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Executive Summary
• Background: A hybrid storage system (HSS) uses multiple different storage devices to

provide high and scalable storage capacity at high performance
• Problem: Two key shortcomings of prior data placement policies:

- Lack of adaptivity to:
• Workload changes
• Changes in device types and configurations

- Lack of extensibility to more devices

• Goal: Design a data placement technique that provides:
- Adaptivity, by continuously learning and adapting to the application and underlying device

characteristics
- Easy extensibility to incorporate a wide range of hybrid storage configurations

• Contribution: Sibyl, the first reinforcement learning-based data placement technique in
hybrid storage systems that:
- Provides adaptivity to changing workload demands and underlying device characteristics
- Can easily extend to any number of storage devices
- Provides ease of design and implementation that requires only a small computation overhead

• Key Results: Evaluate on real systems using a wide range of workloads
- Sibyl improves performance by 21.6% compared to the best previous data placement technique in

dual-HSS configuration
- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-policy policy by 48.2%
- Sibyl achieves 80% of the performance of an oracle policy with storage overhead of only 124.4 KiB

https://github.com/CMU-SAFARI/Sibyl 2
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Hybrid Storage System Basics

WriteRead

Read Write Read Write

Promotion

Eviction

Hybrid Storage System

Performance of a hybrid storage system 
highly depends on the ability of the 

storage management layer
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Key Shortcomings in Prior Techniques
We observe two key shortcomings that significantly
limit the performance benefits of prior techniques

1. Lack of adaptivity to:
a) Workload changes
b) Changes in device types and configuration

2. Lack of extensibility to more devices
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Lack of Adaptivity
Workload Changes

Prior data placement techniques consider only a few
workload characteristics that are statically tuned

CDE RNN-HSS Oracle
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Lack of Adaptivity
Workload Changes

Prior data placement techniques consider only a few
workload characteristics that are statically tuned

CDE RNN-HSS Oracle

41.1%
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Lack of Adaptivity
Changes in Device Types and Configurations 

Do not consider underlying storage device 
characteristics (e.g., changes in the level asymmetry in 
read/write latencies, garbage collection)

HSS Configuration 1

CDE RNN-HSS Oracle
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Lack of Adaptivity
Changes in Device Types and Configurations 

Do not consider underlying storage device 
characteristics (e.g., changes in the level asymmetry in 
read/write latencies, garbage collection)

HSS Configuration 1

Slow-Only CDE RNN-HSS Oracle
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Lack of Adaptivity
Changes in Device Types and Configurations 

Do not consider underlying storage device 
characteristics (e.g., changes in the level asymmetry in 
read/write latencies, garbage collection)

HSS Configuration 1 HSS Configuration 2

Slow-Only CDE RNN-HSS Slow-Only CDE RNN-HSS OracleOracle
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Lack of Extensibility
Rigid techniques that require significant effort to
accommodate more than two devices

Change in storage configuration

Dual-HSS
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Lack of Extensibility
Rigid techniques that require significant effort to
accommodate more than two devices

Change in storage configuration Design a new policy

Tri-HSS
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Our Goal

A data-placement mechanism 
that can provide:

1.Adaptivity, by continuously learning and 
adapting to the application and underlying 

device characteristics
2.Easy extensibility to incorporate a wide 

range of hybrid storage configurations
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Our Proposal

Sibyl
Formulates data placement in 

hybrid storage systems as a 
reinforcement learning problem

Sybil is an oracle that makes accurate prophecies
https://en.wikipedia.org/wiki/Sibyl 17
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Basics of Reinforcement Learning (RL)

Agent learns to take an action in a given state
to maximize a numerical reward

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)
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Formulating Data Placement as RL
Agent

Environment

State (St) Action (At)Reward (Rt+1)

Hybrid Storage 
System

Sibyl

Features of the 
current request 

and system

Request latency
(of last served request)

Select storage device to 
place the current page
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What is State?

Hybrid Storage 
System

Sibyl

Features of 
the current 
request and 
system

Request latency
(of last served 
request)

Select storage 
device to place 
the current page• Limited number of state features:

- Reduce the implementation overhead
- RL agent is more sensitive to reward

• 6-dimensional vector of state features

• We quantize the state representation into bins to
reduce storage overhead
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What is Reward?
• Defines the objective of Sibyl

• We formulate the reward as a function of the     
request latency

• Encapsulates three key aspects:
- Internal state of the device (e.g., read/write latencies, the 

latency of garbage collection, queuing delays, …)
- Throughput
- Evictions

• More details in the paper

Hybrid Storage 
System

Sibyl

Features of 
the current 
request and 
system

Request latency
(of last served 
request)

Select storage 
device to place 
the current page
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What is Action?
• At every new page request, the                                     

action is to select a storage device

• Action can be easily extended to any number of 
storage devices

• Sibyl learns to proactively evict or promote a page

Hybrid Storage 
System

Sibyl

Features of 
the current 
request and 
system

Request latency
(of last served 
request)

Select storage 
device to place 
the current page
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Sibyl Design: Overview
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Periodic Weight Transfer
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Evaluation Methodology (1/3)
• Real system with various HSS configurations

