

Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures

Christina Giannoula

Ivan Fernandez, Juan Gomez-Luna, Nectarios Koziris, Georgios Goumas, Onur Mutlu

Our Work

Efficient Algorithmic Designs

The first open-source Sparse Matrix Vector Multiplication (SpMV) software package, SparseP, for real Processing-In-Memory (PIM) systems

SparseP is Open-Source

SparseP: https://github.com/CMU-SAFARI/SparseP

Extensive Characterization

The first comprehensive analysis of SpMV on the first real commercial PIM architecture

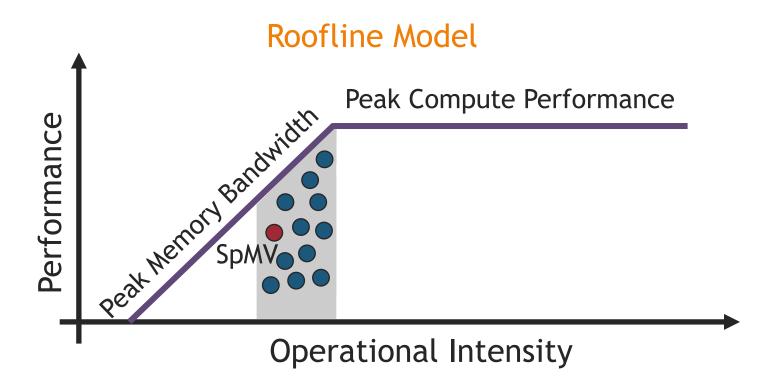
Recommendations for Architects and Programmers

Full Paper: https://arxiv.org/pdf/2201.05072.pdf

Sparse Matrix Vector Multiplication

Sparse Matrix Vector Multiplication (SpMV):

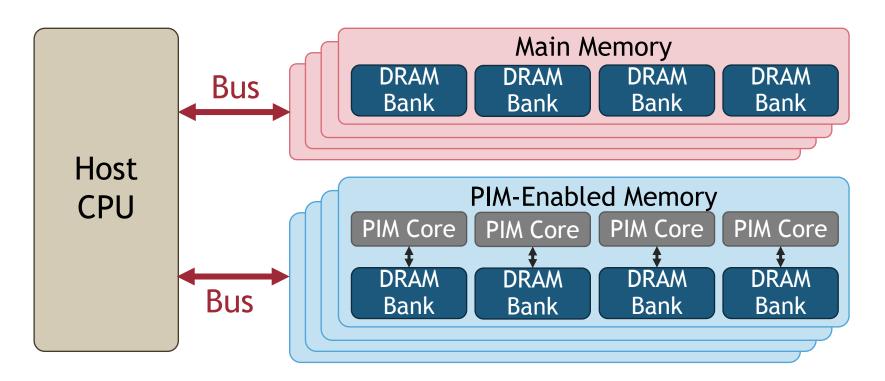
- Widely-used kernel in graph processing, machine learning, scientific computing ...
- A highly memory-bound kernel



Real Processing-In-Memory Systems

Real Near-Bank Processing-In-Memory (PIM) Systems:

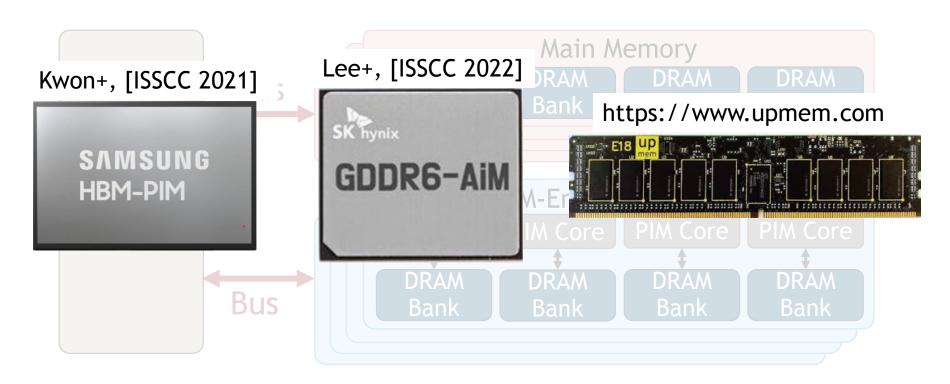
- High levels of parallelism
- Low memory access latency
- Large aggregate memory bandwidth



Real Processing-In-Memory Systems

Real Near-Bank Processing-In-Memory (PIM) Systems:

- High levels of parallelism
- Low memory access latency
- Large aggregate memory bandwidth



SparseP: SpMV Library for Real PIMs

Our Contributions:

