Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, David Novo, Juan Gómez Luna, Sander Stuijk, Henk Corporaal, Onur Mutlu
Executive Summary

• **Background**: A hybrid storage system (HSS) uses multiple different storage devices to provide high and scalable storage capacity at high performance

• **Problem**: Two key shortcomings of prior data placement policies:
 - Lack of **adaptivity to**:
 • Workload changes
 • Changes in device types and configurations
 - Lack of **extensibility** to more devices

• **Goal**: Design a data placement technique that provides:
 - **Adaptivity**, by continuously learning and adapting to the application and underlying device characteristics
 - **Easy extensibility** to incorporate a wide range of hybrid storage configurations

• **Contribution**: Sibyl, the first reinforcement learning-based data placement technique in hybrid storage systems that:
 - Provides **adaptivity** to changing workload demands and underlying device characteristics
 - Can **easily extend** to any number of storage devices
 - Provides **ease of design and implementation** that requires only a small computation overhead

• **Key Results**: Evaluate on **real systems** using a wide range of workloads
 - Sibyl **improves performance** by 21.6% compared to the best previous data placement technique in dual-HSS configuration
 - In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-policy policy by 48.2%
 - Sibyl achieves **80% of the performance** of an oracle policy with storage overhead of only 124.4 KiB

SAFARI

https://github.com/CMU-SAFARI/Sibyl
Talk Outline

Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sybil: Overview

Evaluation of Sybil and Key Results

Conclusion
Hybrid Storage System Basics

Address Space (Application/File System View)

Logical Pages

Storage Management Layer

Fast Device

Promotion

Eviction

Slow Device

Hybrid Storage System

SAFARI
Performance of a hybrid storage system highly depends on the ability of the storage management layer.
Key Shortcomings in Prior Techniques

We observe two key shortcomings that significantly limit the performance benefits of prior techniques.

1. Lack of adaptivity to:
 a) Workload changes
 b) Changes in device types and configuration

2. Lack of extensibility to more devices
Lack of Adaptivity

Workload Changes

Prior data placement techniques consider only a few workload characteristics that are statically tuned.
Lack of Adaptivity

Workload Changes

Prior data placement techniques consider only a few workload characteristics that are statically tuned.
Lack of Adaptivity

Workload Changes

Prior data placement techniques consider only a few workload characteristics that are statically tuned.
Lack of Adaptivity

Workload Changes

Prior data placement techniques consider only a few workload characteristics that are statically tuned.
Lack of Adaptivity

Changes in Device Types and Configurations

Do not consider underlying storage device characteristics (e.g., changes in the level asymmetry in read/write latencies, garbage collection)
Lack of Adaptivity

Changes in Device Types and Configurations

Do not consider **underlying storage device characteristics** (e.g., changes in the level asymmetry in read/write latencies, garbage collection)
Lack of Adaptivity

Changes in Device Types and Configurations

Do not consider **underlying storage device characteristics** (e.g., changes in the level asymmetry in read/write latencies, garbage collection)
Lack of Extensibility

Rigid techniques that require significant effort to accommodate more than two devices

Change in storage configuration
Lack of Extensibility

Rigid techniques that require significant effort to accommodate more than two devices

- Change in storage configuration
- Design a new policy

Tri-HSS
Our Goal

A data-placement mechanism that can provide:

1. **Adaptivity**, by continuously learning and adapting to the application and underlying device characteristics

2. **Easy extensibility** to incorporate a wide range of hybrid storage configurations
Our Proposal

Sibyl

Formulates data placement in hybrid storage systems as a reinforcement learning problem

Sybil is an oracle that makes accurate prophecies
https://en.wikipedia.org/wiki/Sibyl
Agent learns to take an **action** in a given **state**
to maximize a numerical **reward**
Formulating Data Placement as RL

Agent

Environment

State (S_t)

Reward (R_{t+1})

Action (A_t)

Sibyl

Features of the current request and system

Request latency (of last served request)

Hybrid Storage System

Select storage device to place the current page

SAFARI
What is State?

• **Limited number of state features:**
 - Reduce the implementation overhead
 - RL agent is more sensitive to reward

• **6-dimensional** vector of state features
 \[O_t = (size_t, type_t, intr_t, cnt_t, cap_t, curr_t) \]

• We **quantize the state representation** into bins to reduce storage overhead
What is Reward?

• Defines the **objective** of Sibyl

• We formulate the reward as a function of the **request latency**

• Encapsulates three key aspects:
 - **Internal state of the device** (e.g., read/write latencies, the latency of garbage collection, queuing delays, ...)
 - **Throughput**
 - **Evictions**

• More details in the paper
What is Action?

