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ABSTRACT
A critical step of genome sequence analysis is the mapping of se-
quenced DNA fragments (i.e., reads) collected from an individual
to a known linear reference genome sequence (i.e., sequence-to-
sequence mapping). Recent works replace the linear reference se-
quence with a graph-based representation of the reference genome,
which captures the genetic variations and diversity across many
individuals in a population. Mapping reads to the graph-based ref-
erence genome (i.e., sequence-to-graph mapping) results in notable
quality improvements in genome analysis. Unfortunately, while
sequence-to-sequence mapping is well studied with many avail-
able tools and accelerators, sequence-to-graph mapping is a more
difficult computational problem, with a much smaller number of
practical software tools currently available.

We analyze two state-of-the-art sequence-to-graph mapping
tools and reveal four key issues. We find that there is a pressing
need to have a specialized, high-performance, scalable, and low-cost
algorithm/hardware co-design that alleviates bottlenecks in both
the seeding and alignment steps of sequence-to-graph mapping.
Since sequence-to-sequence mapping can be treated as a special
case of sequence-to-graphmapping, we aim to design an accelerator
that is efficient for both linear and graph-based read mapping.

To this end, we propose SeGraM, a universal algorithm/hardware
co-designed genomic mapping accelerator that can effectively and
efficiently support both sequence-to-graph mapping and sequence-
to-sequence mapping, for both short and long reads. To our knowl-
edge, SeGraM is the first algorithm/hardware co-design for acceler-
ating sequence-to-graph mapping. SeGraM consists of two main
components: (1) MinSeed, the first minimizer-based seeding ac-
celerator, which finds the candidate locations in a given genome
graph; and (2) BitAlign, the first bitvector-based sequence-to-graph
alignment accelerator, which performs alignment between a given
read and the subgraph identified by MinSeed. We couple SeGraM
with high-bandwidth memory to exploit low latency and highly-
parallel memory access, which alleviates the memory bottleneck.
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We demonstrate that SeGraM provides significant improvements
for multiple steps of the sequence-to-graph (i.e., S2G) and sequence-
to-sequence (i.e., S2S) mapping pipelines. First, SeGraM outper-
forms state-of-the-art S2G mapping tools by 5.9×/3.9× and 106×/-
742× for long and short reads, respectively, while reducing power
consumption by 4.1×/4.4× and 3.0×/3.2×. Second, BitAlign outper-
forms a state-of-the-art S2G alignment tool by 41×–539× and three
S2S alignment accelerators by 1.2×–4.8×. We conclude that SeGraM
is a high-performance and low-cost universal genomics mapping
accelerator that efficiently supports both sequence-to-graph and
sequence-to-sequence mapping pipelines.
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1 INTRODUCTION
Genome sequencing, the process used to determine the DNA se-
quence of an organism, has led to many notable advancements
in several fields, such as personalized medicine (e.g., [1–7]), out-
break tracing (e.g., [8–14]), evolutionary biology (e.g., [15–18]), and
forensic science (e.g., [19–22]). Contemporary genome sequencing
machines are unable to determine the base pairs (i.e., A, C, G, T
nucleobases) of the entire DNA sequence. Instead, the machines
take a DNA sequence and break it down into small fragments, called
reads, whose base pairs can be reasonably accurately identified. As
an example, human DNA consists of approximately 3.2 billion base
pairs, while reads, depending on the sequencing technology, range
in size from a few hundred [23–28] to a few million [23, 29–35]
base pairs. Computers then reconstruct the reads back into a full
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DNA sequence. In order to find the locations of the reads in the
correct order, read-to-reference mapping is performed. The reads
are mapped to a reference genome (i.e., a complete representative
DNA sequence of a particular organism) for the same species.

A single (i.e., a linear) reference genome is not representative
of different sets of individuals (e.g., subgroups) in a species and
using a single reference genome for an entire species may bias the
mapping process (i.e., reference bias) due to the genetic diversity
that exists within a population [36–43]. For example, the African
genome, with all known genetic variations within the populations
of African descent, contains 10% more DNA bases than the current
linear human reference genome [44]. Combined with errors that
can be introduced during genome sequencing (with error rates as
high as 5–10% for long reads [23, 29–31, 45–47]), reference bias can
lead to significant inaccuracies during mapping. This can create
many issues for a wide range of genomic studies, from identifying
mutations that lead to cancer [48], to tracking mutating variants
of viruses such as SARS-CoV-2 [49], where detecting the varia-
tions that exist in the sequenced genome accurately is of critical
importance for both diagnosis and treatment [50].

An increasingly popular technique to overcome reference bias is
the use of graph-based representations of a species’ genome, known
as genome graphs [42, 51–55]. A genome graph enables a compact
representation of the linear reference genome, combined with the
known genetic variations in the entire population as a graph-based
data structure. As we show in Figure 1, a node represents one or
more base pairs, an edge enables two nodes to be connected to each
other, and base pairs in connected nodes represent the sequence
of base pairs in the genomic sequence. Multiple outgoing directed
edges from a node captures genetic variations.

Figure 1: Example of a genome graph that represents 4 related
but different genomic sequences.

Genome graphs are growing in popularity for a number of ge-
nomic applications, such as (1) variant calling [36, 54, 56], which
identifies the genomic differences between the sequenced genome
and the reference genome; (2) genome assembly [51, 57–59], which
reconstructs the entire sequenced genome using the reads without
utilizing a known reference genome sequence; (3) error correc-
tion [60–62], which corrects the noisy regions in long reads due
to sequencing errors; and (4) multiple sequence alignment [63–65],
which aligns three or more biological sequences of similar length.
With the increasing importance and usage of genome graphs, hav-
ing fast and efficient techniques and tools for mapping genomic
sequences to genome graphs is now crucial.

Compared to sequence-to-sequence mapping, where an organ-
ism’s reads are mapped to the single linear reference genome,
sequence-to-graph mapping captures the inherent genetic diversity
within a population. This results in significantly more accurate read-
to-reference mapping [36, 43, 61, 65, 66]. For example, sequenced
reads from samples that are not represented in the samples used
for constructing the reference genome may not align at all or in-
correctly align when they originate from a region that differs from

the reference genome. This can result in failure to detect disease-
related genetic variants. However, if (1) we incorporate the known
disease-related genetic variants in our read mapping process using
a genome graph and (2) the sequenced sample contains one or more
of these variants, we can accurately detect the variant(s).

Figure 2 shows the sequence-to-graph mapping pipeline, which
follows the seed-and-extend strategy [36, 61], similar to sequence-to-
sequence mapping [67]. The pipeline is preceded by two offline pre-
processing steps. The first offline pre-processing step constructs the
genome graph using a linear reference genome and a set of known
variations 0.1 . The second offline pre-processing step indexes the
nodes of the graph and generates a hash-table-based index 0.2 for
fast lookup. When reads from a sequenced genome are received,
the pipeline tries to map them to the pre-processed reference graph
using three online steps. First, the seeding step .1. is executed,
where each read is fragmented into sub-strings (called seeds) and
exact matching locations of these seeds (i.e., candidate mapping
locations) are found within the graph nodes using the index. Second,
the optional filtering, chaining, or clustering step .2. is performed
to decrease the number of required alignments in the next step.
Third, the alignment step .3. is performed between all remaining
candidate mapping locations (i.e., subgraphs) within the graph and
the query read to find the optimal alignment.

Figure 2: Sequence-to-graph mapping pipeline.

Prior works [67–75] show that read-to-reference mapping is
one of the major bottlenecks of the full genome sequence analy-
sis pipeline, and that it can benefit from algorithm/hardware co-
design [67, 76] that takes advantage of specialized hardware accel-
erators. Given the additional complexities and overheads of process-
ing a genome graph instead of a linear reference genome, graph-
based analysis exacerbates the bottlenecks of read-to-reference
mapping. Due to the nascent nature of sequence-to-graph mapping,
a much smaller number of software tools (and no hardware acceler-
ators) exist for sequence-to-graph mapping [36, 54, 61, 66, 77–83]
compared to the traditional sequence-to-sequence mapping.

In order to identify and quantify the performance bottlenecks of
existing tools, we analyze GraphAligner [61] and vg [36], two state-
of-the-art software tools for sequence-to-graph mapping. Based on
our analysis (Section 3), we make four key observations. (1) Among
the three online steps of the read mapping pipeline (i.e., seeding,
filtering, and alignment), sequence-to-graph alignment i) consti-
tutes 50–95% of the end-to-end execution of sequence-to-graph
mapping, and ii) is even more expensive than its counterpart in
the traditional read mapping pipeline [68–70] since a graph-based
representation of the genome is more complex to process (both
computationally and memory-wise) than the linear representation.
(2) Alignment suffers from high cache miss rates, due to the high
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amount of internal data that is generated and reused during this
step. (3) Seeding suffers from the main memory (DRAM) latency
bottleneck, due to the high number of irregular memory accesses
generated when querying the seeds. (4) Both state-of-the-art tools
scale sublinearly as thread count increases, wasting available thread-
level parallelism in hardware. These observations expose a pressing
need to have a specialized, high-performance, scalable, and low-cost
algorithm/hardware co-design that alleviates bottlenecks in both
the seeding and alignment steps of sequence-to-graph mapping.

To this end, our goal is to design high-performance, scalable,
power- and area-efficient hardware accelerators that alleviate bot-
tlenecks in both the seeding and alignment steps of sequence-to-
graph mapping, with support for both short (e.g., Illumina [24–
28, 84]) and long (e.g., PacBio [35, 85], ONT [32–34, 86]) reads.
Since sequence-to-sequence (S2S) mapping can be treated as a spe-
cial case of sequence-to-graph mapping (S2G), we aim to design a
universal accelerator that is effective and efficient for both problems
(S2G and S2S mapping).