- Design efficient SpMV kernels for current and future PIM systems
 - 25 SpMV kernels
 - 4 compressed matrix formats (CSR, COO, BCSR, BCOO)
 - 6 data types
 - 4 data partitioning techniques
 - Various load balancing schemes among PIM cores/threads
 - 3 synchronization approaches
- 2. Provide a comprehensive analysis of SpMV on the first commercially-available real PIM system **Up**
 - 26 sparse matrices
 - Comparisons to state-of-the-art CPU and GPU systems
 - Recommendations for software, system and hardware designers

mem

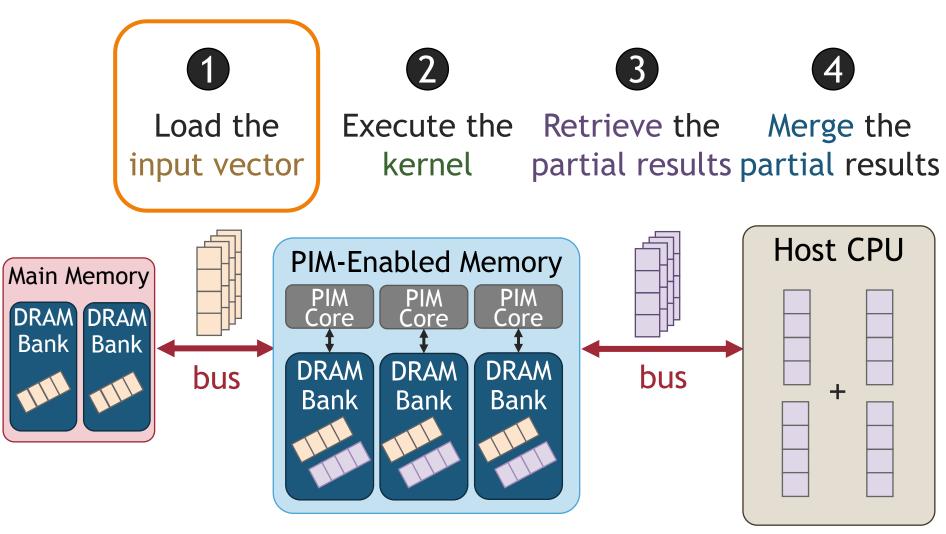
Outline

SpMV Kernels for Real PIM Systems

Key Takeaways from Our Study

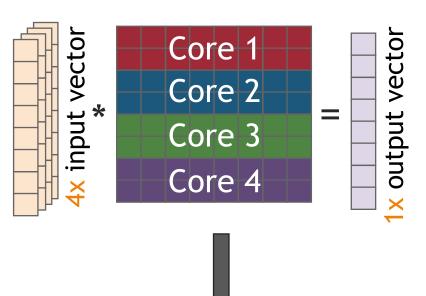
Conclusion

SpMV Execution on a PIM System

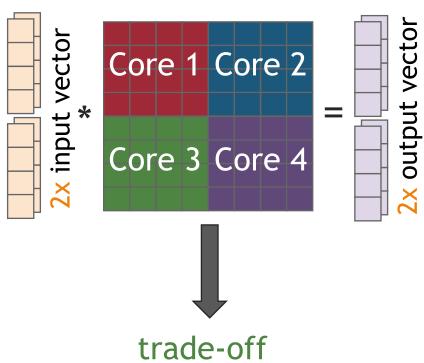


SparseP supports two types of data partitioning techniques:

1D Partitioning



perform the complete SpMV computation only on PIM cores 2D Partitioning



computation vs data transfer costs

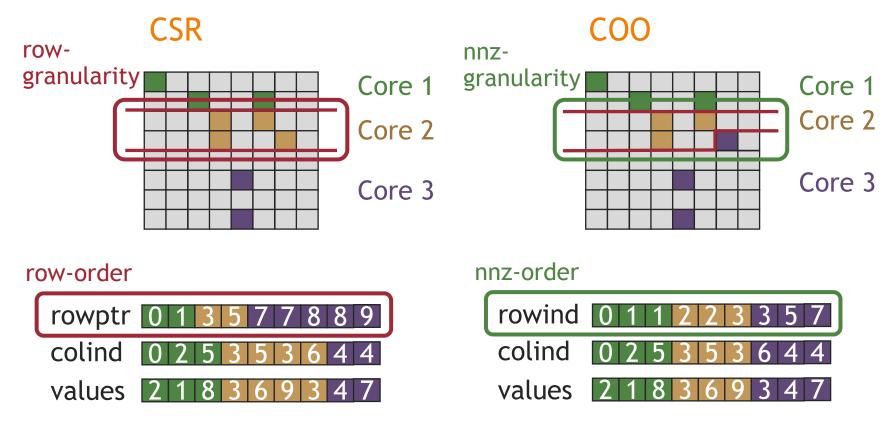
Load-Balancing Approaches:

- CSR, COO:
 - Balance Rows
 - Balance NNZs *
- BCSR, BCOO:
 - Balance Blocks ^
 - Balance NNZs ^

- * row-granularity for CSR
- ^ block-row-granularity for BCSR

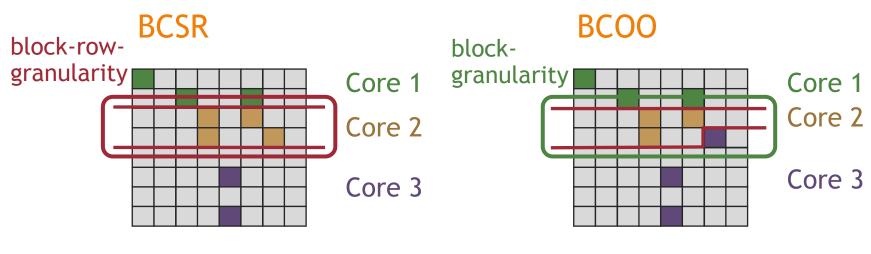
Load-Balancing of #NNZs:

