
Transparent Offloading and Mapping (TOM)
Enabling Programmer-Transparent

Near-Data Processing in GPU Systems

Kevin Hsieh
Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee,

Mike O’Connor, Nandita Vijaykumar,
Onur Mutlu, Stephen W. Keckler

GPUs and Memory Bandwidth

2

Many GPU applications are bottlenecked by
off-chip memory bandwidth

GPU

MEM

MEM

MEM

MEM

Opportunity: Near-Data Processing

3

GPU

Near-data processing (NDP) can
significantly improve performance

3D-stacked memory (memory stack)

Logic layer

Logic layer SM

Crossbar switch
Mem
Ctrl

….

SM (Streaming Multiprocessor)
MEM

MEM

MEM

MEM

Mem
Ctrl

Near-Data Processing: Key Challenges

•Which	operations	should	we		
offload?

•How	should	we	map	data	across	
multiple	memory	stacks?

4

Key Challenge 1

5

?

• Which operations should be executed on the logic
layer SMs?

?

GPU Logic layer SM

Crossbar switch
Mem
Ctrl

….
Mem
Ctrl

T = D0; D0 = D0 + D2; D2 = T - D2;
T = D1; D1 = D1 + D3; D3 = T - D3;
T = D0; d_Dst[i0] = D0 + D1;
d_Dst[i1] = T - D1;

?

Key Challenge 2

6

• How should data be mapped across multiple
3D memory stacks?

?

GPU
?

C	=	A	+	B
A B C

The Problem

• Solving these two key challenges requires
significant programmer effort
•Challenge 1:Which operations to offload?
• Programmers need to identify offloaded

operations, and consider run time behavior
•Challenge 2: How to map data across
multiple memory stacks?
• Programmers need to map all the operands

in each offloaded operation to the
same memory stack

7

Our Goal

8

Enable near-data processing in GPUs
transparently to the programmer

Transparent Offloading and Mapping (TOM)

• Component 1 - Offloading: A new
programmer-transparent mechanism to
identify and decide what code portions to offload
• The compiler identifies code portions to
potentially offload based on memory profile.
• The runtime system decides whether or not to

offload each code portion based on
runtime characteristics.

• Component 2 - Mapping: A new, simple,
programmer-transparent data mapping mechanism to
maximize data co-location in each memory stack

9

Outline

•Motivation and Our Approach
•Transparent Offloading
•Transparent Data Mapping
•Implementation
•Evaluation
•Conclusion

10

TOM: Transparent Offloading

11

Static	compiler	analysis
• Identifies	code	blocks	as	
offloading	candidate blocks

Dynamic	offloading	control
• Uses	run-time	information	to	make	the	
final	offloading	decision	for															
each code	block

TOM: Transparent Offloading

12

Static	compiler	analysis
• Identifies	code	blocks	as	
offloading	candidate blocks

Dynamic	offloading	control
• Uses	run-time	information	to	make	the	
final	offloading	decision	for															
each code	block

Static Analysis: What to Offload?
• Goal: Save off-chip memory bandwidth

13

GPU

Memory

Load

Addr Data

GPU

Memory

Store

Addr
+Data

Ack

GPU

Memory

Near-Data Processing

Live-in
Reg

Live-out
Reg

Offloading benefit: load & store instructions

Offloading cost: live-in & live-out registers

Conventional System
Offload

Compiler uses equations (in paper)
for cost/benefit analysis

Offloading Candidate Block Example

14

...

float D0 = d_Src[i0];
float D1 = d_Src[i1];
float D2 = d_Src[i2];
float D3 = d_Src[i3];
float T;

T = D0; D0 = D0 + D2; D2 = T - D2;
T = D1; D1 = D1 + D3; D3 = T - D3;
T = D0; d_Dst[i0] = D0 + D1;
d_Dst[i1] = T - D1;
T = D2; d_Dst[i2] = D2 + D3;
d_Dst[i3] = T - D3;

Code block in Fast Walsh Transform (FWT)

