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Abstract

High-performance out-of-order processors spend a significant portion of their execution time on the incorrect pro-

gram path even though they employ aggressive branch prediction algorithms. Although memory references generated

on the wrong path do not change the architectural state of the processor, they can affect the arrangement of data in

the memory hierarchy. This paper examines the effects of wrong-path memory references on processor performance.

It is shown that these references significantly affect the IPC (Instructions Per Cycle) performance of a processor. Not

modeling them can lead to errors of up to 10% in IPC estimates for the SPEC2000 integer benchmarks; 7 out of 12

benchmarks experience an error of greater than 2% in IPC estimates. In general, the error in the IPC increases with

increasing memory latency and instruction window size.

We find that wrong-path references are usually beneficial for performance, because they prefetch data that will be

used by later correct-path references. L2 cache pollution is found to be the most significant negative effect of wrong-

path references. Code examples are shown to provide insights into how wrong-path references affect performance. We

also find that it is crucial to model wrong-path references to get an accurate estimate of the performance improvement

provided by runahead execution and to avoid errors of up to 63% in IPC estimates for a runahead processor.

1. Introduction

High-performance processors employ aggressive branch prediction techniques in order to exploit high levels of

instruction-level parallelism. Unfortunately, even with low branch misprediction rates, these processors spend a sig-

nificant number of cycles fetching instructions from the mispredicted (i.e. wrong) program path. The leftmost bar in

∗This work is an extended version of the work presented in the 2004 Workshop on Memory Performance Issues [16]. Section 3.2, which
examines the effects of hardware prefetching; Section 5, which analyzes the effects of wrong-path memory references on runahead processors; and
Section 6, which gives a survey of related research in speculative execution, are the major extensions to [16]. Section 4.4 is also extended in this
work. Other sections are edited to include more explanations and data.
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Figure 1 shows the percentage of total cycles spent fetching wrong-path instructions in the SPEC2000 integer bench-

marks. The middle and rightmost bars of Figure 1 show the percentage of instructions fetched and executed on the

wrong path1. On average, even with a 4.2% conditional branch misprediction rate, the evaluated processor spends

47% of its total cycles fetching wrong-path instructions. 53% of all fetched instructions and 17% of all executed

instructions are on the wrong path. 6% of all executed instructions are wrong-path data memory access instructions

(loads and stores).
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Figure 1. Percentage of total cycles spent on the wrong path, percentage of instructions fetched on the wrong
path, and percentage of instructions (memory and non-memory) executed on the wrong path in the baseline
processor for SPEC 2000 integer benchmarks.

Although wrong-path data and instruction memory references do not change the architectural state of the machine,

they can affect the arrangement of data in the memory hierarchy. In this paper, we examine the effect of wrong-path

memory references on the performance of a processor. In particular, we seek answers to the following questions:

1. How important is it to correctly model wrong-path memory references? What is the error in the predicted perfor-

mance if wrong-path references are not modeled?

2. Do wrong-path memory references affect performance positively or negatively? What is the relative significance

on performance of prefetching, bandwidth consumption, and pollution caused by wrong-path references?

3. What kind of code structures lead to the positive effects of wrong-path memory references?

4. How do wrong-path memory references affect the performance of a runahead execution processor [7, 17], which

implements an aggressive form of speculative execution?

Our results indicate that wrong-path memory references significantly affect processor performance and not model-

ing them may lead to errors of up to 10% in IPC estimates for an out-of-order processor and up to 63% in IPC estimates

1Machine configuration and simulation methodology are described in Section 2.
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for a runahead execution processor. Although they have a positive effect on performance for most of the benchmarks

due to prefetching, wrong path references negatively impact performance for a few others. We analyze the causes for

the positive and negative performance impact. We identify pollution in the L2 cache as the dominant negative effect of

wrong-path references and present code examples to illustrate the prefetching effects. We also find that not modeling

wrong-path references result in the significant underestimation of the performance improvement provided by runahead

execution.