• CSR (row-granularity), COO

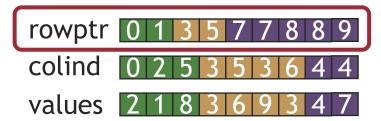


Load-Balancing of #NNZs:

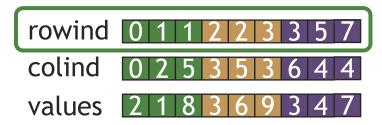
- CSR (row-granularity), COO
- BCSR (block-row-granularity), BCOO

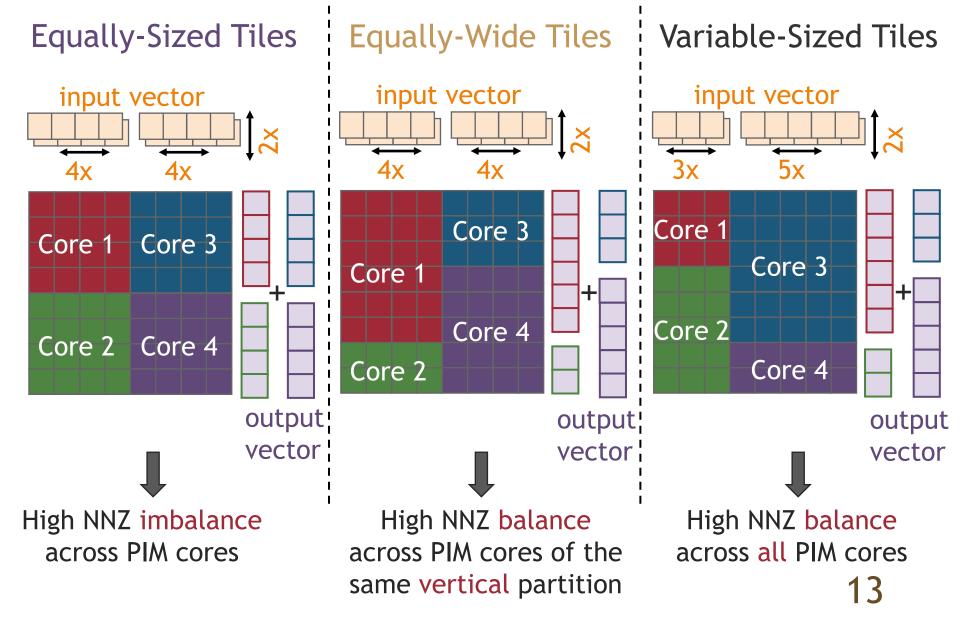


block-row-order



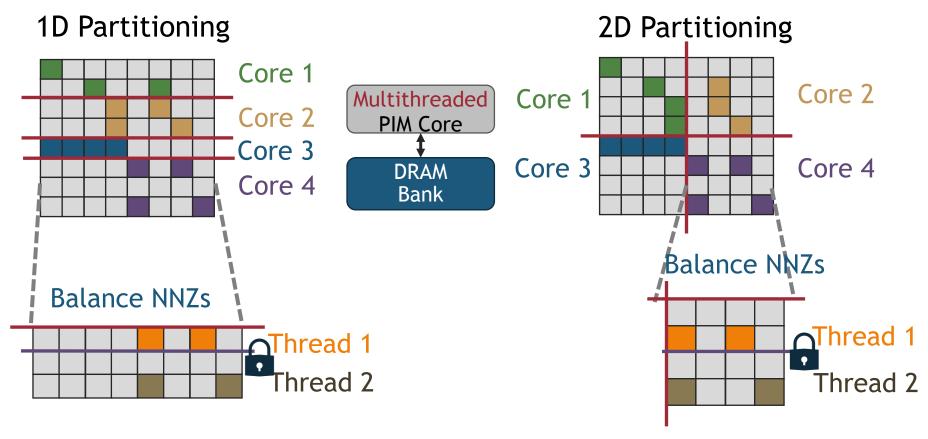
block-order





Parallelization across Threads

Multithreaded PIM Cores:



- Various load-balance schemes across threads
- Various synchronization approaches among threads

SparseP Software Package

25 SpMV kernels for PIM Systems →

https://github.com/CMU-SAFARI/SparseP

Partitioning	Matrix Format	Load-Balancing	
_	CSR	rows, nnzs *	
9x	COO •	rows, nnzs *, nnzs	
1D Kernels	BCSR	blocks ^, nnzs ^	
Remets	BCOO A	blocks, nnzs	
_	CSR		
4x 2D	COO •		
Equally-Sized Tiles	BCSR		
Equatty 512ed Tites	BCOO A		
	CSR	nnzs *	
6x	COO •	nnzs	
2D Equally-Wide Tiles	BCSR	blocks ^, nnzs ^	
Equatity Wide Tites	BCOO 4	blocks, nnzs	
	CSR	nnzs *	
6x 2D	COO <u></u>	nnzs	
Variable-Sized Tiles	BCSR	blocks ^, nnzs ^	
variable bized rites	BCOO A	blocks, nnz	