Offloading Candidate Block Example

15

...

float D0 = d_Src[i0];
float D1 = d_Src[i1];
float D2 = d_Src[i2];
float D3 = d_Src[i3];
float T;

T = D0; D0 = D0 + D2; D2 = T - D2;
T = D1; D1 = D1 + D3; D3 = T - D3;
T = D0; d_Dst[i0] = D0 + D1;
d_Dst[i1] = T - D1;
T = D2; d_Dst[i2] = D2 + D3;
d_Dst[i3] = T - D3;

Offloading benefit outweighs cost

Cost:	Live-in	registers

Benefit:	Load/store	inst

Code block in Fast Walsh Transform (FWT)

Conditional Offloading Candidate Block

• The cost of a loop is fixed, but the benefit of
a loop is determined by the loop trip count.
• The compiler marks the loop as a conditional

offloading candidate block, and provides the
offloading condition to hardware
(e.g., loop trip count > N)

16

...
for (n = 0; n < Nmat; n++){

L_b[n] = −v ∗ delta /(1.0 + delta ∗ L[n]);
}
...

Cost:	Live-in	registers Benefit:	Load/store	inst

Code block in LIBOR Monte Carlo (LIB)

TOM: Transparent Offloading

17

Static	compiler	analysis
• Identifies	code	blocks	as	
offloading	candidate blocks

Dynamic	offloading	control
• Uses	run-time	information	to	make	the	
final	offloading	decision	for															
each code	block

RX

TX

18

Main GPU Memory stack

Data

Transmit channel becomes full,
leading to slowdown with offloading.

Data

DataData

TX

Bottlenecked!

RegRegReg

When Offloading Hurts:
Bottleneck Channel

TX

19

SM
capacity

Full

Memory stack SM becomes full,
leading to slowdown with offloading.

Main GPU Memory
stack

RX

When Offloading Hurts:
Memory Stack Computational Capacity

Too many warps!

Dynamic Offloading Control:
When to Offload?
•Key idea: offload only when doing so is
estimated to be beneficial

•Mechanism:
• The hardware does not offload code

blocks that increase traffic on a
bottlenecked channel
•When the computational capacity of a

logic layer’s SM is full, the hardware does
not offload more blocks to that logic layer

20

Outline

•Motivation and Our Approach
•Transparent Offloading
•Transparent Data Mapping
•Implementation
•Evaluation
•Conclusion

21

TOM: Transparent Data Mapping

•Goal: Maximize data co-location for
offloaded operations in each
memory stack

•Key Observation: Many
offloading candidate blocks exhibit a
predictablememory access pattern:
fixed offset

22

Fixed Offset Access Patterns: Example

23

...
for (n = 0; n < Nmat; n++){

L_b[n] = −v ∗ delta /(1.0 + delta ∗ L[n]);
}
...

L_b base n L	base n

Some address bits are always the same:
Use them to decide memory stack mapping

85% of offloading candidate blocks
exhibit fixed offset access patterns

Transparent Data Mapping: Approach
•Key idea: Within the fixed offset bits, find the
memory stack address mapping bits so that
they maximize data co-location in each
memory stack

•Approach: Execute a tiny fraction (e.g, 0.1%)
of the offloading candidate blocks to find the
best mapping among
the most common consecutive bits

• Problem: How to avoid the overhead of
data remapping after we find the best
mapping?

24

Conventional GPU Execution Model

25

GPUCPU

GPU MemoryCPU Memory

GPU	Data

Launch Kernel

Transparent Data Mapping: Mechanism

26

GPUCPU

GPU MemoryCPU Memory

GPU	Data

Delay Memory
Copy and
Launch Kernel

Learn the best
mapping among
the most common
consecutive bits

Memory copy happens only after
the best mapping is found

There is no remapping overhead

Outline

•Motivation and Our Approach
•Transparent Offloading
•Transparent Data Mapping
•Implementation
•Evaluation
•Conclusion