2. Experimental Methodology

We use an execution-driven simulator capable of accurately fetching and executing instructions on the wrong path

and correctly recovering from mispredictions that occur on the wrong path. The baseline processor we model is an

8-wide out-of-order processor with an instruction window that can hold 128 instructions. The conditional branch

predictor is a hybrid branch predictor composed of a 64K-entry gshare [13] and a 64K-entry PAs [24] predictor with

a 64K-entry selector along with a 4K-entry branch target buffer. The indirect branch predictor is a 64K-entry, 4-way

target cache [4]. We model a deep pipeline with a 20-cycle branch misprediction latency. The data and instruction

caches are 64KB, 4-way with 8 banks and a 2-cycle hit latency. The unified L2 cache is 1MB, 8-way with 8 banks and

a 10-cycle hit latency. All caches have a line size of 64 bytes. We model bandwidth, port contention, bank conflicts,

and queuing effects at all levels in the memory hierarchy.

The memory system we model is shown in Figure 2. At most 128 I-Cache and D-Cache requests may be outstand-

ing. These requests may reside in any of the four queues in the memory system. Two of these queues, L2 Request

Queue and Bus Request Queue are priority queues where requests generated by older instructions have higher priority.

Such prioritization is fairly easy to implement on-chip and reduces the probability of a full window stall by servicing

older instructions’ requests earlier. The bus is pipelined, split-transaction, 256-bit wide, and has a one-way latency

of 100 processor cycles. At most two requests can be scheduled onto the bus every bus cycle, one from the Bus Re-

quest Queue and one from the Memory Controller. Processor frequency is four times the bus frequency. The Memory

Controller takes memory requests from the bus and schedules accesses to DRAM banks. Requests to independent

banks can be serviced in parallel. Requests to the same banks are serialized and serviced in FIFO order. We model

32 DRAM banks, each with an access latency of 300 processor cycles. Hence, the round-trip latency of an L2 miss

request is a minimum of 500 processor cycles (300-cycle memory access + 200-cycle round-trip on the bus) without

any queuing delays and bank conflicts. On an L2 cache miss, the requested cache line is brought into both the L2

cache and the first-level cache that initiated the request. A store instruction request that misses the data cache or the

L2 cache allocates a line in the respective cache. Write-back requests from D-Cache are inserted into the L2 Request

Queue and write-back requests from the L2 Cache are inserted into the Bus Request Queue as bandwidth becomes

available from instruction and data fetch requests.
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The experiments were run using the 12 SPEC2000 integer benchmarks compiled for the Alpha ISA with the -fast

optimizations and profiling feedback enabled. The benchmarks were run to completion with a modified test input set

to reduce simulation time. The number of retired instructions along with branch misprediction and cache miss rates

per 1000 retired instructions for each benchmark are shown in Table 1.
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On−Chip
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Figure 2. Memory system modeled for evaluation.

3. Wrong Path: To Model Or Not To Model

In this section, we measure the error in IPC if wrong-path memory references are not simulated. We also evaluate

the overall effect of wrong-path memory references on the IPC (retired Instructions Per Cycle) performance of a

processor. We investigate how the effects of wrong-path references change with memory latency and instruction

window size. In order to isolate the effects of wrong-path memory references, we ensure that wrong-path execution

can only affect the execution on the correct path through changes in the memory system. All other state that is updated

speculatively during wrong-path execution is restored upon recovery from misprediction.
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Table 1. The number of retired instructions; branch mispredictions, L2, D-Cache (DC), and I-Cache (IC) misses
per 1000 retired instructions on the baseline processor for the simulated benchmarks. Baseline IPC perfor-
mance and IPC prformance with a stream prefetcher (see Section 3.2) are also shown.