We propose SeGraM, a universal genomic mapping accelerator
that supports both sequence-to-graph mapping and sequence-to-
sequence mapping, for both short and long reads. SeGraM con-
sists of two main components: (1) MinSeed, the first minimizer-
based seeding accelerator, which finds the candidate mapping loca-
tions (i.e., subgraphs) in a given genome graph; and (2) BitAlign,
the first bitvector-based sequence-to-graph alignment accelerator,
which performs alignment between a given read and the subgraph
identified by MinSeed. MinSeed is built upon a memory-efficient
minimizer-based seeding algorithm, and BitAlign is built upon our
novel bitvector-based, highly-parallel sequence-to-graph alignment
algorithm.

In MinSeed, the minimizer-based seeding approach decreases
the memory footprint of the index and provides speedup during
seed queries. MinSeed logic requires only basic operations (e.g.,
comparisons, simple arithmetic operations, scratchpad read-write
operations) that are implemented with simple logic. Due to fre-
quent memory accesses required for fetching the seeds, we couple
MinSeed with High-Bandwidth Memory (HBM) [87] to enable low-
latency and highly-parallel memory access, which alleviates the
memory latency bottleneck.

In BitAlign, we design a new bitvector-based alignment approach,
which is amenable to efficient hardware acceleration. BitAlign em-
ploys a systolic-array-based design to circulate the internal data
(i.e., bitvectors) generated by different processing elements, which
provides scalability and reduces both memory bandwidth and mem-
ory footprint. In order to handle hops (i.e., non-neighbor nodes in
the graph-based reference), BitAlign provides a simple design that
contains queue structures between each processing element, which
store the most recently generated bitvectors.

Key Results.We compare SeGraM with seven state-of-the-art
works: S2G mapping software (GraphAligner [61] and vg [36],
which are CPU-based, and HGA [88], which is GPU-based), SIMD-
based S2G alignment software (PaSGAL [89]), and hardware accel-
erators for S2S alignment (the GACT accelerator in Darwin [68],
the SillaX accelerator in GenAx [70], and GenASM [69]). We find
that: (1) SeGraM outperforms state-of-the-art S2G mapping tools
by 5.9×/3.9× and 106×/742× for long and short reads, respectively,
while reducing power consumption by 4.1×/4.4× and 3.0×/3.2×.
(2) BitAlign outperforms the state-of-the-art S2G alignment tool

by 41×–539× and three S2S alignment hardware accelerators by
1.2×–4.8×. (3) MinSeed can be employed for the seeding step of
both S2G and S2S mapping pipelines.

This paper makes the following contributions:
• We introduce SeGraM, the first universal genomic mapping ac-
celerator for both sequence-to-graph and sequence-to-sequence
mapping. SeGraM is also the first algorithm/hardware co-design
for accelerating sequence-to-graph mapping. SeGraM alleviates
performance bottlenecks of graph-based genome sequence anal-
ysis.
• We propose MinSeed, the first algorithm/hardware co-design for
minimizer-based seeding. MinSeed can be used for the seeding
steps of both S2G mapping and traditional S2S mapping.
• We propose BitAlign, the first algorithm/hardware co-design
for sequence-to-graph alignment. BitAlign is based on a novel
bitvector-based S2G alignment algorithm that we develop, and
can be also used as a S2S aligner.
• SeGraM provides large (1.2×–742×) performance and power ben-
efits over seven state-of-the-art works for end-to-end S2G map-
ping, multiple steps of the S2G mapping pipeline, as well as the
traditional S2S mapping pipeline.
• To aid research and reproducibility, we open source our software
implementations of the SeGraM algorithms and datasets [90].

2 BACKGROUND
We present a brief background on the genome sequence analysis
pipeline, and the changes required to it to support genome graphs.
2.1 Genome Sequence Analysis

Read Mapping. Most types of genome sequence analysis start
with finding the original locations of the sequenced reads on the ref-
erence genome of the organism, via a computational process called
read mapping [1, 67, 71, 73, 91–96]. To complete this task accurately
in the shortest amount of time, many existing read mappers adopt
a seed-and-extend approach that consists of four stages (See Fig-
ure 2): indexing, seeding, optional filtering/chaining/clustering, and
alignment. Indexing .0. pre-processes the reference genome and
generates an index of the reference to be later used in the next steps
of read mapping. Seeding .1. finds the set of k-length substrings
(i.e., k-mers) to represent each read and finds the exact matching
locations of these k-mers in the reference genome (i.e., seeds). These
seeds from the reference genome represent the candidate mapping
locations of the query read in the reference genome. Many read
mappers include an optional filtering/chaining/clustering step .2.
to eliminate candidate mapping regions around the seed locations
from the previous step that are dissimilar to the query read to
decrease the number of alignment operations. Finally, to find the
read’s optimal mapping location while taking sequencing errors
and the differences caused by variations andmutations into account,
alignment .3. performs approximate string matching (i.e., ASM)
between the read and the reference regions around the non-filtered
candidate mapping locations from the previous step. As part of
the alignment step, traceback is also performed to find the optimal
alignment between the read and the reference region, which is the
alignment with the highest likelihood of being correct (based on
a scoring function [97–99]) or with lowest edit distance (i.e., total
number of edits: substitutions, insertions, deletions) [100].

Approximate String Matching (ASM) finds the similarities
and differences (i.e., substitutions, insertions, deletions) between
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two strings [101–104]. Traditional ASM methods use dynamic pro-
gramming (DP) based algorithms, such as Levenshtein distance [100],
Smith-Waterman [105], and Needleman-Wunsch [106]. Since DP-
based algorithms have quadratic time and space complexity (i.e.,
O(m × n) between two sequences with lengths m and n), there is a
dire need for lower complexity algorithms or algorithm/hardware
co-designed ASM accelerators. One lower-complexity approach to
ASM is bitvector-based algorithms, such as Bitap [69, 107, 108] and
the Myers’ algorithm [103].
2.2 Graph-Based Genome Sequence Analysis

Genome Graphs. Genetic variations between two individu-
als are observed by comparing the differences between their two
genomes. These differences, such as single-nucleotide polymor-
phisms (i.e., SNPs) [109, 110], insertions and deletions (i.e., indels),
and structural variations (i.e., SVs) [111–114], lead to genetic diver-
sity between populations and within communities [115]. However,
the presence of these genomic variations creates limitations when
mapping the sequenced reads to a reference genome [42, 116–118],
since the reference genome is commonly represented as a single lin-
ear DNA sequence, which does not reflect all the genetic variations
that exist in a population [119]. Using a single reference genome in-
troduces reference bias, by only emphasizing the genetic variations
that are present in the single reference genome [42, 48, 120–123]
and ignoring other variations that are not represented in the single
linear reference sequence. These factors lead to low read mapping
accuracy around the genomic regions that have SNPs, indels and
SVs, and eventually cause, for example, false detection of SVs [54].

Genome graphs are better suited for expressing the the genomic
regions that have SNPs, indels and SVs than a linear reference
sequence [36] since genome graphs combine the linear reference
genome with the known genetic variations in the entire population
as a graph-based data structure. Therefore, there is a growing trend
towards using genome graphs [36, 51, 54, 56, 61, 62, 65, 66, 124, 125]
to more accurately express the genetic diversity in a population.
With increasing importance and usage of genome graphs, having
accurate and efficient tools for mapping genomic sequences to these
graphs has become crucial.

Sequence-to-Graph Mapping. Similar to traditional sequence-
to-sequencemapping (Section 2.1), sequence-to-graphmapping also
follows the seed-and-extend strategy. Sequence-to-graph mapping
pipeline has two pre-processing and three main steps (see Figure 2).
The first pre-processing step constructs the genome graph 0.1 using
a linear reference genome and the associated variations for that
genome. The second pre-processing step indexes the nodes of the
graph 0.2 . The resulting index is used in the first main step of the
pipeline, seeding .1. , which aims to find seed matches between the
query read and a region of the graph. After optionally filtering these
seed matches with a filtering [72, 75, 94], chaining [65, 91, 126, 127],
or clustering [36, 61] step .2. , alignment .3. is performed between
all of the non-filtered seed locations within the graph and the query
read. Even though sequence-to-sequence mapping is a well-studied
problem, given the additional complexities and overheads of pro-
cessing a genome graph instead of a linear reference genome (see
Section 3), sequence-to-graph mapping is a more difficult computa-
tional problem with a smaller number of practical software tools
currently available.

Sequence-to-Graph Alignment. The goal of aligning a se-
quence to a graph is to find the path on the graph with the highest

likelihood of being correct [89]. Similar to traditional sequence-
to-sequence (S2S) alignment, sequence-to-graph (S2G) alignment
also employs DP-based algorithms with quadratic time complex-
ity [79, 80, 89, 101, 128]. A DP-based algorithm operates on a table,
where each column of the table corresponds to a reference charac-
ter, and each row of the table corresponds to a query read character.
Each cell of the table can be interpreted as the cost of a partial
alignment between the subsequences of the reference and of the
query read that have been traversed so far. In S2S alignment, a
new cell in the table is determined with simple rules from 3 of its
neighbor cells. For example, as we show in Figure 3a, when comput-
ing the blue-shaded cell, we need information only from the three
light blue-shaded cells. In contrast to S2S alignment, S2G alignment
must incorporate non-neighboring characters as well whenever
there is an edge (i.e., hop) from the non-neighboring character to
the current character. For example, as we show in Figure 3b, when
computing the green-shaded cell, we need information from all of
the light green-shaded cells.

Figure 3: Data dependencies in (a) sequence-to-sequence
alignment, and (b) sequence-to-graph alignment.

