

SlimNoC: A Low-Diameter On-Chip Network Topology for High-Energy Efficiency and Scalability

Maciej Besta, Syen Minhaj Hassan, Sudhakar Yalamanchili, Rachata Ausavarungnirun, Onur Mutlu, Torsten Hoefler

(1) Key motivation

Massively parallel chips require energy-efficient, cost-effective, and high-performance topologies

(2) Inspiration: Slim Fly

Key idea:

Lower diameter and thus average path length: fewer routers and wires required, resulting in lower cost and power consumption.

 $MB(D,k) = 1 + k + k(k - 1) + k(k - 1)^{2} + \dots$

Another problem: a lack of configurations satisfying various NoC technological constraints

(4) Slim NoC: Extending Slim Fly to the on-chip setting

(4.1) Generic layout models:

(4.4) NoC configurations with non-prime finite fields:

(5) Key Slim NoC results

A LOW-LATENCY TOPOLOGY spcl.inf.ethz.ch y @spcl_eth **IIH**ZÜRICH ***SPCL ***SPCL cm3: concentrated mesh, t2d3: torus, SMART LINKS: ON **RESULTS: PERFORMANCE** pfbf3, pfbf4, fbf3: variants of Flattened Butterfly, CENTRAL BUFFERS: ON in-house simulator [1] NODE COUNT: 192/200 DSENT power simulator [1] **n** subgr: Slim NoC (the subgroup layout) Reverse (REV) Network: -cm3 + t2d3 = pfbf3 + pfbf4 + sn_subgr + fbf3 ਹ 0.004 fi-router ပ္ 40 -0.003 -0.002 -0.001 -0.000 -0.06 0.40.008 0.06 0.4 0.008 0.06 0.40.008 Load [flits/node/cycle] Slim NoC provides the lowest latency [1] S. Hassan and S. Yalamanchili. Centralized Buffer Router: A Low Latency, Low Power Router for High Radix NoCs. NOCS'13.

SLIM NOC ADVANTAGES

(4.2) Efficient layouts:

(4.3) Layout advantages:

The subgroup layout (sn_subgr) is best for 200 nodes. The group layout reduces wiring complexity for 1296 nodes

(4.5) Slim NoC Router microarchitecture:

velop field?	Let's leave the details for the paper and just focus on the core aspects 🙂
field.	ENHANCEMENT 1: ELASTIC BUFFER LINKS [1] + ELASTISTORE [2]
	ENHANCEMENT 2: SMART LINKS [3] Drive links asynchronously and use repeaters for single-cycle wires
	ENHANCEMENT 3: CENTRAL BUFFERS [4] Replace multi-flit input buffers with single-flit stating input buffers and add a central buffer
	 [1] G. Michelogiannakis et al. Elastic-Buffer Flow Control for On-Chip Networks. HPCA'09. [2] I. Seitanidis et al. ElastiStore: An Elastic Buffer Architecture for Network-on-Chip Routers. DATE'14. [3] CH. O. Chen et al. SMART: A Single-Cycle Reconfigurable NoC for SoC Applications. DATE'13. [4] S. Hassan and S. Yalamanchili. Centralized Buffer Router: A Low Latency, Low Power Router for High Radix NoCs. NOCS'13.

AN AREA- AND ENERGY-EFFICIENT TOPOLOGY spcl.inf.ethz.ch ᢖ@spcl_eth ETHZÜRICh SMART LINKS: ON CENTRAL BUFFERS: ON **RESULTS: AREA AND POWER CONSUMPTION** NODE COUNT: 192/200, TECHNOLOGY NODE: 45NM Slim NoC is more efficient than high-radix designs a-routers RRa-wires |/ RNg-wires RRg-wires: router-router wires (global layer), RNg-wires: router-node wires (global layer). [1] C. Sun et al. DSENT - A Tool Connecting Emerging Photonics with Electronics for Opto-Electronic Networks-on-Chip Modeling. NOCS'12.