Load-balance across PIM cores/threads:

- * row-granularity (CSR)
- block-row-granularity (BCSR)

Synchronization among threads of a PIM core:

△ lb-cg, lb-fb, lf (COO, BCOO)

Data Types:

- 8-bit integer
- 16-bit integer
- 32-bit integer
- 64-bit integer
- 32-bit float
- 64-bit float

Outline

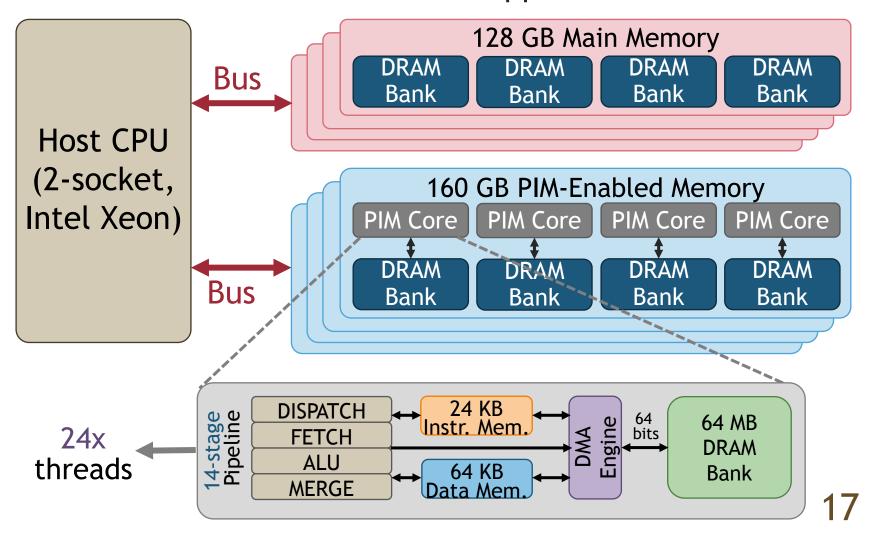
SpMV Kernels for Real PIM Systems

Key Takeaways from Our Study

Conclusion

UPMEM-based PIM System

- 20 UPMEM PIM DIMMs with 2560 PIM cores in total
- Each multithreaded PIM core supports 24 threads

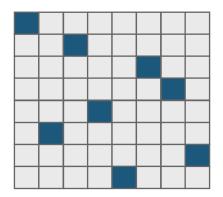


Sparse Matrix Data Set

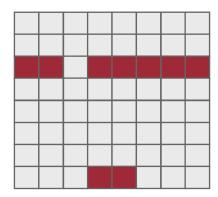
26 sparse matrices*:

- Diverse sparsity patterns
- Variability on irregular patterns
- Variability on block patterns