Even though there are many efforts for optimizing or accelerat-
ing the DP-based algorithms for S2S alignment [68, 70, 129–132],
obtaining efficient solutions for S2G alignment demands attention
with the growing usage of genome graphs for genome sequence
analysis.

3 MOTIVATION AND GOAL
3.1 Software Tool Analysis
In order to understand the performance bottlenecks of the state-of-
the-art sequence-to-graph mapping tools, we rigorously analyze
two such tools, GraphAligner [61] and vg [36], running on an
Intel® Xeon® E5-2630 v4 CPU [133] with 20 physical cores/40 log-
ical cores with hyper-threading [134–137], operating at 2.20GHz,
with 128GB DDR4 memory. Based on our bottleneck analysis with
Intel VTune [138] and Linux Perf Tools [139], we make four key
observations.

Observation 1: Alignment Step is the Bottleneck. Among
the three main steps of the sequence-to-graph mapping pipeline
(Figure 2), the alignment step constitutes 50–95% of the end-to-end
execution time (measured across three short and four long read
datasets; see Section 10). As shown in prior works [67–70, 129],
sequence-to-sequence alignment is one of the major bottlenecks of
the genome sequence analysis pipeline, and needs to be accelerated
using specialized hardware. Since a graph-based representation
of the genome is more complex than the linear representation,
sequence-to-graph alignment places greater pressure on this bot-
tleneck.

Observation 2: Alignment Suffers from High Cache Miss
Rates. GraphAligner has a cache miss rate1 of 41%, meaning that
1We use the cache-misses metric from Linux Perf Tools [139].
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GraphAligner requires improvements to the on-chip caches (e.g.,
lower access latency) in order to improve its performance. We find
that the main reason of this high cache miss rate is the high amount
of intermediate data that is generated and reused as part of the
alignment step (for the dynamic programming table). vg tackles
this issue by dividing the read into overlapping chunks, which
reduces the size of the dynamic programming table, thus the size
of the intermediate data.

Observation 3: Seeding Suffers from the DRAM Latency
Bottleneck. Our profiling of the seeding step of the pipeline finds
that seeding requires a significant number of randommain memory
accesses while querying the index for the seed locations and suffers
from the DRAM latency bottleneck.

Observation 4: Baseline Tools Scale Sublinearly. When we
perform a scalability analysis by running GraphAligner and vg with
5, 10, 20, and 40 threads, we observe that both tools scale sublinearly
(i.e., their parallel efficiency does not exceed 0.4). When we focus on
the change in the cache miss rate with the number of threads (t=10,
20, 40), we observe that (1) from t=10 to t=20 to t=40, the cache
miss rate increases from 25% to 29% to 41%, and (2) 76% of cache
misses are associated with the alignment step of sequence-to-graph
mapping when t=40. These results suggest that when the number
of threads reaches the number of logical cores in a CPU system, due
to the large amount of intermediate data required to be accessed
in the caches during the alignment step, two threads sharing the
same physical core experience significant cache and main memory
interference with each other and cannot fully take advantage of
the full thread-level parallelism available in hardware.

When we take all four observations into account, we find that
we need to have a specialized, balanced, and scalable design for
compute units, on-chip memory, and main memory accesses for
both the seeding and alignment steps of sequence-to-graph map-
ping. Unfortunately, these bottlenecks cannot be solved easily by
software-only or hardware-only solutions. Thus, there is a pressing
need to co-design new algorithms with new hardware to enable
high-performance, efficient, scalable, and low-cost sequence-to-
graph mapping.

3.2 Accelerating Sequence-to-Graph Mapping
Sequence-to-Sequence Accelerators. Even though there are

several hardware accelerators designed to alleviate bottlenecks in
several steps of traditional sequence-to-sequence (S2S) mapping
(e.g., pre-alignment filtering [72, 73, 75, 76, 94, 140–148], sequence-
to-sequence alignment [68–70, 129–132, 149–151]), none of these
designs can be directly employed for the sequence-to-graph (S2G)
mapping problem. This is because S2S mapping is a special case
of S2G mapping, where all nodes have only one edge (Figure 3a).
Existing accelerators are limited to only this special case, and are
unsuitable for the more general S2G mapping problem, where we
also need to consider multiple edges (i.e., hops) that a node can
have (Figure 3b).

S2G mapping is a more complex problem than S2S mapping
since the graph structure is more complex than a linear sequence.
This additional complexity results in four issues. First, even though
solutions for both problems follow the seed-and-extend approach,
the already-expensive alignment step of S2S mapping is even more
expensive in S2G mapping due to the hops in the graph that must
be handled. Second, these hops add irregularity to the execution
flow of alignment since they can originate from any vertex in the

graph, leading to more data dependencies and irregular memory
accesses. Third, the heuristics used in S2S alignment are often not
directly applicable to the S2G problem, as they assume a single
linear reference sequence. For example, chaining, which is used to
combine different seed hits in long read mapping (assuming they
are part of a linear sequence), cannot be used directly for a genome
graph because there can be multiple paths connecting two seeds
together in the graph. Fourth, since the genome graph contains
both the linear reference sequence and the genetic variations, the
search space for the query reads is much larger in S2G mapping
than in S2S mapping.

Existing S2S mapping accelerators can mimic the behavior of
S2G mapping by taking all paths that exist in the genome graph
into account and aligning the same read to each of these paths
one at a time. However, this would be prohibitively inefficient in
terms of both computation and memory requirements (e.g., it would
require an exorbitant memory footprint to store all possible graph
paths as separate linear sequence strings). Thus, with the growing
importance and usage of genome graphs, it is crucial to have effi-
cient designs optimized for sequence-to-graph mapping, which can
effectively work with both short and long reads.

Graph Processing Accelerators. Unlike typical graph traversal
workloads [152–155], sequence-to-graph mapping involves high
amounts of both random memory accesses (due to the seeding step)
and expensive computations (due to the alignment step). Seeding
enables the mapping algorithm to detect and focus on only certain
candidate subgraphs, eliminating the need for a full graph traver-
sal. Alignment is not a graph traversal workload, and instead is
an expensive bitvector-based or DP-based computational problem.
While existing graph accelerators [156–180] could potentially be
customized to help the seeding step of the sequence-to-graph map-
ping pipeline, they are unable to handle the major bottleneck of
sequence-to-graph mapping, which is alignment.

3.3 Our Goal
Our goal is to design a high-performance, memory-efficient, and
scalable hardware acceleration framework for sequence-to-graph
mapping that can also effectively perform sequence-to-sequence
mapping. To this end, we propose SeGraM, the first universal ge-
nomic mapping accelerator that can support both sequence-to-graph
mapping and sequence-to-sequence mapping, for both short and
long reads. To our knowledge, SeGraM is the first algorithm/hard-
ware co-design for accelerating sequence-to-graph mapping.

4 SEGRAM: HIGH-LEVEL OVERVIEW
SeGraM provides efficient and general-purpose acceleration for
both the seeding and alignment steps of the sequence-to-graph
mapping pipeline. We base SeGraM upon a minimizer-based seed-
ing algorithm and we propose a novel bitvector-based algorithm
to perform approximate string matching between a read and a
graph-based reference genome. We co-design both algorithms with
high-performance, scalable, and efficient hardware accelerators. As
we show in Figure 4, a SeGraM accelerator consists of two main
components: (1) MinSeed (MS), which finds the minimizers for
a given query read, fetches the candidate seed locations for the
selected minimizers, and for each candidate seed, fetches the sub-
graph surrounding the seed; and (2) BitAlign (BA), which, aligns
the query read to the subgraphs identified by MinSeed, and finds
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the optimal alignment. To our knowledge, MinSeed is the first hard-
ware accelerator for minimizer-based seeding and BitAlign is the
first hardware accelerator for sequence-to-graph alignment.

Figure 4: Overview of SeGraM.

Before SeGraM execution starts, pre-processing steps (1) gen-
erate each chromosome’s graph structure, (2) index each graph’s
nodes, and (3) pre-load both the resulting graph and hash table
index into the main memory. Both the graph and its index are
static data structures that can be generated only once and reused
for multiple mapping executions (Section 5).

SeGraM execution starts when the query read is streamed from
the host and MinSeed writes it to the read scratchpad ( 1 ). Using
all of the k-length subsequences (i.e., k-mers) of the query read,
MinSeed finds the minimum representative set of these k-mers (i.e.,
minimizers) according to a scoring mechanism and writes them to
theminimizer scratchpad ( 2 ). For eachminimizer, MinSeed fetches
its occurrence frequency from the hash table in main memory ( 3 )
and filters out each minimizer whose occurrence frequency is above
a user-defined threshold ( 4 ). We aim to select the least frequent
minimizers and filter out the most frequent minimizers such that
we minimize the number of seed locations to be considered for the
expensive alignment step. Next, MinSeed fetches the seed locations
of the remaining minimizers from main memory, and writes them
to the seed scratchpad ( 5 ). Finally, MinSeed calculates the candi-
date reference region (i.e., subgraph surrounding the seed) for each
seed ( 6 ), fetches the graph nodes frommemory for each candidate
region in the reference and writes the nodes to the input scratchpad
of BitAlign. ( 7 ). BitAlign starts by reading the subgraph and the
query read from the input scratchpad, and generates the bitvec-
tors ( 8 ) required for performing approximate string matching
and edit distance calculation. While generating these bitvectors,
BitAlign writes them to the hop queues ( 9 ) in order to handle the
hops required for graph-based alignment, and also, to the bitvector
scratchpad ( 10 ) to be later used as part of the traceback operation.
Once BitAlign finishes generating and writing all the bitvectors, it
starts reading them back from the bitvector scratchpad, performs the
traceback operation ( 11 ), finds the optimal alignment between the
subgraph and the query read, and streams the optimal alignment
information back to the host ( 12 ).

