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Problem: DRAM-based systems suffer from two sources of energy inefficiency

1. Coarse-grained cache-block-sized (typically 64-byte) data transfer

2. Coarse-grained DRAM-row-sized (typically 8-kilobyte) activation

A workload does not use all data fetched from DRAM 

Goal: Design a fine-grained, low-cost, and high-throughput DRAM substrate

• Mitigate excessive energy consumption from coarse-grained DRAM

Key Ideas: Small modifications to memory controller and DRAM chip enable

1. Transferring sub-cache-block-sized data in a variable number of clock cycles

2. Activating relatively small physically isolated regions of a DRAM row

based on the workload memory access pattern

Key Results: For the evaluated memory-intensive workloads, Sectored DRAM

• Improves system energy consumption by 14%, system performance by 17%

• Incurs 0.39 mm2 (1.7%) DRAM chip area overhead

• Performs within 11% of a state-of-the-art prior work (Half-DRAM), 
with 12% smaller DRAM energy and 34% smaller area overhead

Sectored DRAM Summary
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DRAM is Organized Hierarchically

………
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DRAM Row Activate Operation
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IO interface

64 bits

8 bits

global sense amplifier

global wordline

Wordline driver

Sense amplifier

[Oliveira+, HPCA’24]
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DRAM Column Read Operation
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global sense amplifier

column to memory controller 

global wordline

[Oliveira+, HPCA’24]
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Cache Block (64 bytes)

DRAM Data Transfer (I)

• DRAM data transfer happens in cache block granularity

[Seshadri+, MICRO’13]

B0 B1 B2 B3 B4 B5 B6 B7

B8 B9 B10 B11 B12 B13 B14 B15

B56 B57 B58 B59 B60 B61 B62 B63

… … … …

Data

Byte 0
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DRAM Data Transfer (I)

• DRAM data transfer happens in cache block granularity

• Using data transfer bursts (or bursts)

[Seshadri+, MICRO’13]

Burst length = 8

0

Beat counter

B0 B1 B2 B3 B4 B5 B6 B7

B8 B9 B10 B11 B12 B13 B14 B15

B56 B57 B58 B59 B60 B61 B62 B63

… … … …
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DRAM Data Transfer (I)

• DRAM data transfer happens in cache block granularity

• Using data transfer bursts (or bursts)

[Seshadri+, MICRO’13]

1

Beat counter

B0 B1 B2 B3 B4 B5 B6 B7
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DRAM Data Transfer (I)

• DRAM data transfer happens in cache block granularity

• Using data transfer bursts (or bursts)

[Seshadri+, MICRO’13]

2

Beat counter

B8 B9 B10 B11 B12 B13 B14 B15

B0 B1 B2 B3 B4 B5 B6 B7
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DRAM Data Transfer (I)

• DRAM data transfer happens in cache block granularity

• Using data transfer bursts (or bursts)

[Seshadri+, MICRO’13]

8

Beat counter

B0 B1 B2 B3 B4 B5 B6 B7

B8 B9 B10 B11 B12 B13 B14 B15

B56 B57 B58 B59 B60 B61 B62 B63
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Coarse-Grained DRAM Data Transfer
Wastes Energy

• Retrieve more bytes than necessary
with each word (e.g., 8 bytes) access

• Exploit spatial locality

• Not all words in a cache block 
are referenced by CPU load/store instructions

Retrieved Cache Block (64 bytes)

B0 B1 B2 B3 B4 B5 B6 B7

B8 B9 B10 B11 B12 B13 B14 B15

B56 B57 B58 B59 B60 B61 B62 B63

… … … …

Used Bytes
(e.g., 8 bytes)

B8 B9 B10

B11 B12 B13

B14 B15

Less than 60% of words used on average
(e.g., [Qureshi+, HPCA’07])
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• Activate more mats than necessary
with each DRAM row activation

• Transfer all words of a cache block in one burst

• Not all mats need to be read or updated

Coarse-Grained DRAM Row Activation
Wastes Energy
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Fine-Grained DRAM Can Greatly Improve 
System Energy Efficiency

Fine-DRAM-Access: Enable word-sized (8-byte) data transfers

Fine-DRAM-Activation: Enable per-mat DRAM row activation

Fine-Grained DRAM can improve READ/WRITE (ACTIVATE) 
energy by 27% (4%)
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Challenges of Enabling Fine-Grained DRAM

Maintaining high DRAM data transfer throughput1

Incurring low DRAM area overhead2

Fully exploiting fine-grained DRAM3

Prior works
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Problem and Goal