Regular Matrix

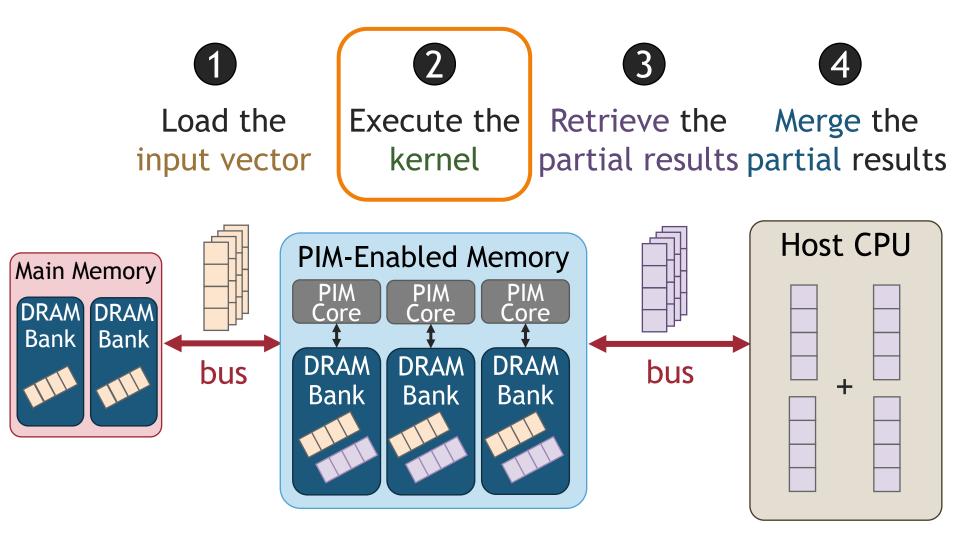


Scale-Free Matrix

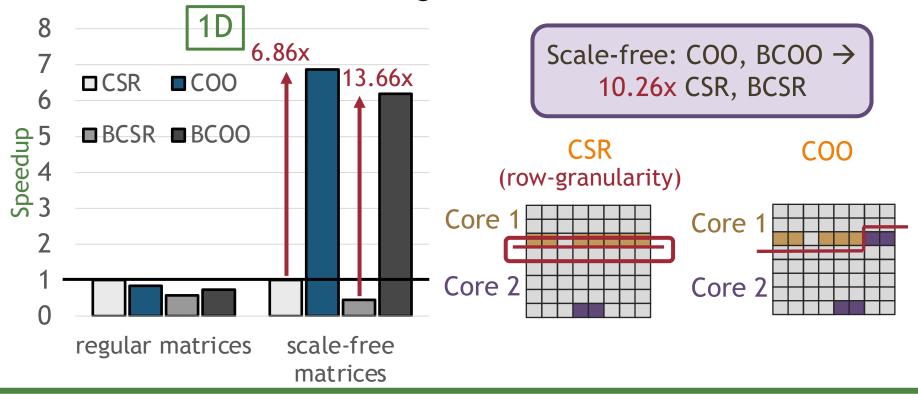


^{*} Suite Sparse Matrix Collection: https://sparse.tamu.edu/

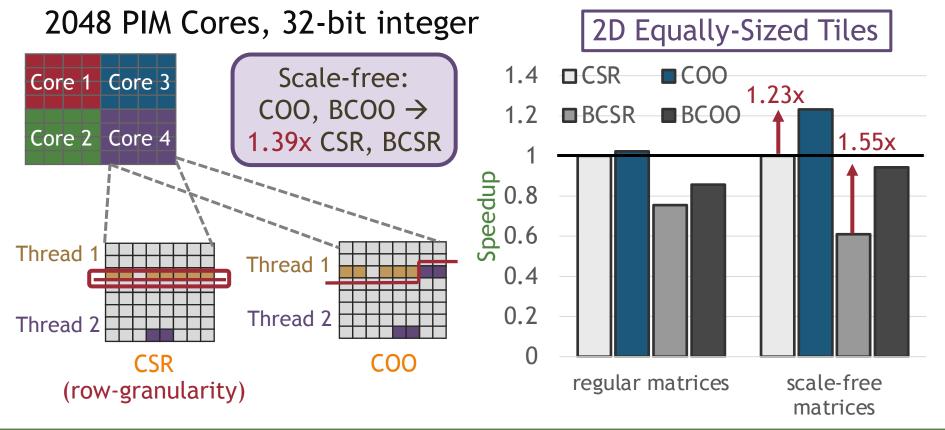
Kernel Execution on PIM Cores



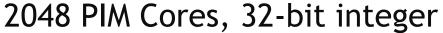
2048 PIM Cores, 32-bit integer

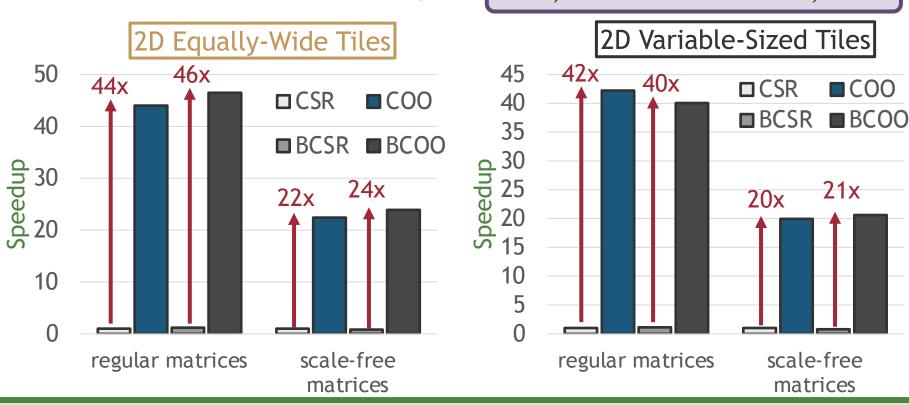


In scale-free matrices, COO + BCOO provide higher non-zero element balance across PIM cores than CSR + BCSR, respectively.



In scale-free matrices, COO + BCOO provide higher non-zero element balance across threads than CSR + BCSR, respectively.





COO + BCOO formats provide higher non-zero element balance across PIM cores + threads than CSR + BCSR, respectively.

2048 PIM Cores, 32-bit integer

1D

2D Equally-Sized

Key Takeaway 1

The compressed matrix format used to store the input matrix determines the data partitioning across DRAM banks of PIM-enabled memory. As a result, it affects the load-balance across PIM cores (and threads of a PIM core) with corresponding performance implications.

regular matrices

scale-free matrices

regular matrices

scale-free matrices

2D Equally-Wide

2D Variable-Sized

Recommendation 1

Design compressed data structures that can be effectively partitioned across DRAM banks, with the goal of providing high computation balance across PIM cores (and threads of a PIM core).