5 PRE-PROCESSING FOR SEGRAM
SeGraM requires two pre-processing steps before it can start execu-
tion: (1) generating the graph-based reference, and (2) generating

the hash-table-based index for the reference graph. After gener-
ating both data structures, we pre-load both the resulting graph
and its index into main memory. Both the graph and its index are
static data structures that can be generated only once and reused for
multiple mapping executions. As such, pre-processing overheads
are expected to be amortized across many mapping executions.

Graph-Based Reference Generation. As the first pre-process-
ing step, we generate the graph-based reference using a linear refer-
ence genome (i.e., as a FASTA file [181]) and its associated variations
(i.e., as one or more VCF files [182]). We use the vg toolkit’s [36]
vg construct command, and generate one graph for each chromo-
some. For the alignment step of sequence-to-graph mapping, we
need to make sure the nodes of each graph are topologically sorted.
Thus, we sort each graph using the vg ids -s command. Then, we
convert our VG-formatted graphs to GFA-formatted [183] graphs
using the vg view command since GFA is easier to work with for
the later steps of the pre-processing.

As shown in Figure 5, we generate three table structures to store
the graph-based reference: (1) the node table, (2) the character table,
and (3) the edge table. The node table stores one entry for each
node of the graph, using the node ID as the entry index, with the
entry containing four fields: (i) the length of the node sequence
in characters, (ii) the starting index corresponding to the node
sequence in the character table, (iii) the outgoing edge count for
the node, and (iv) the starting index corresponding to the node’s
list of outgoing edges in the edge table. The character table stores
the associated sequence of each node, with each entry consisting
of one character in the sequence (i.e., A, C, G, T). The edge table
stores the associated outgoing nodes of each node (indexed by node
ID), with each entry consisting of an outgoing node ID.

#minimizers hash value   #seed locations node ID            offset

First Level: Buckets Second Level: Minimizers Third Level: Seed Locations

2-bit
char

Node Table Character Table Edge Table

seq. #out
length               edges 4B edge info

Figure 5: Memory layout of the graph-based reference.

We use statistics about each chromosome’s associated graph (i.e.,
number of nodes, number of edges, and total sequence length) to
determine the size of each table and of each table entry. Based on
our analysis, we find that each entry in the node table requires 32 B,
with a total table size of #nodes ∗ 32 B. Since we can store characters
in the character table using a 2-bit representation (A:00, C:01, G:10,
T:11), the total size of the table is total sequence length ∗ 32 bits. We
find that each entry in the edge table requires 4B, thus the total size
of the edge table is #edges ∗ 4 B. Across all 24 chromosomes (1–22,
X, and Y) of the human genome, the storage required for the graph-
based reference is 1.4 GB. We store the graph-based reference in
main memory.

Hash-Table-Based Index Generation. As the second pre-pro-
cessing step, we generate the hash-table-based index for each of the
generated graphs (i.e., one index for each chromosome). The nodes
of the graph structure are indexed and stored in the hash-table-
based index. As we explain in Section 6, since SeGraM performs
minimizer-based seeding, we use minimizers [91, 126, 184] as the
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hash table key, and the minimizers’ exact matching locations in the
graphs’ nodes as the hash table value.

As shown in Figure 6, we use a three-level structure to store the
hash-table-based index. In the first level of the hash-table-based
index, similar to Minimap2 [91], we use buckets to decrease the
memory footprint of the index. Each entry in this first level cor-
responds to a single bucket, and contains the starting address of
the bucket’s minimizers in the second-level table, along with the
number of minimizers in the second-level table that belong to the
bucket. In the second level, we store one entry for each minimizer .
Each second-level entry stores the hash value of the corresponding
minimizer, the starting address of the minimizer’s seed locations
in the third-level table, and number of locations that belong to the
minimizer. The minimizers are sorted based on their hash values. In
the third level, each entry corresponds to one seed location. An entry
contains the node ID of the corresponding seed location, and the
relative offset of the corresponding seed location within the node.
Locations are grouped based on their corresponding minimizers,
and sorted within each group based on their values.

#minimizers hash value   #seed locations node ID            offset

First Level: Buckets Second Level: Minimizers Third Level: Seed Locations

2-bit
char

Node Table Character Table Edge Table

seq. #out
length               edges 4B edge info

Figure 6: Memory layout of the hash-table-based index.

We use statistics about each graph (i.e., number of distinct mini-
mizers, total number of locations, maximum number of minimizers
per bucket, and maximum number of locations per minimizer) to
determine the size of the hash-table-based index. We empirically
choose the first-level bucket count. Figure 7 shows the impact that
the number of buckets has on both the total memory footprint of
the hash-table-based index (left axis, blue squares) and the maxi-
mum number of minimizers in each bucket (right axis, red dots).
We observe from the figure that while a lower bucket count de-
creases the memory footprint of the index, it increases the number
of minimizers assigned to each bucket (i.e., the number of hash
collisions increases), increasing the number of memory lookups
required. We empirically find that a bucket count of 224 strikes a
reasonable balance. Each bucket entry requires 4 B of data, result-
ing in a size of 224 ∗ 4 B for the first level. Each minimizer requires
12 B of data, resulting in a size of #distinct minimizers ∗ 12 B for
the second level. Each location requires 8 B of data, resulting in a
size of #total number of locations ∗ 8 B for the third level. Across all
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Figure 7: Effect of the bucket count on the memory footprint
of the hash-table-based index and the maximum number of
minimizers per bucket.

24 chromosomes (1–22, X, and Y) of the human genome, the total
storage required for the hash-table-based index is 9.8 GB. We store
the hash-table-based index in main memory.

6 MINSEED ALGORITHM
We base MinSeed upon Minimap2’s minimizer-based seeding algo-
rithm (i.e., mm_sketch [91, 126, 185]). A <w,k>-minimizer [91, 126,
184, 186–188] is the smallest k-mer in a window of w consecutive
k-mers (according to a scoring mechanism), for subsequences of
length k. Minimizers ensure that two different sequences are repre-
sented with the same seed if they share an exact match of at least
𝑤 +𝑘 −1 bases long. Compared to using the full set of k-mers, using
only the <w,k>-minimizers decreases the storage requirements of
the index (by a factor of 2/(𝑤 + 1)) and speeds up index queries.
In Figure 8, we show an example of how the <5,3>-minimizer of a
sequence is selected from the full set of k-mers from the sequence’s
first window. After finding the 5 adjacent 3-mers, we sort them and
select the smallest based on a pre-defined ordering/sorting mech-
anism. In this example, sorting is done based on lexicographical
order and the lexicographically smallest k-mer is selected as the
minimizer of the first window of the given sequence.

Position 1 2 3 4 5 6 7 …

Sequence A G T A G C A …

k-mer1 A G T

k-mer2 G T A

k-mer3 T A G

k-mer4 A G C

k-mer5 G C A …

lexicographically 
smallest k-mer
(selected as 
minimizer)

Figure 8: Example of finding the minimizer of the first win-
dow of a sequence.

The MinSeed algorithm starts by computing the minimizers of a
given query read. While a naive way to compute the minimizers is
to use a nested loop (where the outer loop iterates over the query
read to define each window and the inner loop finds the minimum
k-mer (i.e., minimizer) within each window), we can eliminate the
inner loop by caching the previous minimum k-mers within the
current window. The single-loop algorithm has a complexity of
𝑂 (𝑚), where𝑚 is the length of the query read.

After finding the minimizers of each read, MinSeed queries the
hash-table-based index (Section 5) stored in memory to fetch the oc-
currence frequency (i.e., #locations) of each minimizer. A minimizer
is discarded if its occurrence frequency in the reference genome
is above a user-defined threshold (pre-computed for each chromo-
some in order to discard the top 0.02% most frequent minimizers),
in order to reduce the number of seed locations that are sent to
the alignment step of the mapping pipeline [91, 93, 126]). If the
minimizer is not discarded, then all of the seed locations for that
minimizer are fetched from the index.

After fetching all seed locations corresponding to all non-discard-
ed minimizers of a query read, MinSeed calculates the leftmost and
rightmost positions of each seed, using the node ID and relative
offset of the seed location along with the relative offset of the
corresponding minimizer within the query read. As we show in
Figure 9, to find the leftmost position of the seed region (𝑥), we
need the start position of the minimizer within the query read (𝑎),
the start position of the seed within the (graph-based) reference (𝑐),
and the error rate (𝐸). Similarly, to find the rightmost position of the
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seed region (𝑦), we need the end position of the minimizer within
the query read (𝑏), the end position of the seed within the (graph-
based) reference (𝑑), the query read length (𝑚), and the error rate
(𝐸). Finally, for all seeds of the query read, the subgraphs, which are
found by using the calculated leftmost and rightmost positions of
the seed regions, are fetched from main memory. These subgraphs
serve as the output of the MinSeed algorithm.

minimizer

seed

0 m‒1

x yc d

a m‒b‒1

a*(1+E) (m‒b‒1)*(1+E)

left-extension right-extension

a b

ACG ACGT

T

G

T
Sequence #1: ACGTACGT

Sequence #2: ACGGACGT

Sequence #3: ACGTTACGT

Sequence #4: ACGACGT

A

Linear Sequence: 
ACGTACGT

Graph-Based Representation:

C G T A C G T

query read

graph-based 
reference

Figure 9: Calculations for finding the start (𝑥) and end (𝑦)
positions of a candidate seed region (i.e., subgraph) using
i) the start (𝑎) and end (𝑏) positions of a minimizer within
the query read and ii) the start (𝑐) and end (𝑑) positions of a
seed within the (graph-based) reference.