Develop a new, low-cost, and high-throughput DRAM substrate 
that can mitigate the excessive energy consumption 

of coarse-grained DRAM

No prior work overcomes all three challenges

Goal

Problem

Maintaining high DRAM data transfer throughput1

Incurring low DRAM area overhead2

Fully exploiting fine-grained DRAM3

Problem
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Two Key Design Components

Two key observations regarding DRAM chip design
enable Sectored DRAM at low cost

• Observation: DRAM mats naturally split DRAM rows
into small fixed-size portions

• Observation: DRAM I/O circuitry can already 
transfer a small portion of a cache block in one beat

Sectored Activation (SA)1

Variable Burst Length (VBL)2
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Component 1: Sectored Activation

• Observation: DRAM mats naturally split DRAM rows
into small fixed-size portions

• To select and activate one or multiple mats:
1. Isolate the global wordline from local wordline drivers
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Component 1: Sectored Activation

• Observation: DRAM mats naturally split DRAM rows
into small fixed-size portions

• To select and activate one or multiple mats:
1. Isolate the global wordline from local wordline drivers

2. Add a control signal (1 bit) for each mat
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1 bit 1 bit 1 bit 1 bit

sector transistor

sector latch

sector
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Component 2: Variable Burst Length

• Observation: DRAM I/O circuitry can already 
transfer a small portion of a cache block in one beat

8 8 8 8 8 8 8 8

Read FIFO

sector

64

8

.  .  .  .  . 

Chip I/O

burst
counter 3
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Component 2: Variable Burst Length

• Observation: DRAM I/O circuitry can already 
transfer a small portion of a cache block in one beat

• Replace the burst counter with an encoder 
that selects only the open/activated sectors

8 8 8 8 8 8 8 8

Read FIFO

64

8

.  .  .  .  . 

Chip I/O

8x3
Encoder 3

activated sectors

8
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Component 2: Variable Burst Length

• Observation: DRAM I/O circuitry can already 
transfer a small portion of a cache block in one beat
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that selects only the open/activated sectors
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64
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Exposing Sectored DRAM 
to the Memory Controller

• Goal: Give memory controller (MC) control over sectors
- E.g., activate 3 out of 8 sectors in a subarray

• Modifications to the standard interface not required

• More than 10 unused bits in PRE command encoding

• The previously unused bits now determine the sectors 
opened by the next activate (ACT) command

PRE ACT8 sector bits

Precharge (PRE) command closes the open DRAM row
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A memory controller can leverage Sectored DRAM
without any physical DRAM interface modifications

Sectored Activation (SA)1

• More than 10 unused bits in precharge (PRE) command encoding
• Determine the sectors opened for the next activate (ACT) command

PRE ACT8 sector bits

Variable Burst Length (VBL)2

• DRAM and memory controller must agree on burst length
• DRAM and memory controller store sector bits for each bank
• Low overhead popcount circuitry to count set (logic-1) sector bits

https://arxiv.org/pdf/2207.13795.pdf

https://arxiv.org/pdf/2207.13795.pdf
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Efficient System Integration of 
Sectored DRAM is Challenging (I)

Challenge 1: Requires system-wide modifications to enable 
sub-cache-block (e.g., word) granularity data transfers

Solution: Use sector caches (e.g., [Liptay+,1968])

• Extend a cache block with 1 bit for each word

• A bit indicates if its corresponding word is valid

 

Tag
Word 

(8 bytes)

Sector Cache Block

Valid Words
Word 

(8 bytes)
Word 

(8 bytes)…
…

Tag Data (64 bytes)

Cache Block
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Efficient System Integration of 
Sectored DRAM is Challenging (II)

Challenge 2: Missing words (sectors) in a cache block cause 
additional performance overhead

Solution: Develop two prediction techniques

1) A technique to exploit the spatial locality
in subsequent load/store (LD/ST) instructions

2) A spatial pattern predictor (e.g., [Kumar+,1998])
tailored for predicting useful words (similar to [Yoon+, 2012]) 

Tag
Word 

(8 bytes)
Valid Words

Word 
(8 bytes)…

…Missing
Word

Load Instruction Target Memory Word
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Efficient System Integration of 
Sectored DRAM is Challenging (II)

Challenge 2: Missing words (sectors) in a cache block cause 
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Load/Store Queue (LSQ) Lookahead

• One load/store instruction references one word in main memory

• Key Mechanism: 1) Collect references from 
younger load/store instructions 
2) store the collected references in the oldest load/store instr.

LSQ Lookahead has two key drawbacks

• LSQ is not large enough to store many LD/ST instructions

• Dependencies prevent computation of future LD/ST instruction addresses

A load/store instruction retrieves all words in a cache block 
that will be referenced in the near future to the L1 cache 

with only one cache access
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Sector Predictor (SP)

Key Idea: Complement LSQ Lookahead and minimize sector misses 

• Used (referenced) words in a cache block form a signature

• Reuse this signature when the same cache block misses in the cache

Tag Valid Words Data Used Words Table Index

Previously Used 
Words

. . .