Inst. BP misp L2 miss DC miss IC miss Baseline IPC with prefetcher
Benchmark count rate rate rate rate IPC (see Section 3.2)

gzip 366 M 5.89 0.28 5.20 0.00 2.00 2.09 (+5%)
vpr 567 M 11.65 0.42 10.90 0.00 1.20 1.24 (+3%)
gcc 218 M 9.84 0.46 1.95 2.46 1.34 1.35 (+1%)
mcf 173 M 13.31 28.86 53.62 0.00 0.30 0.37 (+24%)
crafty 498 M 5.18 0.12 1.65 0.92 2.47 2.47 (0%)
parser 412 M 8.89 0.87 5.48 0.08 1.20 1.56 (+31%)
eon 129 M 1.15 0.05 0.03 0.09 3.16 3.19 (+1%)
perlbmk 99 M 3.27 0.11 3.06 4.35 2.24 2.27 (+1%)
gap 404 M 1.46 4.64 4.76 0.03 1.06 2.82 (+167%)
vortex 165 M 1.42 3.47 5.60 2.01 1.45 2.07 (+42%)
bzip2 418 M 8.05 1.53 5.80 0.00 1.03 1.25 (+21%)
twolf 279 M 8.87 0.02 0.09 0.04 1.92 1.92 (0 %)

Figure 3 shows, for reference, the IPC performance of the baseline processor for three different minimum memory

latencies (250, 500, and 1000 cycles) when wrong-path memory references are correctly modeled. Figure 4 shows the

percent error in IPC for the same three models when wrong-path memory references are not modeled at all2. A positive

error means that the IPC obtained when wrong-path references are not modeled is higher than the IPC obtained when

they are modeled (i.e. a positive error implies wrong-path references are detrimental to performance)3.
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Figure 3. IPC of the baseline processor for three different memory latencies when wrong-path accesses are
correctly modeled.

Figure 4 shows that error in IPC estimates can be quite significant for some benchmarks if wrong-path memory

references are not modeled. For instance, the IPC obtained for mcf without wrong-path references is 8% lower than

the IPC obtained with wrong-path references, for a 250-cycle memory latency. Error in the average IPC4 can be as

much as 3.5% for a 1000-cycle memory latency. Error in IPC generally increases as memory latency increases, which

2Not modeling the wrong-path memory references is accomplished by stalling the fetch stage until a mispredicted branch is resolved and machine
state is recovered.

3In effect, Figure 4 shows the difference in IPC when trace-driven simulation is used instead of the baseline execution-driven simulation.
4Rightmost set of bars in Figure 4 shows the error in the average IPC, not the average of the error.
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suggests that modeling wrong-path references will be even more important in future processors with longer latencies

to memory. This is because, with increased memory latencies, the positive and negative effects of wrong-path memory

operations become more pronounced in terms of their contribution to execution cycles. For instance, a wrong-path

reference that generates a memory request that is later used by a correct-path reference, and thus saves 1000 cycles,

affects the IPC more than one which saves only 250 cycles. Mcf, where error decreases as memory latency increases,

is an exception. In this benchmark, long-latency cache misses caused by wrong-path references delay the servicing

of correct-path misses by consuming bandwidth and resources. This bandwidth contention becomes more significant

at longer memory latencies, therefore performance improvement due to wrong-path references reduces with increased

memory latency.
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Figure 4. Error in the IPC of the baseline processor for three different memory latencies if wrong-path memory
references are not simulated.

Figure 4 also shows that wrong-path references have a positive effect on overall processor performance for many

of the benchmarks, especially for mcf, parser, and perlbmk. The only benchmarks where wrong-path references have

a significant negative affect on IPC are vpr and gcc.

Figure 5 shows that the percentage (and therefore, the number5) of executed wrong-path instructions does not

significantly increase with increased memory latency. This is due to the limited instruction window size of 128. When

the processor remains on the wrong path for hundreds of cycles due to a mispredicted branch dependent on an L2

cache miss, the processor incurs a full window stall due to its limited window size. Hence, increasing the memory

latency does not increase the number of executed wrong-path instructions. However, increasing the memory latency

does increase the contribution wrong-path memory references make to the number of execution cycles, as explained

above. To determine the effect of increased number of wrong-path instructions on performance estimates, we next

evaluate processors with larger instruction windows that allow the execution of more instructions on the wrong path.