7 BITALIGN ALGORITHM
After MinSeed determines the subgraphs to perform alignment for
each query read, for each (read, subgraph) pair, BitAlign calcu-
lates the edit distance and the corresponding alignment between
the two. In order to provide an efficient, hardware-friendly, and
low-cost solution, we modify the sequence alignment algorithm of
GenASM [69, 189], which is bitvector-based, to support sequence-
to-graph alignment, and we exploit the bit-parallelism that the
GenASM algorithm provides.

GenASM. GenASM [69] makes the bitvector-based Bitap algo-
rithm [107, 108] suitable for efficient hardware implementation.
GenASM shares a common characteristic with the well-known
DP-based algorithms [100, 105, 106]: both algorithms operate on
tables (see Section 2.2 and Figure 3a). The key difference between
GenASM-based alignment and DP-based alignment is that cell val-
ues are bitvectors in GenASM, whereas cell values are numerical
values in DP-based algorithms. In GenASM, the rules for comput-
ing new cell values can be formulated as simple bitwise operations,
which are particularly easy and cheap to implement in hardware.
Unfortunately, GenASM is limited to sequence-to-sequence align-
ment. We build on GenASM’s bitvector-based algorithm to develop
our new sequence-to-graph alignment algorithm, BitAlign.

BitAlign. There is a major difference between sequence-to-se-
quence alignment and sequence-to-graph alignment: for the cur-
rent character, sequence-to-sequence alignment needs to know
about only the neighboring (i.e., previous/adjacent) text charac-
ter, whereas sequence-to-graph alignment must incorporate non-
neighboring characters as well whenever there is an edge (i.e., hop)
from the current character to the non-neighboring character (see
Section 2.2 and Figure 3b). To ensure that each of these data depen-
dencies can be resolved as quickly as possible, we topologically sort
the input graph during pre-processing, as described in Section 5.

Algorithm 1 shows our new BitAlign algorithm. BitAlign starts
with a linearized and topologically sorted input subgraph. This
ensures that (1) we can iterate over each node of the input graph
sequentially, and (2) all of the required bitvectors for the current

iteration have already been generated in previous iterations. Be-
sides the subgraph, BitAlign also takes the query read and the edit
distance threshold (i.e., maximum number of edits to tolerate when
performing approximate string matching [100]) as inputs.

Algorithm 1 BitAlign Algorithm
Inputs: linearized and topologically sorted subgraph (reference),

query-read (pattern), k (edit distance threshold)
Outputs: editDist (minimum edit distance), CIGARstr (traceback output)

1: n← length of linearized reference subgraph
2: m← length of query read
3: PM←genPatternBitmasks(query-read) ⊲ pre-process the query read
4:
5: allR[n][d]← 111...111 ⊲ init R[d] bitvectors for all characters with 1s
6:
7: for i in (n-1):-1:0 do ⊲ iterate over each subgraph node
8: curChar← subgraph-nodes[i].char
9: curPM← PM[curChar] ⊲ retrieve the pattern bitmask
10:
11: R0← 111...111 ⊲ status bitvector for exact match
12: for j in subgraph-nodes[i].successors do
13: R0← ((R[j][0]<<1) | curPM) & R0 ⊲ exact match calculation
14: allR[i][0]← R0
15:
16: for d in 1:k do
17: I← (allR[i][d-1]<<1) ⊲ insertion
18: Rd← I ⊲ status bitvector for 𝑑 errors
19: for j in subgraph-nodes[i].successors do
20: D← allR[j][d-1] ⊲ deletion
21: S← allR[j][d-1]<<1 ⊲ substitution
22: M← (allR[j][d]<<1) | curPM ⊲ match
23: Rd← D & S & M & Rd
24: allR[i][d]← Rd
25: <editDist, CIGARstr>← traceback(allR, subgraph, query-read)

Similar to GenASM, as a pre-processing step, we generate four
pattern bitmasks for the query read (one for each character in the
alphabet: A, C, G, T; Line 3). Unlike in GenASM, which stores
only the most recent status bitvectors (i.e., R[d] bitvectors, where
0 ≤ 𝑑 ≤ 𝑘) that hold the partial match information, BitAlign needs
to store all of the status bitvectors for all of the text iterations
(i.e., allR[n][d], where 𝑛 is the length of the linearized reference
subgraph; Line 5). These allR[n][d] bitvectors will be later used by
the traceback step of BitAlign (Line 25).

Next, BitAlign iterates over each node of the linearized graph
(Line 7) and retrieves the pattern bitmask for each node, based
on the character stored in the current node (Lines 8–9). Unlike in
GenASM, when computing three of the intermediate bitvectors (i.e.,
match, substitution, and deletion; Lines 11–14, 19–22), BitAlign
incorporates the hops as well by examining all successor nodes
that the current node has (Lines 12 and 19). When calculating the
deletion (𝐷), substitution (𝑆), and match (𝑀) bitvectors, we take the
hops into consideration, whereas when calculating the insertion (𝐼 )
bitvector (Lines 17–18), we do not need to, since an insertion does
not consume a character from the reference subgraph, but does so
from the query read only. After computing all of these intermediate
bitvectors, we store only the R[d] bitvector (i.e., ANDed version of
the intermediate bitvectors) in memory (Lines 23–24). After com-
pleting all iterations, we perform traceback (Line 25) by traversing
the stored bitvectors in the opposite direction to find the optimal
alignment (based on the user-supplied alignment scoring function).

To perform GenASM-like traceback, BitAlign stores 3(𝑘 + 1)
bitvectors per graph edge (similar to how GenASM stores three
out of the four intermediate vectors), where 𝑘 is the edit distance
threshold. Since the number of edges in the graph can only be
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bounded very loosely, the potential memory footprint increases
significantly, which is expensive to implement in hardware. We
solve this problem by storing only 𝑘 + 1 bitvectors per node (i.e.,
R[d] bitvectors), from which the 3(𝑘 + 1) bitvectors per edge can be
regenerated on-demand during traceback. While this modification
incurs small additional computational overhead, it decreases the
memory footprint of the algorithm by at least 3×. Since the main
area and power cost of the alignment hardware comes frommemory,
we find this trade-off favorable.

Similar to GenASM, BitAlign also follows the divide-and-conquer
approach, where we divide the linearized subgraph and the query
read into overlapping windows and execute BitAlign for each win-
dow. After all windows’ traceback outputs are found, we merge
them to find the final traceback output. This approach helps us to
decrease the memory footprint and lower the complexity of the
algorithm.

8 SEGRAM HARDWARE DESIGN
In SeGraM, we co-design our new MinSeed and BitAlign algo-
rithms with specialized custom accelerators that can support both
sequence-to-graph and sequence-to-sequence alignment.

8.1 MinSeed Accelerator
As shown earlier in Figure 4, the MinSeed accelerator consists of:
(1) three computation blocks responsible for finding the minimizers
from a query read ( 2 from Figure 4), filtering minimizers based on
their frequencies ( 4 ), and finding the candidate reference regions
(i.e., subgraphs surrounding the candidate seeds) ( 6 ) by calculating
each seed’s leftmost and rightmost positions (Section 6); (2) three
scratchpad (on-chip SRAM memory) blocks; and (3) the memory
interface, which handles the lookups of minimizer frequency, seed
location, and subgraph from the attached main memory stack ( 3 ,
5 , and 7 from Figure 4).
As Figure 10 shows, the MinSeed accelerator receives the query

read as its input, and finds the candidate subgraphs (from the ref-
erence) as its output. The computation modules (purple-shaded
blocks) are implemented with simple logic, since we require only
basic operations (e.g., comparisons, simple arithmetic operations,
scratchpad R/W operations).

Figure 10: MinSeed accelerator design.

MinSeed accelerator consists of three scratchpads (gray-shaded
blocks): (1) read scratchpad, which stores the query read; (2) min-
imizer scratchpad, which stores the minimizers fetched from the
query read; and (3) seed scratchpad, which stores the seeds fetched
from the memory for the minimizers. For all three scratchpads,
we employ a double buffering technique to hide the latency of the

MinSeed accelerator (See Section 8.3). Based on our empirical anal-
ysis, we find that (1) the read scratchpad requires 6 kB of storage
such that it can store 2 query reads of 10 kbp length, where each
character of the query reads is represented using 2 bits (A:00, C:01,
G:10, T:11); (2) the minimizer scratchpad requires 40 kB of storage
such that it can store the minimizers of 2 different query reads,
where the maximum number of minimizers that a query read in
our datasets (Section 10) can have is 2050 and each minimizer is
represented with 10B of data; and (3) the seed scratchpad requires
4 kB of storage such that it can store the seed locations of 2 different
minimizers, where the maximum number of seed locations that a
minimizer of a query read in our datasets can have is 242 and each
seed location is represented with 8B of data.

8.2 BitAlign Accelerator
As shown earlier in Figure 4, the BitAlign accelerator consists of:
(1) two computation blocks responsible for generating bitvectors to
perform approximate string matching and edit distance calculation
( 8 from Figure 4) and traversing bitvectors to perform traceback
( 11 ); (2) two scratchpad blocks for storing the input data and in-
termediate bitvectors, and (3) hop queue registers for handling the
hops.

We implement the bitvector generation hardware of BitAlign as
a linear cyclic systolic array based [190, 191] accelerator. While this
design is based on the GenASM-DC hardware [69], our new design
incorporates hop queue registers in order to feed the bitvectors of
non-neighboring characters/nodes. As we show in Figure 11, the
𝑅 [𝑑] bitvector generated by each processing element (PE) (i.e., hop
bitvector) is fed to the tail of the hop queue register of the current
PE. Each hop queue register then provides its stored bitvectors
as the 𝑜𝑙𝑑𝑅 [𝑑] bitvectors to the same PE (required for the match
bitvector calculation), and as the 𝑜𝑙𝑑𝑅 [𝑑 − 1] bitvectors to the next
PE (required for deletion and substitution bitvector calculation)
in the next cycle. The 𝑅 [𝑑 − 1] bitvector (required for insertion
bitvector calculation) is directly provided by the previous PE (i.e.,
not through the hop queue registers).