- Dual-hybrid and tri-hybrid systems
AMD	Ryzen7	
2700G	CPU

Seagate	HDD	
ST1000DM010

Intel	Optane	
SSD	P4800X

Intel	SSD									
D3-S4510

ADATA	
SU630	SSD	
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Evaluation Methodology (2/3)
Cost-Oriented HSS Configuration

High-end SSD Low-end HDD

Performance-Oriented HSS Configuration

High-end SSD Middle-end SSD 36



Evaluation Methodology (3/3)
• 18 different workloads from:

- MSR Cambridge and Filebench Suites

• Four state-of-the-art data placement baselines:
- CDE [Matsui+, Proc. IEEE’17] 

- HPS [Meswani+, HPCA’15]

- Archivist [Ren+, ICCD’19]

- RNN-HSS [Doudali+, HPDC’19]

Heuristic-based

Learning-based
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Performance Analysis
Cost-Oriented HSS Configuration

Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD
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Performance Analysis

Sibyl consistently outperforms all the baselines 
for all the workloads

Cost-Oriented HSS Configuration
Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD
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Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
High-end SSD Mid-end SSD
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Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration

Sibyl provides 21.6% performance improvement by 
dynamically adapting its data placement policy 

High-end SSD Mid-end SSD
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Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
High-end SSD Mid-end SSD
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Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration

Sibyl achieves 80% of the performance 
of an oracle policy that has 

complete knowledge of future access patterns

High-end SSD Mid-end SSD
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Performance on Tri-HSS
Extending Sibyl for more devices:

SibylTri-hybridHeuristicTri-hybrid

High-end SSD Low-end HDDMid-end SSD

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a 

state feature
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Performance on Tri-HSS

SibylTri-hybridHeuristicTri-hybrid

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a 

state featureSibyl outperforms the state-of-the-art 
data placement policy by

48.2% in a real tri-hybrid system

Sibyl reduces the system architect's burden 
by providing ease of extensibility

High-end SSD Low-end HDDMid-end SSD
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Sibyl’s Overhead
• 124.4 KiB of total storage cost 

- Experience buffer, inference and training network

• 40-bit metadata overhead per page for state features

• Inference latency of ~10ns

• Training latency of ~2us

Small area overhead

Small inference overhead

Satisfies prediction latency
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More in the Paper (1/2)
• Throughput (IOPS) evaluation

- Sibyl provides high IOPS compared to baseline policies because it
indirectly captures throughput (size/latency)

• Evaluation on unseen workloads
- Sibyl can effectively adapt its policy to highly dynamic workloads

• Evaluation on mixed workloads
- Sibyl provides equally-high performance benefits as in single

workloads
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More in the Paper (2/2)
• Evaluation on different features

- Sibyl autonomously decides which features are important to 
maximize the performance

• Evaluation with different hyperparameter values

• Sensitivity to fast storage capacity
- Sibyl provides scalability by dynamically adapting its policy to 

available storage size

• Explainability analysis of Sybil's decision making
- Explain Sibyl’s actions for different workload characteristics and 

device configurations
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More in the Paper (2/2)

https://arxiv.org/pdf/2205.07394.pdf

https://github.com/CMU-SAFARI/Sibyl

50

https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl


Talk Outline
Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sybil: Overview

Evaluation of Sybil and Key Results

Conclusion

51



Conclusion
• We introduced Sibyl, the first reinforcement learning-

based data placement technique in hybrid storage
systems that provides
- Adaptivity
- Easily extensibility
- Ease of design and implementation

•We evaluated Sibyl on real systems using many
different workloads
- Sibyl improves performance by 21.6% compared to the best prior

data placement policy in a dual-HSS configuration
- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-

data placement policy by 48.2%
- Sibyl achieves 80% of the performance of an oracle policy with a

storage overhead of only 124.4 KiB
https://github.com/CMU-SAFARI/Sibyl 52
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BACKUP
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Performance on Unseen Workloads

H&M (H&L) HSS configuration, Sibyl outperforms RNN-
HSS and Archivist by 46.1% (54.6%) and 8.5% (44.1%), 
respectively
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Performance Analysis

Sibyl Oracle

Baseline policies are ineffective for many 
workloads even when compared to Slow-Only

RNN-HSSSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
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Performance on Mixed Workloads
Slow-Only CDE HPS Archivist RNN-HSS SibylDef SibylOpt Oracle

Performance-Oriented Cost-Oriented
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Performance on Mixed Workloads
Slow-Only CDE HPS Archivist RNN-HSS SibylDef SibylOpt Oracle

Performance-Oriented Cost-Oriented

SibylDef outperforms baseline data placement 
techniques by up to 27.9%
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Performance on Mixed Workloads
Slow-Only CDE HPS Archivist RNN-HSS SibylDef SibylOpt Oracle

Performance-Oriented Cost-Oriented

SibylDef outperforms baseline data placement 
techniques by up to 27.9%

SibylOpt provides 7.2% higher average 
performance than SibylDef
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Performance With Different Features

Sibyl autonomously decides which features are 
important to maximize the performance of the running 
workload
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Sensitivity to Fast Storage Capacity
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Explainability Analysis
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Training and Inference Network
• Training and inference 

network allow parallel 
execution 

• Observation vector as 
the input 

• Produces probability 
distribution of Q-values
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