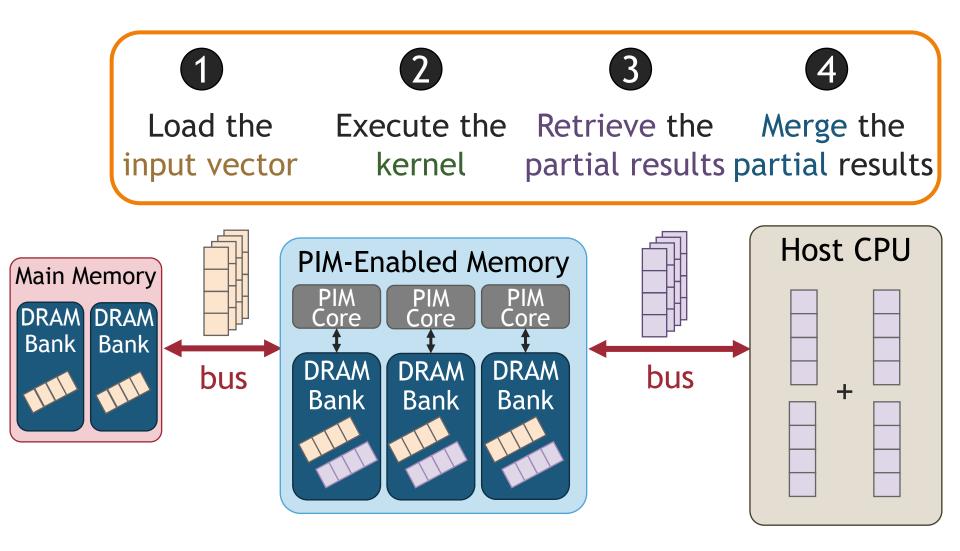
regular matrices

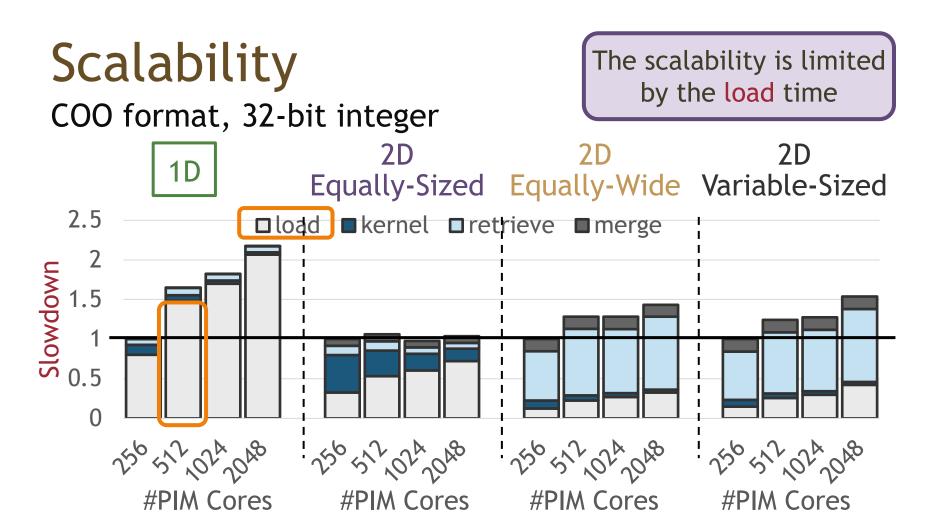
scale-free matrices

regular matrices

scale-free matrices

End-to-End Performance





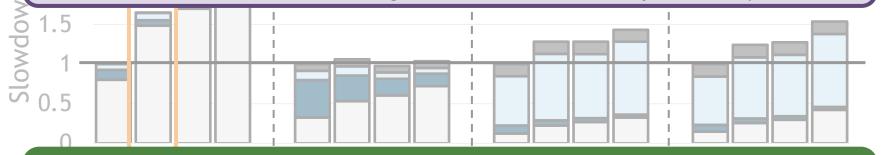
<u>1D</u>: #bytes to load the input vector grows linearly to #PIM cores

Scalability

COO format, 32-bit integer

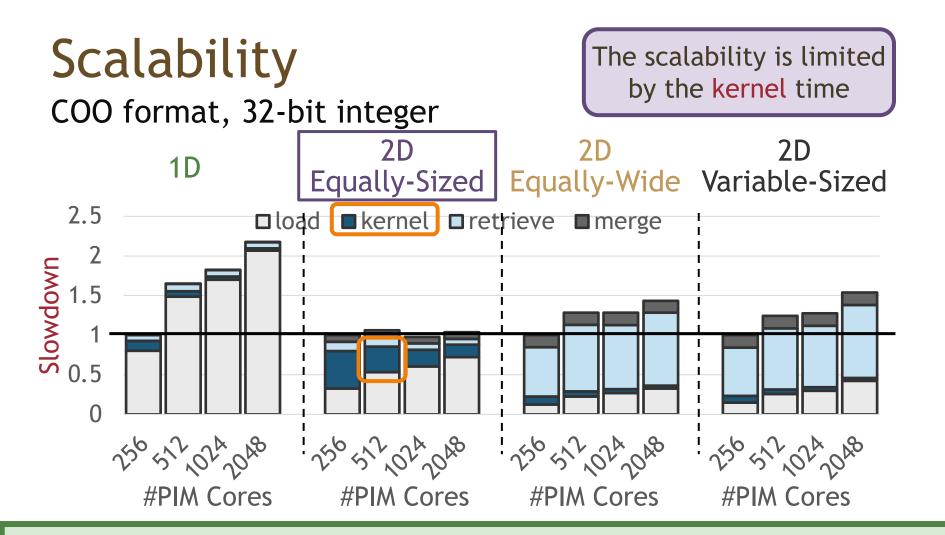
Key Takeaway 2

The 1D-partitioned kernels are severely bottlenecked by the high data transfer costs to broadcast the whole input vector into DRAM banks of all PIM cores, through the narrow off-chip memory bus.