27

TOM: Putting It All Together

28

Fetch/
I-Cache/
Decode

Scoreboard

Instruction
Buffer

Offload
Controller

Issue Operand
Collector

ALU

MEM

Data
Cache

Memory Port /
MSHR

Channel Busy
Monitor

Shared
MemMakes offloading decision

Sends offloading request

Monitors TX/RX
memory bandwidth

Outline

•Motivation and Our Approach
•Transparent Offloading
•Transparent Data Mapping
•Implementation
•Evaluation
•Conclusion

29

Evaluation Methodology
• Simulator: GPGPU-Sim
• Workloads:
• Rodinia, GPGPU-Sim workloads, CUDA SDK

• System Configuration:
• 68 SMs for baseline, 64 + 4 SMs for NDP system
• 4 memory stacks
• Core: 1.4 GHz, 48 warps/SM
• Cache: 32KB L1, 1MB L2
• Memory Bandwidth:

• GPU-Memory: 80 GB/s per link, 320 GB/s total
• Memory-Memory: 40 GB/s per link
• Memory Stack: 160 GB/s per stack, 640 GB/s total

30

Results: Performance Speedup

31

0.0

0.5

1.0

1.5

TO
FF

TO
M

TO
FF

TO
M

TO
FF

TO
M

TO
FF

TO
M

TO
FF

TO
M

TO
FF

TO
M

TO
FF

TO
M

TO
FF

TO
M

TO
FF

TO
M

TO
FF

TO
M

TO
FF

TO
M

BP BFS KM CFD HW LIB RAY FWT SP RD AVG

Sp
ee
du

p

30% average (76% max)
performance improvement

1.20
1.30

0.0

0.5

1.0

1.5

TO
FF

TO
M

TO
FF

TO
M

TO
FF

TO
M

TO
FF

TO
M

TO
FF

TO
M

TO
FF

TO
M

TO
FF

TO
M

TO
FF

TO
M

TO
FF

TO
M

TO
FF

TO
M

TO
FF

TO
M

BP BFS KM CFD HW LIB RAY FWT SP RD AVG

M
em

or
y	
Tr
af
fic

GPU-Memory	RX	 GPU-Memory	TX	 Memory-Memory	

Results: Off-chip Memory Traffic

32

13% average (37% max) memory traffic reduction
2.5X memory-memory traffic reduction

More in the Paper

•Other design considerations
• Cache coherence
• Virtual memory translation

•Effect on energy consumption
• Sensitivity studies
• Computational capacity of logic layer SMs
• Internal and cross-stack bandwidth

•Area estimation (0.018% of GPU area)

33

Conclusion
• Near-data processing is a promising direction to

alleviate the memory bandwidth bottleneck in GPUs

• Problem: It requires significant programmer effort
• Which operations to offload?
• How to map data across multiple memory stacks?

• Our Approach: Transparent Offloading and Mapping
• A new programmer-transparent mechanism to identify and

decide what code portions to offload
• A programmer-transparent data mapping mechanism to

maximize data co-location in each memory stack

• Key Results: 30% average (76% max) performance
improvement in GPU workloads

34

Transparent Offloading and Mapping (TOM)
Enabling Programmer-Transparent

Near-Data Processing in GPU Systems

Kevin Hsieh
Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee,

Mike O’Connor, Nandita Vijaykumar,
Onur Mutlu, Stephen W. Keckler

Observation on Access Pattern

36

85% of offloading candidate blocks exhibit
fixed offset pattern

0%

20%

40%

60%

80%

100%

BP BFS KM CFD HW LIB RAY FWT SP RD AVG

Pe
rc
en

t	o
f	o

ffl
oa

di
ng
	

ca
nd

id
at
e	
bl
oc
ks

All	accesses	fixed	offset 75%-99%	fixed	offset 50%-75%	fixed	offset
25%-50%	fixed	offset 0%-25%	fixed	offset No	access	fixed	offset