• At every new page request, the action is to **select a storage device**

• Action can be **easily extended** to any number of storage devices

• Sibyl learns to **proactively evict or promote** a page
Talk Outline

- Key Shortcomings of Prior Data Placement Techniques
- Formulating Data Placement as Reinforcement Learning
- Sybil: Overview
- Evaluation of Sybil and Key Results
- Conclusion
Sibyl Execution

RL Training Thread

RL Decision Thread

Storage Request (from OS)

Asynchronous Execution

Data Placement Decision

State, Reward, and Action Information

Periodic Policy Weight Update
Sibyl Design: Overview

Inference Network

Max

Collect Experiences

Experience Buffer (in host DRAM)

Training Network

Periodic Policy Weight Update

Training Dataset

Batch

RL Training Thread

RL Decision Thread

Observation Vector

Storage Request (from OS)

State

State

Action

Reward

Collect Experiences

HSS

Periodic Policy Weight Update

Sibyl Policy

Max

Inference Network

SAFARI
RL Decision Thread

Training Network

Periodic Policy Weight Update

Inference Network

Max

HSS

Collect Experiences

Experience Buffer (in host DRAM)

Batch

RL Training Thread

Observation Vector

Storage Request (from OS)

State

Action

Reward

SAFARI
RL Decision Thread

Observation Vector -> RL Decision Thread

- Inference Network
- Sibyl Policy
- Max
- Action
- HSS
- Reward
- Collect Experiences

Training Network

- Periodic Policy Weight Update
- Training Dataset
- Batch

State

Storage Request (from OS)
RL Decision Thread

- Training Network
- Periodic Policy Weight Update
- Sibyl Policy
- State
- Observation Vector
- Inference Network
- Max
- Action
- HSS
- Experience Buffer (in host DRAM)
- Reward
- Collect Experiences
- Batch
- Training Dataset

SAFARI
RL Decision Thread

Observation Vector -> Inference Network [Max] Sibyl Policy

HSS -> Collect Experiences

Storage Request (from OS) -> State

Periodic Policy Weight Update

Training Network -> Training Dataset -> Batch

Experience Buffer (in host DRAM)
RL Decision Thread

RL Decision Thread

- **Observation Vector**
 - State
 - Storage Request (from OS)

- **Inference Network**
 - Max
 - Sibyl Policy
 - State

- **Training Network**
 - Periodic Policy Weight Update

- **Experience Buffer (in host DRAM)**
 - Batch

- **Training Dataset**
 - RL Training Thread

- **HSS**
 - Reward
 - Collect Experiences
RL Training Thread

Periodic Policy Weight Update

Training Network

Training Dataset

Batch

Experience Buffer (in host DRAM)

RL Decision Thread

Observation Vector

Inference Network

Max

Sibyl Policy

State

Action

HSS

State

Reward

Collect Experiences

Storage Request (from OS)
Periodic Weight Transfer

Inference Network

Max

HSS

Collect Experiences

Observation Vector

Storage Request (from OS)

State

Periodic Policy Weight Update

Training Network

Training Dataset

Batch

Experience Buffer (in host DRAM)

Action

Reward

HSS

Collect Experiences

Periodic Weights update

Training Network

Periodic Policy Weight Update

RL Training Thread

RL Decision Thread

SAFARI
Evaluation Methodology (1/3)

- **Real system** with various HSS configurations
 - Dual-hybrid and tri-hybrid systems
Cost-Oriented HSS Configuration

High-end SSD | Low-end HDD

Performance-Oriented HSS Configuration

High-end SSD | Middle-end SSD
Evaluation Methodology (3/3)

• **18 different workloads** from:
 - MSR Cambridge and Filebench Suites

• **Four** state-of-the-art data placement baselines:
 - CDE [Matsui+, Proc. IEEE’17]
 - HPS [Meswani+, HPCA’15]
 - Archivist [Ren+, ICCD’19]
 - RNN-HSS [Doudali+, HPDC’19]
Performance Analysis

Cost-Oriented HSS Configuration

Normalized Average Request Latency

- Slow-Only
- CDE
- HPS
- Archivist
- RNN-HSS
- Sibyl
- Oracle

High-end SSD
Low-end HDD
Performance Analysis

Cost-Oriented HSS Configuration

Sibyl consistently outperforms all the baselines for all the workloads
Performance Analysis

Performance-Oriented HSS Configuration

Normalized Average Request Latency

- Slow-Only
- CDE
- HPS
- Archivist
- RNN-HSS
- Sibyl
- Oracle

[HSS Configuration with High-end SSD and Mid-end SSD]
Performance Analysis

Performance-Oriented HSS Configuration

Sibyl provides **21.6% performance improvement** by dynamically adapting its data placement policy.
Performance Analysis

Performance-Oriented HSS Configuration

Normalized Average Request Latency

- Slow-Only
- CDE
- HPS
- Archivist
- RNN-HSS
- Sibyl
- Oracle

SAFARI
Sibyl achieves **80% of the performance of an oracle policy** that has complete knowledge of future access patterns.
Performance on Tri-HSS

Extending Sibyl for more devices:

1. Add a new action
2. Add the remaining capacity of the new device as a state feature
Extending Sibyl for **more devices**:

1. **Add a new action**
2. **Add the remaining capacity** of the new device as a state feature
Performance on Tri-HSS

Extending Sibyl for more devices:

1. Add a new action

Sibyl **outperforms** the state-of-the-art data placement policy by **48.2%** in a real tri-hybrid system.