Figure 11: Design of a BitAlign processing element (PE).

We implement the hop information between nodes of the graph
as an adjacency matrix called HopBits (Figure 12). Based on the
HopBits entry of the current text character, either the actual hop
bitvector (if the HopBits entry is 1), or a bitvector containing all
ones such that it will not have any effect on the bitwise operations
(if the HopBits entry is 0), is used when calculating the match,
deletion, and substitution bitvectors of the current PE.

In order to decrease the size of each hop queue register and
the HopBits matrix, we perform an empirical analysis in Figure 13,
where we measure the fraction of total number of hops in the graph-
based reference genome that we can cover (Y-axis) when we limit
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Figure 12: Linearized input subgraph and the HopBits ma-
trix. When there is an outgoing edge (hop) from 𝑁𝑜𝑑𝑒𝐼𝐷𝑥 to
𝑁𝑜𝑑𝑒𝐼𝐷𝑦 , then the HopBits for the 𝑦𝑡ℎ entry of 𝑥𝑡ℎ column is
1, otherwise 0 (indicated as · for readability).

the distance between the farthest node to take into account and
the current node (i.e., hop limit; X-axis). As Figure 13 shows, when
we select 12 as the hop limit, we cover more than 99% of all hops
in the graph-based reference. This is a reasonable limit because
a significant percentage of genetic variations in a human genome
are either single nucleotide substitutions (i.e., single nucleotide
polymorphisms, SNPs) or small indels (insertions/deletions) [115],
which would result in short hops that connect near-vicinity vertices
in the graph. On the other hand, even though large structural varia-
tions (SVs) would result in long hops connecting farther vertices in
the graph, such SVs occur at a very low frequency.2 As a result, in a
topologically-sorted graph-based reference, the majority of vertices
are expected to have all of their neighbors within close proximity.

Figure 13: Effect of the hop limit on the fraction of hops
included when performing sequence-to-graph alignment.

BitAlign uses two types of SRAM buffers: (1) input scratchpad,
which stores the linearized reference graph, associated HopBits
for each node, and the pattern bitmasks for the query read; and
(2) bitvector scratchpad, which stores the intermediate bitvectors
generated during the edit distance calculation step of BitAlign and
used during the traceback step of BitAlign. For a 64-PE configura-
tion with 128 bits of processing per PE (i.e., the width of bitvectors),
BitAlign requires a total of 24 kB in input scratchpad storage. Each
PE also requires a total of 2 kB bitvector scratchpad storage (128 kB,
in total) and 192 B hop queue register storage (12 kB, in total). In each
cycle, 128 bits of data (16 B) is written to each bitvector scratchpad
and to each hop queue register by each PE.
2Hop limit introduces a tradeoff between power/area overhead and accuracy. We leave
overcoming this tradeoff and improving accuracy of our design as future work.

As we explain in Section 7, in order to decrease the memory foot-
print of the stored bitvectors required for traceback execution, we
store only the ANDed version of the intermediate bitvectors (𝑅 [𝑑])
and re-generate the intermediate bitvectors (i.e., match, substitu-
tion, deletion, and insertion) during traceback. Thus, each element
of the hop queue register has a length equal to the window size (𝑊 ),
instead of 3 ∗𝑊 . Similarly, with this design choice, the size of each
bitvector scratchpad of each PE decreases by 3×.

8.3 Overall System Design
Figure 14 shows the overall design of SeGraM. SeGraM is connected
to a host system that is responsible for the pre-processing steps
(Section 5) and for transferring the query read to the accelerator.
For fair comparison, we exclude the time spent for generating and
loading these structures to main memory for both our SeGraM
design and for the baseline tools, as this is a one-time cost. Since
pre-processing is performed only once for each reference input, it
is not the bottleneck of the end-to-end execution.3

Figure 14: Overall system design of a SeGraM module. Our
full design has four SeGraMmodules and fourHBM2E stacks.

When the host transfers a single query read to SeGraM, the read
is buffered before being processed. We employ a double buffering
technique to hide the transfer latency of the query reads. Thus, this
transfer is not on the critical path of SeGraM’s execution, since the
next query read to be processed has already been transferred and
stored in the read scratchpad of the MinSeed accelerator when the
current query read is being processed. This ensures that the host-
to-SeGraM connection is not a bottleneck and not on the critical
path of the full SeGraM execution.

Our hardware platform includes four off-chip HBM2E stacks [87],
each with eight memory channels. Next to each HBM2E stack, we
place one SeGraM module. A single SeGraM module consists of 8
SeGraM accelerators, where each accelerator is a combination of
oneMinSeed accelerator and one BitAlign accelerator. Each SeGraM
accelerator has exclusive access to one HBM2E channel to ensure
low-latency and high-bandwidth memory access [192], without
any interference from other SeGraM accelerators in each module.4
By placing SeGraM in the same package as the four HBM2E stacks,
we mimic the configuration of current commercial devices such as
GPUs [193, 194] and FPGA boards [76, 195–197].
3The reference input changes very infrequently and is reused for all query reads over
likely millions of mapping invocations of SeGraM, allowing for the pre-processing
latency to be amortized.
4There is no communication required between different SeGraM accelerators in a
single SeGraM module, and each SeGraM accelerator communicates with the host
independently of other SeGraM accelerators.
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We replicate the graph-based reference and hash-table-based
index across all 4 independent HBM2E stacks, which enables us
to have 32 independent SeGraM accelerators running in parallel.
Within each stack, to balance the memory footprint across all chan-
nels, we distribute the graph and index structures of all chromo-
somes (1–22, X, Y) based on their sizes across the eight independent
channels. For the datasets we use, the graph and index structures
require a total memory of 11.2 GB per stack, which is well within
the capacity of a single HBM2E stack (i.e., 16 GB in current tech-
nology) [87] that we include in our design.

We design each SeGraM accelerator (MinSeed + BitAlign) to
operate in a pipelined fashion, such that we can hide the latency of
the MinSeed accelerator. While BitAlign is running, MinSeed finds
the next set of minimizers, fetches the frequencies and seeds from
the main memory, and writes them to their associated scratchpads.
In order to enable pipelined execution of MinSeed and BitAlign, we
employ the double buffering technique for theminimizer scratchpad
and seed scratchpad (as we do for the read scratchpad).

If the minimizers do not fit in the minimizer scratchpad, we can
perform a batching approach, where not all of the minimizers will
be found and stored together. Instead, a batch (i.e., a subset) of
minimizers is found, stored, and used, and then the next batch will
be generated out of the read. A similar optimization can be applied
to the seed scratchpad if capacity issues arise.

9 USE CASES OF SEGRAM
As a result of the flexibility and modularity of the SeGraM frame-
work, we can run each accelerator (i.e., MinSeed and BitAlign)
together for end-to-end mapping execution, or separately. Thus,
we describe three use cases of SeGraM: (1) end-to-end mapping,
(2) alignment, and (3) seeding.

End-to-End Mapping. For sequence-to-graph mapping, the
whole SeGraM design (MinSeed + BitAlign) should be employed,
since both seeding and alignment steps are required (see Section 2.2).
With the help of the divide-and-conquer approach inherited from
the GenASM [69] algorithm, we can use SeGraM to perform se-
quence-to-graph mapping for both short reads and long reads. Be-
cause traditional sequence-to-sequence mapping is a special and
simpler variant of sequence-to-graph mapping (i.e., a graph where
each node has an outgoing edge to exactly one other node), SeGraM
can be used for sequence-to-sequence mapping as well.

Alignment. Since BitAlign takes in a graph-based reference and
a query read as its inputs, it can be used as a standalone sequence-
to-graph aligner, without MinSeed. Similar to SeGraM, BitAlign
can also be used for sequence-to-sequence alignment, as sequence-
to-sequence alignment is a special and simpler variant of sequence-
to-graph alignment. BitAlign is orthogonal to and can be coupled
with any seeding (or filtering) tool/accelerator.

Seeding. Similarly, MinSeed can be used without BitAlign as a
standalone seeding accelerator for both graph-based mapping and
traditional linear mapping. MinSeed is orthogonal to and can be
coupled with any alignment tool or accelerator.

10 EVALUATION METHODOLOGY
Performance, Area and Power Analysis. We synthesize and

place & route the MinSeed and BitAlign accelerator datapaths us-
ing the Synopsys Design Compiler [198] with a typical 28 nm low-
power process [199]. Our synthesis targets post-routing timing

closure at 1 GHz clock frequency. Our power analysis for CPU soft-
ware baselines includes the power consumption of the CPU socket
and the dynamic DRAM power. In our power analysis for SeGraM,
we include the dynamic HBM power [200, 201] and the power con-
sumption of all logic and scratchpad/SRAM units. We then use an
in-house cycle-accurate simulator and a spreadsheet-based analyti-
cal model parameterized with the synthesis and memory estimates
to drive the performance analysis.