5Because the number of executed correct-path instructions is always constant for a benchmark.
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Figure 5. Percentage of executed wrong-path instructions out of all executed instructions for three different
memory latencies.

3.1. Effect of Wrong-Path Memory References in Larger Instruction Windows

Future processors will have larger instruction windows to exploit even higher levels of instruction-level parallelism.

A larger instruction window would change the effect of wrong-path memory references on performance in two major

ways:

1. A larger window allows more wrong-path references to be executed by decreasing the number of full window

stalls encountered on the wrong path. If references that occur later on the wrong path have positive effects, such

as prefetching, a larger window could increase the positive impact of wrong-path references on IPC. On the other

hand, if later wrong-path references have negative effects, such as pollution, IPC could be negatively affected.

2. With a larger window, the processor is better able to tolerate the negative effects caused by wrong-path memory

references.

Figure 6 shows the error in IPC estimates for processors with three different instruction window sizes, when wrong-

path memory references are not modeled6. Error in IPC is almost 10% in mcf for a window size of 512. Aside from

a couple of exceptions, notably perlbmk and gcc, error in IPC generally increases with increasing window size if

wrong-path memory references are not modeled. With a larger instruction window the processor is able to execute

more memory operations on the wrong path as shown in Figure 7, which changes the impact of wrong-path memory

references on IPC.

6Memory latency is fixed at 500 cycles for these simulations.
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Figure 6. Error in the IPC of the baseline processor for three different instruction window sizes if wrong-path
memory references are not simulated.

How the increase in the number of executed wrong-path references affects IPC depends on the usefulness of the

extra references executed. In perlbmk, memory references executed further down on the wrong path start canceling out

the positive prefetching effects of the operations executed earlier. Therefore, with a larger instruction window, wrong-

path memory references have a less positive effect on IPC in perlbmk. On the other hand, we see the opposite effect

in vpr, mcf, parser, vortex, and bzip2. Wrong-path references executed further down on the wrong path are useful for

correct-path operations encountered after the processor resolves the mispredicted branch for these five benchmarks.

3.2. Effect of Hardware Prefetching

So far, to simplify the analysis, we have assumed that the baseline processor does not employ any hardware prefetch-

ing technique. Aggressive hardware prefetchers are commonly implemented in modern microprocessors and they

significantly increase processor performance, as shown by the IPC data in Table 1. Therefore, we would like to un-

derstand the impact of wrong-path memory references on processors that employ hardware prefetching. To quantify

this impact, we modified our baseline processor model to include an aggressive stream prefetcher similar to the one

described by Tendler et al. [22].7

Figure 8 shows the error in IPC estimates for the baseline processor with stream prefetching when wrong-path mem-

ory references are not modeled. Wrong-path references, in general, positively impact the performance of processors

with stream prefetchers. The performance impact of wrong-path references on processors with prefetching (Figure 8)

is very similar to their performance impact on processors that do not employ prefetching (Figure 4). This is partly

because the stream prefetcher is not able to capture the prefetches that are generated by wrong-path memory references

7The stream prefetcher we model has 32 stream buffers where each stream buffer can stay 64 cache lines ahead of the processor’s data access
stream. A stream buffer is allocated on an L2 cache miss. The stream buffers are trained with L2 cache accesses. For more information about the
stream prefetching algorithm employed, see Tendler et al. [22].
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Figure 7. Percentage of executed wrong-path instructions out of all executed instructions three different in-
struction window sizes.

and partly because wrong-path memory references do not significantly affect the prefetches generated by the stream

prefetcher. We conclude that stream prefetching does not significantly change the performance impact of wrong-path

memory references (i.e., the performance impact of wrong-path references and the performance impact of the stream-

prefetcher are orthogonal). This conclusion is also supported by the error in IPC when wrong-path references are not

modeled on larger instruction-window processors that employ stream prefetching (shown in Figure 9).

