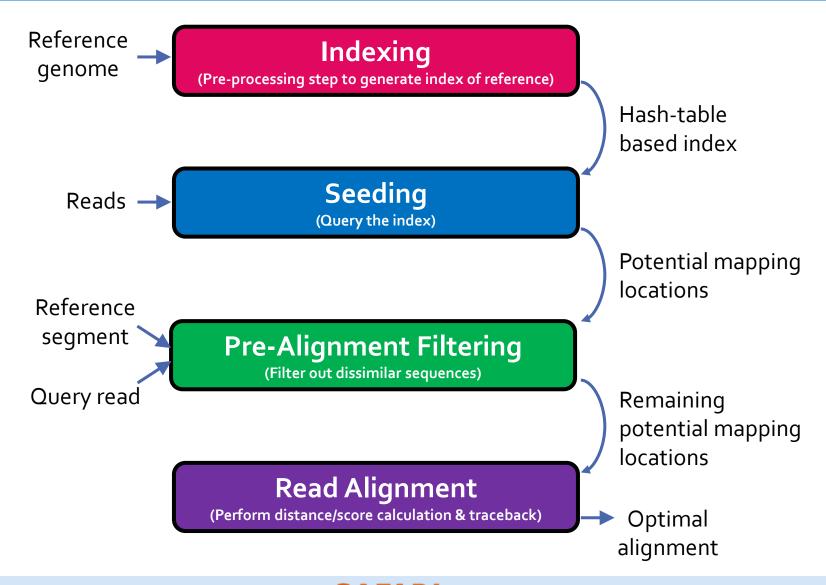


*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)

Genome Sequence Analysis

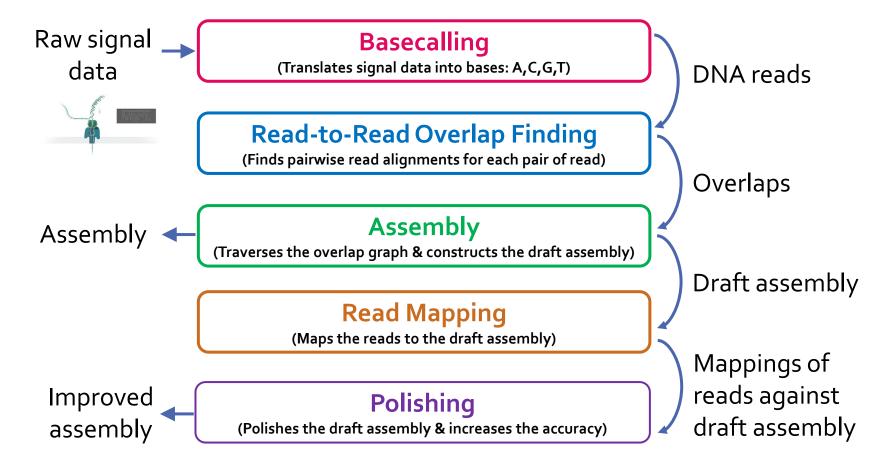


Read Mapping Pipeline



Genome Assembly Pipeline Using Long Reads

☐ With the emergence of long read sequencing technologies, *de novo* assembly becomes a promising way of constructing the original genome.



Our Contributions

- Analyze the tools in multiple dimensions: accuracy, performance, memory usage, and scalability
- Reveal new bottlenecks and trade-offs
- First study on bottleneck analysis of nanopore sequence analysis pipeline on real machines
- Provide guidelines for practitioners
- Provide guidelines for tool developers

Key Findings

- Laptops are becoming a popular platform for running genome assembly tools, as the portability of a laptop makes it a good fit for in-field analysis
 - Greater memory constraints
 - Lower computational power
 - Limited battery life
- Memory usage is an important factor that greatly affects the performance and the usability of the tool
 - Data structure choices that increase the memory requirements
 - Algorithms that are not cache-efficient
 - Not keeping memory usage in check with the number of threads
- Scalability of the tool with the number of cores is an important requirement. However, parallelizing the tool can increase the memory usage
 - Not dividing the input data into batches
 - Not limiting the memory usage of each thread
 - o Dividing the dataset instead of the computation between simultaneous threads

Goal 1:
High-performance and low-power

Goal 2: Memory-efficient

Goal 3: Scalable/highly-parallel

Nanopore Sequencing & Tools

Nanopore Sequencing Technology and Tools for Genome Assembly: Computational Analysis of the Current State, Bottlenecks and Future Directions

Damla Senol Cali ^{1,*}, Jeremie S. Kim ^{1,3}, Saugata Ghose ¹, Can Alkan ^{2*} and Onur Mutlu ^{3,1*}

Damla Senol Cali, Jeremie S. Kim, Saugata Ghose, Can Alkan, and Onur Mutlu. "Nanopore Sequencing Technology and Tools for Genome Assembly: Computational Analysis of the Current State, Bottlenecks and Future Directions." *Briefings in Bioinformatics* (2018).

BiB Version

arXiv Version

¹Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

²Department of Computer Engineering, Bilkent University, Bilkent, Ankara, Turkey

³Department of Computer Science, Systems Group, ETH Zürich, Zürich, Switzerland