Baseline Comparison Points. First, we compare SeGraM with
two state-of-the-art CPU-based sequence-to-graphmappers: Graph-
Aligner [61] and vg [36], running on an Intel® Xeon® E5-2630
v4 CPU [133] with 20 physical cores/40 logical cores with hyper-
threading [134–137], operating at 2.20GHz, with 128GB DDR4
memory. We run both GraphAligner and vg with 40 threads. We
measure the execution time and power consumption (using Intel’s
PCM power utility [202]) of each CPU software baseline. Second,
we compare SeGraM with a state-of-the-art GPU-based sequence-
to-graph-mapper, HGA [88],5 running on an NVIDIA® GeForce®
RTX 2080 Ti [203]. We measure the execution time of the GPU
kernel only, ignoring any CPU overheads. We measure the power
consumed by the entire GPU using the NVIDIA-smi tool [204] and
subtract the static power to find the dynamic power. Third, we
compare BitAlign with a state-of-the-art software-based sequence-
to-graph aligner, PaSGAL [89], and also with three state-of-the-
art hardware-based sequence-to-sequence aligners: Darwin [68],
GenAx [70], and GenASM [69]. For these four baselines, we use the
numbers reported by the papers.

Datasets. We evaluate SeGraM using the latest major release
of the human genome assembly, GRCh38 [205], as the starting
reference genome. To incorporate known genetic variations and
thus form a genome graph, we use 7 VCF files for HG001-007 from
the GIAB project (v3.3.2) [206]. Across the 24 graphs generated (one
for each chromosome; 1–22, X, Y), in total, we have 20.4M nodes,
27.9M edges, 3.1 B sequence characters, and 7.1M variations.

For the read datasets, we generate four sets of long reads (i.e.,
PacBio and ONT datasets) using PBSIM2 [207] and three sets of
short reads (i.e., Illumina datasets) using Mason [208]. For the
PacBio and ONT datasets, we have reads of length 10 kbp, each
simulated with 5% and 10% error rates. The Illumina datasets have
reads of length 100 bp, 150 bp, and 250 bp, each simulated with a
1% error rate. Each dataset has 10,000 reads.

For our comparison with HGA [88], we follow the methodology
presented in [88], where we use the Breast Cancer Gene1 (BRCA1)
graph [209] and three different read datasets simulated from the
BRCA1 graph (using the simulate command from vg): R1 (128 bp
× 278,528 reads), R2 (1024 bp × 34,816 reads), and R3 (8192 bp ×
4,352 reads).

11 RESULTS
11.1 Area and Power Analysis
Table 1 shows the area and power breakdown of the compute (i.e.,
logic) units, the scratchpads, and HBM stacks in SeGraM, and the

5It is important to note that (1) HGA does not support traceback and reports only
the alignment score; and (2) even though HGA is presented as a sequence-to-graph
alignment tool by its authors, we use it as a sequence-to-graph mapping tool since
HGA takes all of the nodes of a given graph into consideration instead of a small
region of the graph. Thus, we compare HGA with SeGraM, which takes the complete
graph as its input, instead of BitAlign, which takes a small region of the graph (i.e.,
subgraph) as its input.
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total area overhead and power consumption of (1) a single SeGraM
accelerator (attached to a single channel), and (2) 32 SeGraM accel-
erators (with each accelerator attached to its own channel, across
four HBM stacks that each have eight channels). The SeGraM ac-
celerators operate at 1 GHz.

For a single SeGraM accelerator, the area overhead is 0.867mm2,
and the power consumption is 758mW. We find that the main
contributors for the area overhead and power consumption are
(1) the hop queue registers, which constitute more than 60% of the
area and power of BitAlign’s edit distance calculation logic; and
(2) the bitvector scratchpads. For 32 SeGraM accelerators, the total
area overhead is 27.7mm2, with a power consumption of 24.3W.
When we add the HBM power to the power consumption of 32
SeGraM accelerators, the total power consumption becomes 28.1W.

We conclude that SeGraM is very efficient in terms of both power
consumption and area: a single SeGraM accelerator requires 0.02%
of area and 0.5% of power consumption of an entire high-end Intel
processor [210].

Table 1: Area and power breakdown of SeGraM.

11.2 Analysis of End-to-End SeGraM Execution
Comparison With CPU Software. We compare end-to-end

execution of SeGraM with two state-of-the-art sequence-to-graph
mapping tools, GraphAligner [61] and vg [36]. We evaluate 40-
thread instances of GraphAligner and vg on the CPU. We evaluate
both tools and SeGraM for both long reads and short reads.

Figure 15 shows the read mapping throughput (reads/sec) of
GraphAligner, vg, and SeGraMwhen aligning long noisy PacBio and
ONT reads against the graph-based representation of the human
reference genome. We make two observations. First, on average,
SeGraM provides a throughput improvement of 5.9× and 3.9× over
GraphAligner and vg, respectively. We perform a power analysis
(not shown), and find that GraphAligner and vg consume 115W
and 124W, respectively; SeGraM reduces the power consumption
for our long read datasets by 4.1× and 4.4×, respectively. Second,
the throughput improvements do not change greatly with the query
read error rate. When we examine a single SeGraM execution, it
takes 35.9 µs at a 5% error rate, whereas it takes 37.5 µs at a 10%
error rate. However, we also find that the total number of seeds that
need to be aligned can vary based on the dataset: for the datasets
we use in our analysis, MinSeed generates fewer seeds to align for
the 10%-error-rate datasets compared to the 5%-error-rate datasets,
thus, effectively canceling out the impact of increased execution
time from 5%-error-rate datasets to 10%-error-rate datasets. As a
result, we do not observe a large difference in overall throughput
between the two datasets.

Figure 15: Throughput of GraphAligner, vg, and SeGraM
for long reads. 5%/10% stands for PacBio/ONT datasets with
5%/10% read error rate.

Figure 16 shows the read mapping throughput of GraphAligner,
vg, and SeGraMwhen aligning short accurate Illumina reads against
the graph-based representation of the human reference genome.
We make two observations. First, on average, SeGraM provides a
throughput improvement of 106× and 742× over GraphAligner and
vg, respectively. We perform a power analysis (not shown), and
find that GraphAligner and vg consume 85W and 91W, respec-
tively; SeGraM reduces the power consumption for our short read
datasets by 3.0× and 3.2×, respectively. Second, the throughput
improvement of all three read mappers decreases as the read length
increases. This is because as the read length increases, the number
of seeds to align increases as well, resulting in an increase in ex-
ecution time. However, SeGraM is affected by the increase in the
number of seeds to align more than the baseline tools. Thus, Se-
GraM’s throughput improvement over the baseline tools decreases
when the read length increases (but still stays above 52×).

Figure 16: Throughput of GraphAligner, vg and SeGraM for
short reads. 100/150/250bp stands for Illumina datasets with
100/150/250bp length reads.

Comparison With GPU Software.We also compare end-to-
end execution of SeGraM with the state-of-the-art GPU-based
sequence-to-graph mapping tool, HGA [88]. We find that SeGraM
provides 523×, 85×, and 17× higher throughput for the BRCA1-R1,
BRCA1-R2, and BRCA1-R3 datasets (Section 10) over HGA, while
reducing power consumption by 2.2×, 2.1×, and 1.9×, respectively.

Sources of Improvement.We identify four key reasons why Se-
GraM achieves such large performance improvements over Graph-
Aligner, vg, and HGA.

First, we address the high cache miss rate bottleneck by carefully
designing and sizing the on-chip scratchpads (using empirical data)
and the hop queue registers (which allow us to fetch all bitvectors
for a hop within a single cycle). As a result, SeGraM matches the
rate of computation for the logic units with memory bandwidth
and memory capacity. Doing so overcomes the high cache miss
rates experienced by GraphAligner, and leads to a large reduction
in the memory bandwidth that SeGraM needs to consume.
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Second, we address the DRAM latency bottleneck by taking ad-
vantage of the natural channel subdivision exposed by HBM. As
mentioned in Section 11.1, we dedicate one SeGraM accelerator per
HBM channel. While SeGraM does not need to be implemented
alongside an HBM-based memory subsystem, the multiple indepen-
dent channels available in a single HBM stack allow us to increase
accelerator-level parallelism without introducing memory inter-
ference among the accelerators. Unlike with CPU/GPU threads,
which share all of the memory channels, our channel-based isola-
tion eliminates any inter-accelerator interference-related latency
in the memory system [211].

Third, our co-design approach for both seeding and alignment
yields multiple benefits: (1) We make use of efficient and hardware-
friendly algorithms for seeding and for alignment. (2) We eliminate
the data transfer bottleneck between the seeding and alignment
steps of the genome sequence analysis pipeline, by placing their
individual accelerators (MinSeed and BitAlign) adjacent to each
other. (3) Our pipelining of the two accelerators within a SeGraM
accelerator allows us to completely hide the latency of MinSeed.

Fourth, while the performance of the software tools scales sub-
linearly with the thread count, SeGraM scales linearly across three
dimensions: (1) Within a single BitAlign accelerator, by incorpo-
rating processing elements (PEs), we parallelize multiple BitAlign
iterations. This scales linearly up to the number of bits processed
(128 in our case), as we can partition the iterations of the inner
loop of the BitAlign algorithm (Lines 16–24 in Algorithm 1) across
all of the PEs (i.e., we can incorporate as many as 64 PEs and still
attain linear performance improvements). (2) Since a single read is
composed of multiple seeds/minimizers, we use pipelined execution
(with the help of our double buffering approach) to execute multiple
seeds in parallel. (3) With the help of multiple HBM stacks that
each contain the same content, we process multiple reads concur-
rently without introducing inter-accelerator memory interference.
Seed-level parallelism and read-level parallelism can scale near-
linearly as long as the memory bandwidth remains unsaturated,
since (1) different seeds in a single read are independent of each
other, (2) different reads are independent of each other, and (3) the
memory bandwidth requirement of each read is low (3.4 GB/s).

Overall, we conclude that SeGraM provides substantial through-
put improvements and power savings over state-of-the-art software
tools, for both long and short reads.