Sibyl reduces the system architect's burden by providing **ease of extensibility**.
Sibyl’s Overhead

- **124.4 KiB** of total storage cost
 - Experience buffer, inference and training network
- **40-bit** metadata overhead per page for state features
- Inference latency of **~10ns**
- Training latency of **~2us**

Small area overhead

Small inference overhead

Satisfies prediction latency
More in the Paper (1/2)

• Throughput (IOPS) evaluation
 - Sibyl provides high IOPS compared to baseline policies because it indirectly captures throughput (size/latency)

• Evaluation on unseen workloads
 - Sibyl can effectively adapt its policy to highly dynamic workloads

• Evaluation on mixed workloads
 - Sibyl provides equally-high performance benefits as in single workloads
More in the Paper (2/2)

• Evaluation on **different features**
 - Sibyl autonomously decides which features are important to maximize the performance

• Evaluation with **different hyperparameter values**

• Sensitivity to **fast storage capacity**
 - Sibyl provides scalability by dynamically adapting its policy to available storage size

• **Explainability analysis** of Sybil's decision making
 - Explain Sibyl's actions for different workload characteristics and device configurations
Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh1 Rakesh Nadig1 Jisung Park1 Rahul Bera1 Nastaran Hajinazar1
David Novo3 Juan Gómez-Luna1 Sander Stuijk2 Henk Corporaal2 Onur Mutlu1
1ETH Zürich 2Eindhoven University of Technology 3LIRMM, Univ. Montpellier, CNRS

https://github.com/CMU-SAFARI/Sibyl
Talk Outline

- Key Shortcomings of Prior Data Placement Techniques
- Formulating Data Placement as Reinforcement Learning
- Sybil: Overview
- Evaluation of Sybil and Key Results

Conclusion
Conclusion

• **We introduced Sibyl**, the first reinforcement learning-based data placement technique in hybrid storage systems that provides
 - Adaptivity
 - Easily extensibility
 - Ease of design and implementation

• **We evaluated Sibyl** on real systems using many different workloads
 - Sibyl **improves performance by 21.6%** compared to the best prior data placement policy in a dual-HSS configuration
 - In a tri-HSS configuration, Sibyl **outperforms** the state-of-the-art-data placement policy by **48.2%**
 - Sibyl achieves **80% of the performance** of an oracle policy with a storage overhead of only **124.4 KiB**

https://github.com/CMU-SAFARI/Sibyl
Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, David Novo, Juan Gómez Luna, Sander Stuijk, Henk Corporaal, Onur Mutlu
Performance on Unseen Workloads

H&M (H&L) HSS configuration, Sibyl outperforms RNN-HSS and Archivist by 46.1% (54.6%) and 8.5% (44.1%), respectively.
Performance Analysis

Performance-Oriented HSS Configuration

Baseline policies are ineffective for many workloads even when compared to Slow-Only
Performance on Mixed Workloads

Performance-Oriented

Cost-Oriented

Normalized Average Request Latency

Slow-Only CDE HPS Archivist RNN-HSS Sibyl_{Def} Sibyl_{Opt} Oracle

mix1 mix2 mix3 mix4 mix5 mix6 AVG

mix1 mix2 mix3 mix4 mix5 mix6 AVG

SAFARI
Performance on Mixed Workloads

Sibyl\textsubscript{Def} outperforms baseline data placement techniques by up to 27.9%
Performance on Mixed Workloads

Sibyl\textsubscript{Def} outperforms baseline data placement techniques by up to 27.9%

Sibyl\textsubscript{Opt} provides 7.2% higher average performance than Sibyl\textsubscript{Def}
Performance With Different Features

Sibyl autonomously decides which features are important to maximize the performance of the running workload.
Sensitivity to Fast Storage Capacity

(a) H&M

(b) H&L

Normalized Average Request Latency

Available capacity in fast storage

SAFARI
Explainability Analysis

Preference for Fast Storage

- H&M
- H&L

Variables:
- hm_1
- mds_0
- prn_1
- proj_0
- proj_2
- proj_3
- prxy_0
- prxy_1
- rsrch_0
- src1_0
- stg_1
- usr_0
- wdev_2
- web_1
Training and Inference Network

- Training and inference network allow parallel execution
- Observation vector as the input
- Produces probability distribution of Q-values
Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, David Novo, Juan Gómez Luna, Sander Stuijk, Henk Corporaal, Onur Mutlu

49th ISCA 2022, New York, USA