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

P
er

ce
nt

 I
P

C
 E

rr
or

 (
%

)

250-cycle memory latency
500-cycle memory latency
1000-cycle memory latency

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf hmean

Figure 8. Error in the IPC of the baseline processor with a stream prefetcher for three different memory latencies
if wrong-path memory references are not simulated.
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Figure 9. Error in the IPC of the baseline processor with a stream prefetcher for three different instruction
window sizes if wrong-path memory references are not simulated.

4. Analysis

Wrong-path memory references affect processor performance significantly. Therefore, it is important to understand

why that is the case. In this section, we analyze the reasons behind the positive or negative impact that wrong-path

references have on performance.

4.1. Bandwidth and Resource Contention

Wrong-path references can use bandwidth and resources and thus get in the way of correct-path references by

delaying the servicing of correct-path memory requests. To examine how much the bandwidth and resource contention

caused by wrong-path references affects IPC, we simulated an idealized unrealistic processor which always gives lower

priority to wrong-path references everywhere in the memory system. In this model, wrong-path references never get

in the way if there are correct-path references outstanding. If a resource, such as a queue entry, is tied up by a

wrong-path reference and a correct-path reference needs that resource, the model allocates the resource to the correct-

path reference. We compared the performance of this idealized model to the baseline processor. We found that the

performance difference between the two models is negligible for all benchmarks except mcf, whose IPC improves by

2.6% with the idealized model. Mcf, a benchmark with a very high L2 miss rate, generates many wrong-path references

that miss in the L2 cache. These references keep the memory banks busy and delay the correct-path references that

later try to access the same banks. In other benchmarks wrong-path references do not cause significant bandwidth and

resource contention for correct-path references.
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4.2. Usefulness of Wrong-path References

Wrong-path references can increase performance by prefetching data or reduce performance by polluting the

caches. We explain the impact of these effects on performance by examining the accuracy of wrong-path data and

instruction references. We categorize the misses caused by wrong-path references in three groups:

1. Unused wrong-path miss: caused by a wrong-path reference, but the allocated cache line is never used by a

correct-path reference or it is evicted before being used.

2. Fully-used wrong-path miss: caused by a wrong-path reference and the allocated cache line is later used by a

correct-path reference.

3. Partially-used wrong-path miss: initiated by a wrong-path reference and later required by a correct-path reference

while the request is in flight.

Figure 10 shows the number of data cache misses for two processor models. The leftmost stacked bar for each

benchmark shows the number of data cache misses for the baseline model that executes wrong-path memory refer-

ences. The rightmost bar shows the number of data cache misses for a simulator that does not model wrong-path

references. We show the raw number of misses in this figure to illustrate the impact data cache misses can have on

performance. We observe that the number of correct-path data cache misses are reduced by 13% on average when

wrong-path references are modeled correctly, which hints at why most benchmarks benefit from wrong-path refer-

ences. This reduction is most significant in vpr (30%) and mcf (26%). In mcf, this reduction affects the IPC positively

(as was shown in Figure 4) because most (90%) of the wrong-path data cache misses are fully or partially used. Wrong-

path data cache misses that also miss in the L2 cache provide very accurate long-latency prefetches in mcf, and this

positively impacts the IPC. However, in vpr, many unused wrong-path data cache misses cause significant pollution

in the L2 cache, as we show in section 4.3. Therefore, vpr’s performance is adversely affected by wrong-path data

references. On average, 76% of the wrong-path data cache misses are fully or partially used.