. . .

. . .
History Table

Cache
Block
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Evaluation Methodology
• Performance and energy consumption evaluation: 

Cycle-level simulations using Ramulator 
Rambus Power Model and DRAMPower for DRAM energy
CACTI & McPAT for processor energy estimation

• System Configuration:
Processor 1-16 cores, 3.6GHz clock frequency, 4-wide issue, 128-entry instruction window

  32 KiB L1, 256 KiB L2, and 8 MiB L3 caches

DRAM DDR4, 1-4 channel, 4 rank/channel, 4 bank groups,

  4 banks/bank group, 32K rows/bank, 3200 MT/s

Memory Ctrl. 64-entry read and write requests queues, FR-FCFS with a column cap of 16 

• Sectored DRAM Policies: Always-On and Dynamic
- Always-On: Never disable Sectored DRAM

- Dynamic: Dynamically turn on Sectored DRAM based on workload memory intensity

• Comparison Points: 3 state-of-the-art fine-grained DRAM mechanisms
- HalfDRAM [Zhang+, ISCA’14] (best performing), 

- Fine-Grained Activation [Cooper-Balis+, IEEE MICRO’10] (lowest area overhead), 

- Partial Row Activation [Lee+, HPCA’17] 

• Workloads: 41 1-,2-,4-,8-,16-core (multiprogrammed) workloads
- SPEC CPU2006, SPEC CPU2017, DAMOV benchmark suites
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Sectored DRAM Can Greatly
Reduce DRAM ACT and READ Power

Number of sectors
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Sectored DRAM Can Greatly
Reduce DRAM ACT and READ Power

Reading from (activating) one sector 
takes 70% (13%) less power than 

reading from (activating) all 8 sectors

Number of sectors

ACT power is dominated by periphery power
not affected by the number of sectors activated

70%
13%
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Number of Sector Misses

Basic = Sectored DRAM without any sector prediction

LA<N> = LSQ Lookahead with N LSQ entries

SP512 = Sector Predictor with a history table size of 512
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LSQ Lookahead 128 with SP 512 
minimizes the LLC misses caused by sector misses

52%

3.1X

System Configuration

System Configuration
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Speedup

8-Core Workload Mix
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High Memory Intensity (MPKI ≥ 10)

17% 14%

Sectored DRAM provides significant speedups
for highly memory intensive workloads
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Performance Degradation for 
Non-Memory-Intensive Workloads

Dynamic policy overcomes the performance degradation
in non-memory-intensive workloads

Medium Memory Intensity (MPKI < 10)

Low Memory Intensity (MPKI < 2)

8-Core Workload MixN
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System Energy

20%

Sectored DRAM provides significant system energy savings
for highly memory intensive workloads at core count > 2

Number of Cores



42

Workload Mix Performance Comparison
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Workload Mix Performance Comparison

2.1X

Outperforms fine-grained activation by 2.1X
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Workload Mix Performance Comparison

10%

Outperforms fine-grained activation by 2.1X

Outperforms Partial Row Activation by 10%
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Workload Mix Performance Comparison

11%

Outperforms fine-grained activation by 2.1X

Outperforms Partial Row Activation by 10%

Performs within 11% of HalfDRAM
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Workload Mix DRAM Energy Comparison

Sectored DRAM enables larger DRAM energy savings
compared to prior works

13% 84% 12%

Savings are attributed to 
i) finer-grained data transfer and activation than HalfDRAM
ii) background power reduction compared to PRA and FGA
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Area Overhead Estimation

DRAM

• Sector transistors, sector latches, wiring

• 8 additional local wordline driver stripes

• Model DRAM chip using CACTI
- Sectored DRAM: 1.7% of DRAM chip area

- Partial Row Activation and Fine Grained Activation: 1.7%

- HalfDRAM: 2.6%

Processor

• Sector bits (indicate valid words): 1 byte/cache block

• Sector predictor: 1088 bytes/core

• Model processor storage area overhead using CACTI
- 8-core processor area increases by 1.2%



48

More in the Paper

• Microbenchmark performance evaluation
- Sectored DRAM greatly benefits random access workloads

• Provides 1.87x parallel speedup over Baseline

- Adversarial access patterns can reduce performance
• Incurs 33% performance overhead for a strided access single-core workload

• Performance & energy sensitivity analysis
- Number of DRAM channels

- Performance with prefetching enabled

• Discussion on
- Finer-granularity sector support (i.e., >8 sectors)