Bandwidth Change Equations

37

3. Mechanism
We describe our new mechanisms to enable programmer-
transparent near-data processing in GPU systems. Our pro-
posal, Transparent O�oading and Mapping (TOM), consists
of two key components. The �rst is a compiler-based tech-
nique to identify candidate code blocks for o�oading based
on cost-bene�t analysis of memory bandwidth (Section 3.1).
The second component is a software/hardware cooperative
mechanism that maps memory pages accessed by o�oaded
code to where the code will execute, by exploiting common
memory access patterns (Section 3.2). After describing these
two key components separately, we describe a runtime mech-
anism that dynamically determines whether an o�oading
candidate block should really be o�oaded (Section 3.3).
3.1. Identi�cation of O�loading Candidates
The objective when identifying candidate instruction blocks
for o�oading is to improve performance by reducing the
main GPU’s memory bandwidth consumption. The key to
this identi�cation is determining whether o�oading a block
saves more memory bandwidth during o�oaded execution than
it costs in additional data transfers to initiate and complete the
o�oad. Memory bandwidth savings come from executing
o�oaded loads/stores in the memory stack. The overhead of
o�oading is due to transferring the context required by the
block to execute in memory, and returning execution results
to the main GPU. This section details the process.
3.1.1. Estimating the memory bandwidth cost-bene�t.
As Figure 1 shows, the main GPU and the memory stacks are
connected by unidirectional high speed links similar to the
Hybrid Memory Cube (HMC) architecture [34]. Load instruc-
tions send addresses through the transmit channels (TX, from
the GPU to the memory stack), and receive data back on the
receive channels (RX, from the memory stack to the GPU).
Store instructions send store addresses and data through the
TX channels, and get the acknowledgment messages back
from the RX channels. Without loss of generality, we assume
the size of address, data, and registers is 4◊ the size of an
acknowledgment message. If loads and stores are executed
independently for each thread, we can estimate the change
in bandwidth consumption caused by o�oading a block as:

BWT X = REGT X ≠ (NLD + 2 ·NST) (1)
BWRX = REGRX ≠ (NLD + 1/4 ·NST) (2)

REGT X and REGRX are the number of registers trans-
mitted and received from the memory stacks respectively.
These represent the bandwidth cost of o�oading the block.
The bandwidth bene�t of o�oading is based on the number
of loads, NLD , and stores, NST , executed in the block.
Equation (1) is derived assuming each load transmits an

address, and each store transmits both its address and data
through the TX channel. Similarly, Equation (2) is derived
by assuming each load gets its data and each store gets its
acknowledgment message back on the RX channel.
In a GPU, threads are executed in lock-step warps, so it

is straightforward for the hardware to o�oad code block
instances at the granularity of a warp as opposed to the gran-
ularity of a single thread. O�oading at warp granularity

makes Equations (1) and (2) overly simplistic because, in real-
ity, loads and stores are coalesced by the load-store unit and
caches. Furthermore, for loads, the sizes of address and data
are di�erent because data is fetched at cache line granularity.
To address these issues, we estimate the bandwidth change
at warp granularity as follows:

BWT X = (REGT X ·SW)≠
(NLD ·CoalLD ·MissLD + NST · (SW + CoalST)) (3)

BWRX = (REGRX ·SW)≠
(NLD ·CoalLD ·SC ·MissLD + 1/4 ·NST ·CoalST) (4)

In Equations (3) and (4), SW is the size of a warp (e.g. 32)
and SC is the ratio of the cache line size to the address size
(e.g. 32 for 128B cache lines and 4B addresses). CoalLD

and CoalST are the average coalescing ratios for loads and
stores respectively. For example, if all loads in a warp can be
coalesced into two cache line accesses on average, CoalLD

is 2. Also, MissLD is the cache miss rate for loads and is
accounted for as a co-e�cient for the number of loads, NLD ,
when calculating the bandwidth bene�t of o�oading.