Figure 11 shows the number of instruction cache misses for the same two processor models. We observe that only

gcc, crafty, perlbmk, and vortex can be affected by wrong-path instruction references, because only these benchmarks

incur a significant number of instruction cache misses. The accuracy of wrong-path instruction requests is lower than

that of wrong-path data requests. On average, 69% of the wrong-path instruction cache misses are fully or partially

used. Only 60% of wrong-path instruction cache misses are fully or partially used in gcc and the pollution caused by

the other 40%, which are unused, is the reason why gcc loses performance due to wrong-path references. On the other

hand, used wrong-path instruction cache misses in perlbmk and vortex provide significant performance increase.

We find that, in gcc, many unused instruction cache misses also miss in the L2 cache and evict useful L2 cache

lines. Since L2 cache miss latency is very high, these unused wrong-path misses decrease performance significantly.
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Figure 10. Number of data cache misses for the baseline (leftmost bar for each benchmark) and a model that
does not execute wrong-path references (rightmost bar for each benchmark). Note that the y-axis for vpr and
mcf is on a different scale due to the large number of misses they experience.

In contrast, in crafty, which also has a large number of unused wrong-path instruction cache misses, most of these

misses are satisfied in the L2 cache. Therefore, these misses do not evict useful lines from the L2, they only cause

pollution in the instruction cache. That’s why the IPC of crafty is not significantly reduced due to unused wrong-path

references, as was shown in Figure 4. Unused wrong-path instruction cache misses do not cause significant pollution

in perlbmk, as we show in section 4.3. The prefetching benefit of used wrong-path instruction cache misses outweighs

the pollution caused by unused ones in vortex. Hence the performance increase in these two benchmarks.
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Figure 11. Number of instruction cache misses for the baseline (leftmost bars) and a model that does not
execute wrong-path references (rightmost bars).

4.3. Understanding the Pollution Effects

In order to understand the performance impact of cache pollution caused by wrong-path references, we eliminate

wrong-path pollution from the three caches. We hypothesize that pollution caused by wrong-path references in the
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first-level instruction and data caches would be less detrimental to performance than pollution in the L2 cache, due

to the very high miss penalty of the L2 cache. We evaluate four different idealized models to test this hypothesis:

three models in which wrong-path requests do not cause pollution in I-cache, D-cache, and L2 cache, respectively;

and a model in which wrong-path requests do not cause pollution in any of the caches8. We model “no pollution” by

storing lines fetched by wrong-path references in a separate buffer rather than the respective cache and moving those

lines to the respective cache only when they are used by a correct-path request. These models are idealized because

a real processor does not know whether or not a reference is a wrong-path reference until the mispredicted branch is

resolved.

Figure 12 shows the IPC improvement over baseline of these four idealized models. Eliminating the pollution

caused by wrong-path references from the first-level instruction and data caches does not affect performance except

in crafty and vortex. In contrast, eliminating the pollution in the L2 cache increases performance for half of the

benchmarks, including gcc and vpr where wrong-path references are detrimental for overall performance. In gcc,

eliminating L2 cache pollution increases the baseline performance by 10% and thus makes wrong-path references

beneficial for overall performance. In mcf and parser, eliminating L2 cache pollution increases IPC by 6% and 4.5%

respectively, further increasing the usefulness of wrong-path references in these benchmarks.
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Figure 12. IPC improvement over the baseline processor if pollution caused by wrong-path references is elimi-
nated from caches.

We investigate whether pollution in the first-level caches has a more pronounced effect on IPC when using smaller

first-level caches. Figure 13 shows the IPC improvement of the four idealized models when 16KB instruction and

data caches are used. We can see that pollution in especially the instruction cache becomes more significant for

performance with smaller instruction and data caches. Data cache pollution is still not significant, because the rela-

8We also examined a model where wrong-path requests do not cause pollution in both the I-cache and the D-cache, but cause pollution in the
L2 cache. The results obtained using this model were negligibly different from the results obtained using the model which eliminates only I-cache
pollution.
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tively short-latency misses it causes are tolerated by the 128-entry instruction window. Instruction cache pollution due

to wrong-path prefetches affects performance significantly in gcc, crafty, perlbmk, vortex, and twolf, four of which

have significant numbers of unused wrong-path instruction cache misses (shown in Figure 11). However, even with

smaller first-level caches, removing pollution in the L2 cache is more important than removing pollution in either of

the first-level caches.
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Figure 13. IPC improvement over the baseline processor with 16KB instruction and data caches if pollution
caused by wrong-path references is eliminated from caches.