- Compatibility with DRAM Error Correcting Codes
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More in the Paper

• Sectored DRAM implementation 
and system integration details

• Microbenchmark performance evaluation
- Sectored DRAM greatly benefits random access workloads 

• System throughput and energy per workload

• DRAM energy breakdown

• Performance & energy sensitivity analysis
- Number of DRAM channels

- Performance with prefetching enabled

• Discussion on
- Finer-granularity sector support (i.e., >8 sectors)

- Compatibility with DRAM Error Correcting Codeshttps://arxiv.org/pdf/2207.13795.pdf

https://arxiv.org/pdf/2207.13795.pdf
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Sectored DRAM Conclusion
Designed a fine-grained, low-cost, and high-throughput DRAM substrate

• Mitigates excessive energy consumption of coarse-grained DRAM

Key Ideas: Small modifications to memory controller and DRAM chip enable

Key Results: For the evaluated memory-intensive workloads, Sectored DRAM

• Improves system energy consumption by 14%, system performance by 17%

• Incurs 0.39 mm2 (1.7%) DRAM chip area overhead

• Performs within 11% of a state-of-the-art prior work (Half-DRAM), 
with 12% less DRAM energy and 34% less area overhead

ro
w

 d
e
co

d
e
r
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sector transistor

sector latch

sector

Sectored Activation

8 8 8 8 8 8 8 8

Read FIFO

64

8
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Chip I/O

8x3
Encoder 3

activated sectors

8

Variable Burst Length
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Sectored DRAM is Published in ACM TACO

https://dl.acm.org/doi/abs/10.1145/3673653

https://dl.acm.org/doi/abs/10.1145/3673653
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Extended Version on Arxiv

https://arxiv.org/pdf/2207.13795.pdf

https://arxiv.org/pdf/2207.13795.pdf
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Sectored DRAM is Open Source

https://github.com/CMU-SAFARI/Sectored-DRAM

https://github.com/CMU-SAFARI/Sectored-DRAM
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DRAM Data Transfer (II)

• Bits of a burst split across DRAM mats
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IO interface

64 bits

8 bits

global sense amplifier

columnfrom memory controller

global wordline

B56

[Oliveira+, HPCA’24]
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Sectored DRAM Subarray Organization 
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Exposing Sectored DRAM to the Memory Controller 
with No Interface Modifications

Sectored Activation (SA)1

• More than 10 unused bits in precharge (PRE) command encoding
• Determine the sectors opened for the next activate (ACT) command

PRE ACT8 sector bits

Variable Burst Length (VBL)2

• DRAM and memory controller must agree on burst length
• DRAM and memory controller store sector bits for each bank
• Low overhead popcount circuitry to count set (logic-1) sector bits

Activating fewer than all 8 sectors relaxes power constraints
allows for higher ACT command throughput
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Sector Predictor



61

Load/Store Queue (LSQ) Lookahead

• One load/store instruction references one word in main memory

• Key Mechanism: 1) Collect references from 
younger load/store instructions 
2) store the collected references in the oldest load/store instr.

A load/store instruction retrieves all words in a cache block 
that will be referenced in the near future to the L1 cache 

with only one cache access
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Evaluated Workloads
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Performance Degradation for 
Non-Memory-Intensive Workloads

• Fetch all sectors of a cache block if the workload access pattern 
does not favor sub-cache-block data transfers

- Based on average MPKI and thresholding

Dynamic policy overcomes the performance degradation
in non-memory-intensive workloads
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Speedup
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Speedup

26%

Sectored DRAM provides significant speedups
for highly memory intensive workloads at core count > 2
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Speedup

Sectored DRAM provides significant speedups
for highly memory intensive workloads at core count > 2

Sectored DRAM provides smaller parallel speedup than Baseline 
for non-memory-intensive workloads
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Microbenchmark Performance
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Parallel Speedup and System Energy 
per Workload
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DRAM Energy Breakdown 
and System Energy
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Performance Sensitivity to 
Number of Channels
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Sectored DRAM with Prefetching
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Enabling Higher Row Activation Rate

• tFAW = 25 nanoseconds (ns)

• 32 sectors can be activated in a tFAW

• Only 10 activate commands can be issued in 25 ns 
due to tRRD_L and tRRD_S 

• 10 ACT, each of which activate one sector
takes 20% less power than
4 ACT, each of which activates 8 sectors
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Sectored DRAM vs 
Module-Level Mechanisms

• DRAM interface modifications vs. DRAM chip modifications

• Low overhead module-level mechanism 
induces 23% overhead 
where Sectored DRAM provides 17% speedup

- Command bus becomes the bottleneck

- Alleviating command bus bottleneck is area expensive

• System integration heavily inspired by DGMS
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