Recommendation 2

Optimize the broadcast collective operation in data transfers to PIM-enabled memory to efficiently copy the input data into DRAM banks in the PIM system.

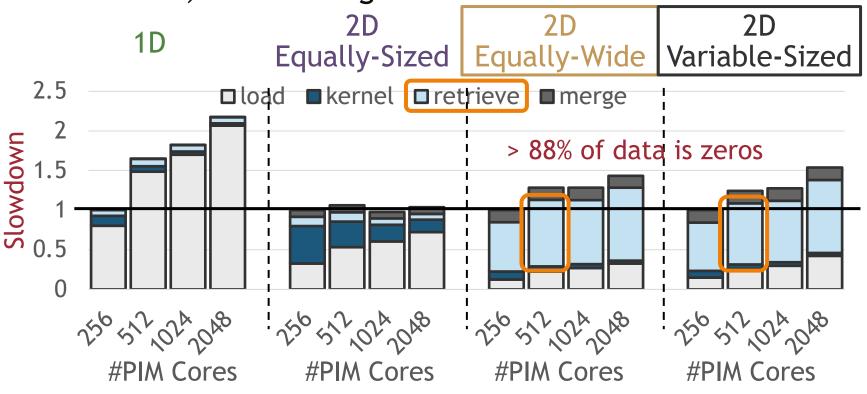


<u>2D Equally-Sized:</u> kernel time is limited by only a few PIM cores assigned to the 2D tiles with the largest #NNZs

Scalability

COO format, 32-bit integer

The scalability is limited by the retrieve time



2D Equally-Wide + 2D Variable-Sized:

high amount of zero padding to gather the output vector > parallel transfers supported at rank granularity = 64 PIM cores

Scalability

COO format, 32-bit integer

Key Takeaway 3

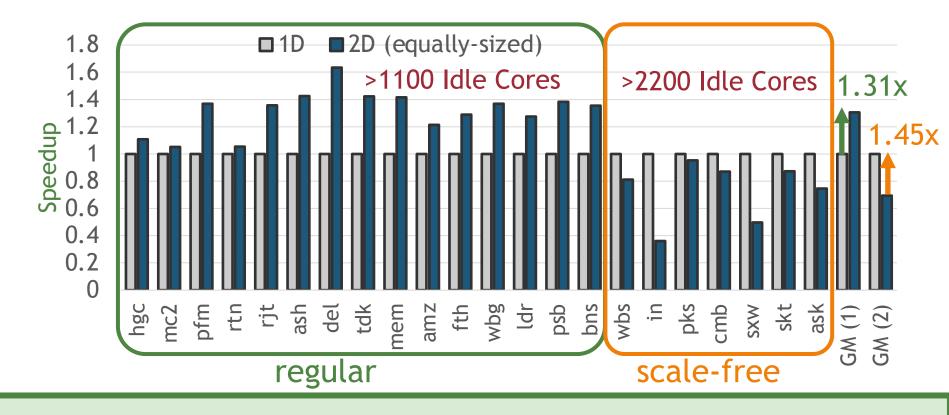
The 2D equally-wide and variable-sized kernels need fine-grained parallel data transfers at DRAM bank granularity (zero padding) to be supported by the PIM system to achieve high performance.

Recommendation 3

Optimize the gather collective operation at DRAM bank granularity in data transfers from PIM-enabled memory to efficiently retrieve the output results to the host CPU.

1D vs 2D

Up to 2528 PIM Cores, 32-bit float

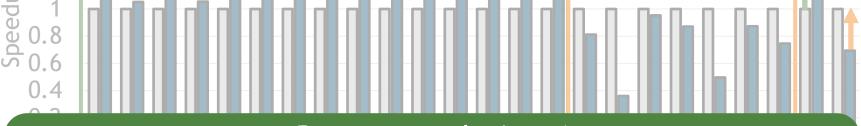


Best-performing SpMV execution: trades off computation with lower data transfer costs

1D vs 2D

Key Takeaway 4

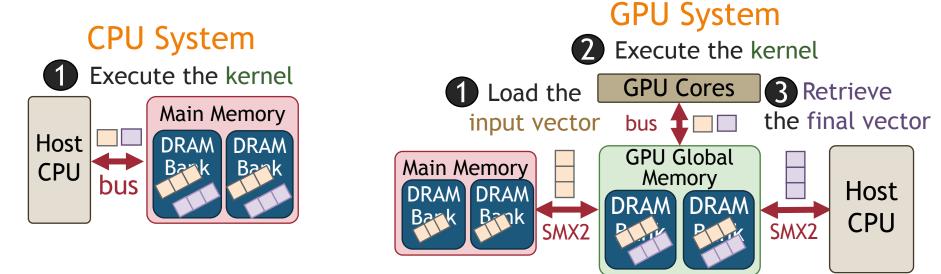
Expensive data transfers to/from PIM-enabled memory performed via the narrow memory bus impose significant performance overhead to end-to-end SpMV execution. Thus, it is hard to fully exploit all available PIM cores of the system.