11.3 Analysis of BitAlign
Sequence-to-Graph Alignment. As we explain in Section 9,

BitAlign can be used as a standalone accelerator for sequence-
to-graph alignment. We compare BitAlign with the state-of-the-
art AVX-512 [212] based sequence-to-graph alignment tool, PaS-
GAL [89]. PaSGAL is composed of three main steps: (1) DP-fwd,
where the input graph and query read are aligned using the DP-
based graph alignment approach to compute the ending position
of the alignment; (2) DP-rev, where the graph and query read are
aligned in the reverse direction to compute the starting position
of the alignment; and (3) Traceback, where, using the starting and
ending positions of the alignment, the corresponding section of the
score matrix is re-calculated and traceback is performed to find the
optimal alignment.

Since the input of BitAlign is the subgraph and the query read,
not the complete input graph, we compare BitAlign only with the
third step of PaSGAL for a fair comparison. Figure 17 shows the

execution time of PaSGAL (using numbers reported in the PaSGAL
paper [89]) and SeGraM for both short read (LRC-L1, MHC1-M1)
and long read (LRC-L2, MHC1-M2) datasets. We observe from the
figure that SeGraM provides 41×–539× speedup over the 48-thread
AVX-512 supported execution of PaSGAL.
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Figure 17: Performance comparison of PaSGAL and BitAlign
for sequence-to-graph alignment.

We observe from the figure that BitAlign’s speedup over PaSGAL
is notably higher for long reads (i.e., the reads in the LRC-L2 and
MHC1-M2 datasets). This is due to the divide-and-conquer approach
that BitAlign follows. Instead of aligning the full subgraph and the
query read, with the help of the windowing approach (Section 7),
BitAlign decreases the complexity of sequence-to-graph alignment,
which allows BitAlign to efficiently align both short and long reads.

Sequence-to-Sequence Alignment.As we discuss in Section 9,
BitAlign can be used for sequence-to-sequence alignment, by treat-
ing a linear sequence as a special case of a graph. To show the
benefits of BitAlign for this special use case, we compare BitAlign
with the state-of-the-art hardware accelerators for sequence-to-
sequence alignment: the GACT accelerator from Darwin [68], the
SillaX accelerator from GenAx [70], and GenASM [69]. GACT is
optimized for long reads, SillaX is optimized for short reads, and
GenASM is optimized for both short and long reads. We use the
optimized configuration of each accelerator, as reported in the cor-
responding papers.

Based on our analysis, we find that, on average, BitAlign pro-
vides (1) a throughput improvement of 4.8× over GACT for long
reads, while consuming 2.7× more power and 1.5× more area; (2) a
throughput improvement of 2.4× over SillaX for short reads; and
(3) a throughput improvement of 1.2× and 1.3× over GenASM for
long reads and short reads, respectively, while consuming 7.5×
more power and 2.6× more area. Since both BitAlign and GenASM
have fixed power consumption and area overhead independent of
the dataset, their power and area comparisons are the same for any
input dataset.

BitAlign vs. GenASM. As we explain in Section 7, BitAlign
is a modified version of GenASM. Specifically, we decrease the
memory footprint of GenASM by 3×, which helps us to increase
the number of bits processed by each PE from 64 (in GenASM) to
128 (in BitAlign) and better utilize the bitvector scratchpad capacity.
With more bits per PE, the number of windows executed (Section 7)
decreases, which enables BitAlign to have speedup compared to
GenASM. For example, for a read of 10 kbp length, each window
execution of GenASM takes 169 cycles, whereas it takes 272 cycles
for BitAlign. However, the number of windows required to consume
10 kbp (the length of one read) is 250 for GenASM (as the window
length is the same as the number of bits per PE, or 64), whereas this
number is 125 for BitAlign, whose window length is equal to 128.
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Multiplying the number of windows by the cycle time per window,
we find that BitAlign (34.0 k cycles) performs better than GenASM
(42.3 k cycles) by 24% (1.2×).

11.4 Analysis of MinSeed
As we explain in Section 8.3, with the help of our pipelined design,
MinSeed is not on the critical path of the overall SeGraM execution.
However, since MinSeed finds subgraphs using candidate seed lo-
cations and sends them to BitAlign for the final alignment, it plays
a critical role for the overall sensitivity (i.e., the metric that mea-
sures the accuracy of a seeding or filtering mechanism in keeping
(not filtering out) the seeds that would lead to the optimal align-
ment) of our approach. MinSeed does not decrease the sensitivity
of the overall sequence-to-graph mapping compared to the baseline
software tools since both MinSeed and the baseline software tools
implement the same optimization of discarding the seeds that have
higher frequency than the threshold.

MinSeed vs. Filtering Approaches. MinSeed does not imple-
ment a filtering mechanism.6. Even though this leads to a higher
number of subgraphs that must be processed by the (expensive)
alignment step compared to approaches that perform filtering,
BitAlign’s high efficiency greatly alleviates the alignment bottle-
neck that exists in the software tools, as we show in Section 11.2.
For example, for a long read dataset, while GraphAligner decreases
the number of seeds extended from 77M to 48 k with its filter-
ing/chaining approaches, MinSeed only decreases the number of
seeds to 35M, yet SeGraM (MinSeed and BitAlign together) still
outperforms GraphAligner. Similarly, for a short read dataset, even
though GraphAligner decreases the number of seeds extended from
828 k to 11 k, SeGraM significantly outperforms GraphAligner even
though MinSeed only decreases the number of seeds to 375 k.

12 RELATEDWORK
To our knowledge, this is the first work to propose (1) a hardware
acceleration framework for sequence-to-graph mapping (SeGraM),
(2) a hardware accelerator for minimizer-based seeding (MinSeed),
and (3) a hardware accelerator for sequence-to-graph alignment
(BitAlign). No prior work studies hardware design for graph-based
genome sequence analysis.

Software Tools for Sequence-to-Graph Mapping. There are
several tools available that specialize for sequence-to-graph map-
ping or alignment. Examples of sequence-to-graph mapping tools
include GraphAligner [61], vg [36], HGA [88], HISAT2 [66], and
minigraph [65]. Other tools, such as PaSGAL [89], abPOA [128],
AStarix [78, 83], and Vargas [81] perform sequence-to-graph align-
ment only, without an indexing or a seeding step. All of these
approaches are software-only, and we show quantitatively in Sec-
tion 11 that our algorithm/hardware co-design greatly outperforms
four state-of-the-art tools: GraphAligner, vg, HGA, and PaSGAL.

Hardware Accelerators for Genome Sequence Analysis.
Existing hardware accelerators for genome sequence analysis focus
on accelerating only the traditional sequence-to-sequence mapping
pipeline, and cannot support genome graphs as their inputs. For
example, GenStore [142], ERT [144], GenCache [143], NEST [145],

6MinSeed is orthogonal to any filtering tool or accelerator [72, 73, 75, 76, 93, 94, 140–
148]. Employing a filtering approach as part of our design would increase SeGraM’s
performance and efficiency, a study we leave to future work.

MEDAL [146], SaVI [147], SMEM++ [148], Shifted Hamming Dis-
tance [94], GateKeeper [72], MAGNET [140], Shouji [141], and
SneakySnake [73, 76] accelerate the seeding and/or filtering steps
of sequence-to-sequence mapping.

Darwin [68], GenAx [70], GenASM [69], SeedEx [129], WFA-
FPGA [130], GenieHD [149], GeNVoM [150], FPGASW [131], SWI-
FOLD [151], and ASAP [132] accelerate read alignment for only a
linear reference genome (sequence-to-sequence alignment). These
accelerators have no way to track the hops that exist in a graph-
based reference, and cannot be easily modified to support hops.
SeGraM builds upon the hardware components of GenASM,with en-
hancements (i.e., BitAlign) and new components (i.e., MinSeed) that
efficiently support both (1) sequence-to-graph mapping/alignment
and (2) sequence-to-sequence mapping/alignment (by treating the
linear reference genome as a genome graph where each node has
only one outgoing edge).

A number of works propose processing-in-memory (PIM) [213–
215] based accelerators for genome sequence analysis, such as
GRIM-Filter [75], RAPID [216], PIM-Aligner [217], RADAR [218],
BWA-CRAM [219], FindeR [220], AligneR [221], and FiltPIM [222].
Similar to non-PIM sequence-to-sequence alignment accelerators,
these PIM accelerators are designed for a linear reference genome
only, and cannot support genome graphs.

Aside from the aforementioned readmapping and read alignment
accelerators, there are other genomics accelerators that target dif-
ferent genomics problems, such as nanopore basecalling [223, 224],
genome assembly [225], exact pattern matching [226, 227], and
the GATK-based variant calling pipeline [228–230]. Our work is
orthogonal to these accelerators.

13 CONCLUSION
We introduce SeGraM, the first universal genomic mapping accel-
eration framework that can support both sequence-to-graph and
sequence-to-sequence mapping, for both short and long reads.
SeGraM consists of co-designed algorithms and accelerators for
memory-efficient minimizer-based seeding (MinSeed) and highly-
parallel bitvector-based sequence-to-graph alignment (BitAlign),
with inherent and efficient processing support for genome graphs.
We show that (1) SeGraM provides greatly higher throughput and
lower power consumption on both short and long reads compared to
state-of-the-art software tools for sequence-to-graph mapping, and
(2) BitAlign significantly outperforms a state-of-the-art sequence-to-
graph alignment tool and three state-of-the-art hardware solutions
that are specifically designed for sequence-to-sequence alignment.
We conclude that SeGraM is a promising framework for accelerating
both graph-based and traditional linear-sequence-based genome
sequence analysis. We hope that our work inspires future research
and design efforts at accelerating graph-based genome analysis via
efficient algorithm/hardware co-design.
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