Swordfish:

A Framework for Evaluating Deep Neural Network-based Basecalling using Computation-in-Memory with Non-Ideal Memristors

Taha Michael Shahroodi,

Gagandeep Singh, Mahdi Zahedi, Haiyu Mao, Joel Lindegger, Can Firtina, Stephan Wong, Onur Mutlu, Said Hamdioui

AMD ETH zürich

Executive Summary

Context: Basecalling is **the first** step and **a major throughput bottleneck**

Basecallers use deep neural networks (DNNs)

DNN-based basecalling **accuracy** and **throughput** impact accuracy and throughput of next analysis Prior research uses **memristor-based Computation-in-Memory (CIM)** to accelerate DNNs

Non-idealities in memristor-based CIM known to hinder accuracy

Problem: Prior frameworks for memristor-based CIM accelerators targeting large DNNs either

- 1. overlook existing non-idealities,
- 2. overestimates achievable accuracy by studying non-idealities in isolation or using imprecise models/methodology
- 3. overlook the effects of non-idealities mitigation techniques on the achievable throughput

Goal: Enable **accurate** and **realistic** evaluation of **accuracy** and **throughput** for DNN-based basecalling on memristor-based CIM

Key Contribution: Swordfish; the first framework for memristor-based CIM that uses characterized memories and accurate models to

1) accurately and realistically evaluate the effects of non-idealities on basecalling accuracy and throughput

2) comprehensively investigate the impact of accuracy enhancement techniques on basecalling accuracy and throughput

Key Results: Across four real datasets of varying sizes, Swordfish realistically provides

- 25.7× better average throughput compared to state-of-the-art basecalling on GPU
- 12% mitigation in basecalling accuracy loss after hardware/software co-designed enhancement techniques
- Three new insights on future research directions for accuracy enhancement techniques

Outline

Background & Motivation

Swordfish: Design & Implementation

Evaluation & Key Results

Takeaways & Summary

Outline

Background & Motivation

Swordfish: Design & Implementation

Evaluation & Key Results

Takeaways & Summary

Nanopore Genome Sequencing and Analysis Pipeline

Genome Sequencing: Determining DNA sequence order for

- 1. Personalized medicine,
- 2. Outbreak tracing,
- 3. Understanding evolution

Nanopore Sequencing: A widely used sequencing technology

Basecalling consumes up to 84.2% of the execution time [Bowden+ 2019]

Nanopore Genome Sequencing and Analysis Pipeline

Genome Sequencing: Determining DNA sequence order for

- 1. Personalized medicine,
- 2. Outbreak tracing,
- 3. Understanding evolution

Nanonore Sequencing: A widely used sequencing technology

Basecalling is **1. Accuracy-critical 2. Performance Bottleneck**

Basecallers are just large DNNs

DNN Hardware Acceleration

DNN Hardware Acceleration

Memristor-based CIM for DNN Acceleration

Memristor-based crossbars support VMM Computation in Memory (CIM) minimizes data

[Ankit+, ASPLOS 2019], [Chi+, ISCA 2016], [Lou+, PACT2020], [Shafiee+, ISCA 2016]

Memristor-based Crossbars

VMM in Memristor-based Crossbars

 $\begin{bmatrix} \text{In Memory} \\ (i_1 & i_2 & i_3 & i_4 \end{bmatrix} \times \begin{bmatrix} W_{11} & W_{12} & W_{13} & W_{14} \\ W_{21} & W_{22} & W_{23} & W_{24} \\ W_{31} & W_{32} & W_{33} & W_{34} \\ W_{41} & W_{42} & W_{43} & W_{44} \end{bmatrix} = (O_1 O_2 O_3 O_4)$

Non-idealities are everywhere

Our Goal

To realistically evaluate end-to-end basecalling accuracy and throughput for memristor-based CIM

To account for the **non-idealities** in **device**, **circuit** and **architecture** of memristor-based CIM and the **overhead** of non-idealities **mitigation techniques**

Outline

Background & Motivation

Swordfish: Design & Implementation

Evaluation & Key Results

Takeaways & Summary

Swordfish vs Other Frameworks

Ideal Memristor-based CIM Frameworks for DNNs

Swordfish Framework - Overview

Realistic Memristor-based CIM Frameworks for DNNs

Swordfish Framework - Overview

Realistic Memristor-based CIM Frameworks for DNNs

VMM Model Generator

Goal: Capture real output of VMM in presence of non-idealities **Swordfish** supports two approaches:

VMM Model Generator

Goal: Capture real output of VMM in presence of non-idealities **Swordfish** supports two approaches:

Swordfish Framework - Overview

Realistic Memristor-based CIM Frameworks for DNNs

Accuracy Enhancement

Goal: Enhance the accuracy of a VMM by adapting input currents and resistance of memristors based on non-idealities

Swordfish supports four techniques:

1. Analytical Variation Aware Training (VAT)

2. Knowledge Distillation-based (KD) VAT

3. Read-Verify-Write (R-V-W) Training

4. Random Sparse Adaptation (RSA) Training

Example of Accuracy Enhancement

Goal: Enhance the accuracy of a VMM by adapting input currents and resistance of memristors based on non-idealities

Read more about other techniques in the paper

4. Random Sparse Adaptation (RSA) Training

Accuracy Enhancement via Random Sparse Adaptation

Key idea? Map the weights that otherwise would map to error-prone memristor devices to reliable SRAM cells.

RSA in 3 Steps:

- 1. Initial Training (one-time, on GPU) and distribution of weights
- 2. VMM operation using both memories
- 3. Retraining all weights and reload those on SRAM (only)

More in the Paper

- Details of capturing non-idealities at VMM level
- Implementation details of **Swordfish components**:
 - Partition & Map
 - Accuracy Enhancer
 - VMM Model Generator
 - System Evaluator
- Elaborations on accuracy enhancement techniques
 - Analytical Variation Aware Training (VAT)
 - Knowledge Distillation-based (KD) using VAT
 - Read-Verify-Write (R-V-W) Training
 - Random Sparse Adaptation (RSA) Training

Outline

Background & Motivation

Swordfish: Design & Implementation

Evaluation & Key Results

Takeaways & Summary

Evaluation Methodology: Experimental Setup

• We evaluate

- Basecaller: Bonito [Oxford Nanopore 2023]
- **CIM Architecture:** PUMA [Ankit+, ASPLOS 2019]

Infrastructure

- 2x AMD EPYC 7742 CPU with 500 GB DDR4 DRAM
- 8x NVIDIA V100
- Datasets and Workloads [Wick+ 2019, Zook+ 2019, CADDE 2020]
 - 4 real read and reference genomes with various genome size (D1, D2, D3, and D4)

Evaluated Non-idealities & Enhancement techniques

Accuracy: All Non-idealities without Mitigation

Combined non-idealities leads to significant accuracy loss (>18%)

Accuracy: Enhancement Techniques on All Non-idealities

Accuracy enhancement techniques mitigate non-idealities, But differently.

Accuracy: Enhancement Techniques on All Non-idealities

Considerable accuracy loss (>6%) even with All enhancement techniques.

Ideal CIM implementation improves the basecalling throughput over Bonito-GPU by 413.6× on average

Throughput improvement at the high, unacceptable accuracy loss of 18%

Realistic CIM design using RSA+KD provides on average 25.7× higher throughput compared to Bonito-GPU

More in the Paper

- Details on evaluation methodology
 - Datasets
 - Array and devices
- Evaluation results
 - Individual non-idealities and architectural limitations on accuracy
 - Accuracy enhancements on individual and combined non-idealities and architectural limitations
 - Accuracy vs. Area analysis
 - Observations and trends from the presented figures
 - Results for 256x256 crossbar + comparison with 64x64 crossbars
- Discussions, takeaways, and future work

Outline

Background & Motivation

Swordfish: Design & Implementation

Evaluation & Key Results

Takeaways & Summary

Takeaways

The target application for memristor-based CIM matters

Swordfish enables **realistic** evaluation of accuracy and performance for DNN-based applications on memristor-based CIM

Non-idealities are detrimental to both accuracy and performance

HW/SW co-designed techniques mitigate inaccuracy the most

Summary

Key Contribution: Swordfish; the first framework for memristor-based CIM that uses characterized memories and accurate models to

1) accurately and realistically evaluate the effects of non-idealities on basecalling accuracy and throughput

2) comprehensively investigate the impact of accuracy enhancement techniques on basecalling accuracy and throughput

Key Results: Across four real datasets of varying sizes, Swordfish realistically provides

- 25.7× better average throughput compared to state-of-the-art basecalling on GPU
- 12% mitigation in basecalling accuracy loss after hardware/software co-designed enhancement techniques
- Three new insights on future research directions for accuracy enhancement techniques

Many opportunities for

- Realistically evaluating accuracy and throughput other DNNs on memristor-based CIM
- Developing and evaluating novel accuracy enhancement techniques, on software, hardware, or both
- We should remain cautious applying known acceleration techniques to emerging technologies, architectures, and applications

Swordfish:

A Framework for Evaluating Deep Neural Network-based Basecalling using Computation-in-Memory with Non-Ideal Memristors

Questions?

AMD ETH zürich Delft University of Technology