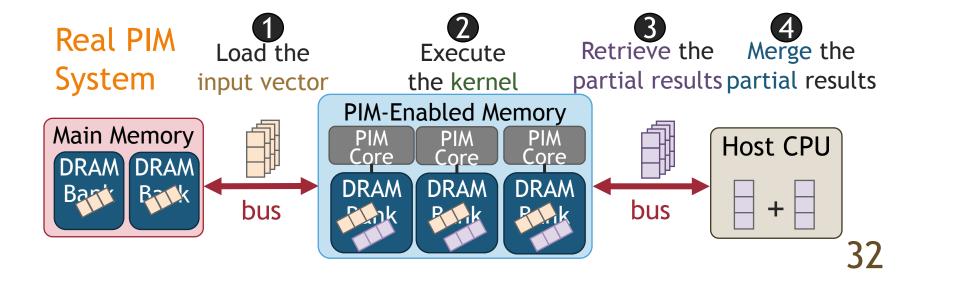


Recommendation 4

Design high-speed communication channels and optimized libraries in data transfers to/from PIM-enabled memory, provide hardware support to effectively overlap computation with data transfers in the PIM system, and/or integrate PIM-enabled memory as the main memory of the system.

SpMV Execution on Various Systems





System		vstem .	Peak Performance	Bandwidth	TDP	
CPU	J	Intel Xeon Silver 4110	660 GFlops	23.1 GB/s	2x85 W	Processor-
GPI	U	NVIDIA Tesla V100	14.13 TFlops	897 GB/s	300 W	Centric
PIM	١	UPMEM 1st Gen.	4.66 GFlops	1.77 TB/s	379 W	Memory- Centric

- Kernel-Only (COO, 32-bit float):
 - CPU = 0.51% of Peak Perf.
 - GPU = 0.21% of Peak Perf.
 - PIM (1D) = **50.7**% of Peak Perf.

System		Peak Performance	Bandwidth	TDP	
CPU	Intel Xeon Silver 4110	660 GFlops	23.1 GB/s	2x85 W	Processor-
GPU	NVIDIA Tesla V100	14.13 TFlops	897 GB/s	300 W	Centric
PIM	UPMEM 1st Gen.	4.66 GFlops	1.77 TB/s	379 W	Memory- Centric

- Kernel-Only (COO, 32-bit float):
 - CPU = 0.51% of Peak Perf.
 - GPU = 0.21% of Peak Perf.
 - PIM (1D) = **50.7**% of Peak Perf.
- End-to-End (COO, 32-bit float):
 - CPU = 4.08 GFlop/s
 - GPU = 1.92 GFlop/s
 - PIM (1D) = 0.11 GFlop/s

System		/stem	Peak Performance	Bandwidth	TDP	
	CPU	Intel Xeon Silver 4110	660 GFlops	23.1 GB/s	2x85 W	Processor-
	GPU	NVIDIA Tesla V100	14.13 TFlops	897 GB/s	300 W	Centric
	PIM	UPMEM 1st Gen.	4.66 GFlops	1.77 TB/s	379 W	Memory- Centric

- Kernel-Only (COO, 32-bit float):
 CPU = 0.51% of Peak Perf.
 GPU = 0.21% of Peak Perf.
 PIM (1D) = 50.7% of Peak Perf.
- End-to-End (COO, 32-bit float):

```
    CPU = 4.08 GFlop/s
    GPU = 1.92 GFlop/s
    PIM (1D) = 0.11 GFlop/s
```

Many more results in the full paper: https://arxiv.org/pdf/2201.05072.pdf

Outline

SpMV Kernels for Real PIM Systems

Key Takeaways from Our Study

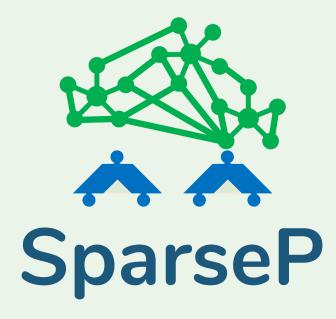
Conclusion

Conclusion

- SpMV is a fundamental linear algebra kernel for important applications (HPC, machine learning, graph analytics...)
- SpMV is a highly memory-bound kernel in processor-centric systems (e.g., CPU and GPU systems)
- Real near-bank PIM systems can tackle the data movement bottleneck (high parallelism, large aggregate memory bandwidth)
- Key Contributions:
 - SparseP: first open-source SpMV library for real PIM systems
 - Comprehensive characterization and analysis of SPMV on the first real PIM system
 - Recommendations to improve multiple aspects of future PIM hardware and software

Our Work

SparseP: https://github.com/CMU-SAFARI/SparseP
Full Paper: https://arxiv.org/pdf/2201.05072.pdf



Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures

Christina Giannoula

Ivan Fernandez, Juan Gomez-Luna, Nectarios Koziris, Georgios Goumas, Onur Mutlu