We propose identifying o�oad candidate blocks with static
compile time analysis since determining instruction depen-
dencies (i.e., REGT X andREGRX values) at run timewould
introduce high hardware complexity. The compiler can easily
determine these terms as they are needed for register allo-
cation and instruction scheduling. However, the compiler
does not statically know coalescing ratios (CoalLD , CoalST)
or cache miss rates (MissLD). We use a conservative esti-
mate for these values so that the identi�ed candidate blocks
are most likely bene�cial. As such, we assume all memory
instructions in a warp are perfectly coalesced so both coalesc-
ing ratios are 1. Since GPU cache miss rates are usually high,
we choose an estimate of 50% for MissLD , close to the GPU
cache miss rates reported by prior works on a wide range of
workloads [1, 45].2
3.1.2. O�loading candidate block identi�cation. The
compiler identi�es an instruction block as a potential o�oad-
ing candidate if the total estimated change in bandwidth
as a result of o�oading (BWT X + BWRX of Equations (3)
and (4)) is negative. This means the bene�ts of o�oading that
candidate outweigh the costs and thus o�oading is expected
to save overall memory bandwidth. The compiler tags each
candidate with a 2-bit value indicating whether o�oading
it is estimated to save RX bandwidth and/or TX bandwidth.
Section 4.2 describes how the hardware uses this informa-
tion to dynamically determine whether or not the candidate
should be actually o�oaded.
3.1.3. Loops and conditional o�loading candidates. In
candidate blocks that encapsulate a loop structure, the loop’s
execution count is a multiplier into the number of loads/stores
for the block’s bandwidth change calculation. While the
overhead of o�oading a loop is constant and is proportional
to the number of live-in registers required by the block and

2While using more aggressive values identi�es more o�oading candi-
dates, we do not observe clear performance bene�ts in our experiments.
This is because not all aggressively-chosen o�oading candidates result in
memory bandwidth savings.

3

Best memory mapping search space

• We only need 2 bits to determine the memory stack in
a system with 4 memory stacks. The result of the
sweep starts from bit position 7 (128B GPU cache line
size) to bit position 16 (64 KB).

• Based on our results, sweeping into higher bits does
not make a noticeable difference.

• This search is done by a small hardware (memory
mapping analyzer), which calculates how many memory
stacks would be accessed by each offloading candidate
instance for all different potential memory stack
mappings (e.g., using bits 7:8, 8:9, ..., 16:17 in a system
with four memory stacks)

38

Best Mapping From Different Fraction
of Offloading Candidate Blocks

39

0%

20%

40%

60%

80%

100%

BP BFS KM CFD HW LIB RAY FWT SP RD AVGPr
ob

ab
ili
ty
	o
f	a
cc
es
sin

g	
on

e	
m
em

or
y	

st
ac
k	
in
	a
n	
of
flo

ad
in
g	
ca
nd

id
at
e	
in
st
an

ce

Baseline	mapping Best	mapping	in	first	0.1%	NDP	blocks
Best	mapping	in	first	0.5%	NDP	blocks Best	mapping	in	first	1%	NDP	blocks
Best	mapping	in	all	NDP	blocks

Energy Consumption Results

40

0.0

0.5

1.0

1.5

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap

BP BFS KM CFD HW LIB RAY FWT SP RD AVG

N
or

m
al

iz
ed

 E
ne

rg
y

SMs Off-chip Links DRAM Devices

Sensitivity to Computational Capacity
of memory stack SMs

41

0.0

0.5

1.0

1.5

BP BFS KM CFD HW LIB RAY FWT SP RD AVG

Sp
ee

du
p

no-ctrl-1X-warp ctrl-1X-warp ctrl-2X-warp ctrl-4X-warp

0.0

0.5

1.0

BP BFS KM CFD HW LIB RAY FWT SP RD AVGN
or

m
al

iz
ed

 M
em

or
y

Tr
af

fic

no-ctrl-1X-warp ctrl-1X-warp ctrl-2X-warp ctrl-4X-warp

Sensitivity to Internal Memory
Bandwidth

42

0.0

0.5

1.0

1.5

BP BFS KM CFD HW LIB RAY FWT SP RD AVG

Sp
ee

du
p

2X-internal-BW 1X-internal-BW