Figure 14, which shows the normalized number of L2 cache misses in the baseline model and a model that does

not simulate wrong-path references, provides insight into why L2 cache pollution degrades performance in vpr and

gcc when wrong-path references are modeled. For these two benchmarks, the number of L2 cache misses suffered

by correct-path instructions (correct-path miss + partially-used wrong-path miss in Figure 14) increases significantly

when wrong-path references are modeled, due to the pollution caused by unused wrong-path L2 cache misses. On the

other hand, the number of L2 cache misses suffered by correct-path instructions either decreases or stays the same for

other benchmarks when wrong-path references are modeled, which explains why wrong-path references are beneficial

for the performance of most benchmarks.

We conclude that pollution in the L2 cache is the most significant negative effect of wrong-path memory references.

In order to reduce the negative impact of wrong-path references or to increase their positive effects, high-performance

processors should adopt policies to reduce the L2 cache pollution caused by wrong-path references.

4.4. Understanding the Prefetching Effects

Previous sections have shown that, in general, the prefetching benefits of wrong-path references outweigh their

negative effects, such as bandwidth demands or cache pollution. In this section we present code examples to provide

insights into why wrong-path memory references can be beneficial for correct-path execution.
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Figure 14. Normalized number of L2 cache misses for the baseline (leftmost bars) and a model that does not
execute wrong-path references (rightmost bars).

4.4.1. Prefetching Data for Later Loop Iterations We find that wrong-path execution of a loop iteration can

prefetch data for the correct-path execution of the same iteration. This can happen when a conditional branch in-

side the loop is mispredicted and the processor continues to execute the next iteration(s) on the wrong path. Our

analysis shows that most of the useful wrong-path data cache misses in mcf and bzip2 are generated in this fashion.

Figure 15 shows a code section from mcf’s primal bea mpp function, which performs an optimization routine.

The shown for loop traverses an array of pointers to arc t structures and performs operations on a single arc t

structure in each iteration. The branch in line 4 is dependent on the pointer load arc->ident, and is mispredicted

30% of the time. In some iterations the processor mispredicts this branch and does not execute the body of the if

statement and starts executing the next iteration on the wrong path. This wrong-path execution of the next iteration

initiates a load request for the next arc->ident. When the mispredicted branch is resolved, the processor recovers,

executes the body of the if statement and starts the next iteration on the correct path. Back on the correct path,

the processor generates a load request for arc->ident, which has already been prefetched into the data cache by

the previous execution of this iteration on the wrong path. We find that the load of arc->ident frequently misses

the data cache and sometimes the L2 cache. Therefore, the wrong-path execution of later iterations of this for loop

prefetches data that will later be used by the correct-path execution of the same iterations. The instruction that loads

arc->ident causes 63% of the wrong-path data cache misses in mcf and 99% of these are fully or partially used

by later correct-path references. In this example, because the body of the if statement contains a lot of instructions,

not executing the body of the if statement in the iterations executed on the wrong path parallelizes the misses caused
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by the load of arc->ident in different iterations. The parallelization of these misses may not be achieved if the

processor remains on the correct path and correct path requires the execution of the body of the if statement in each

iteration, because the instruction window would be filled with instructions in the body of the if statement instead of

instructions that load arc->ident.

1 : arc_t *arc; // array of arc_t structures
2 : // initialize arc (arc = ...)
3 :
4 : for ( ; arc < stop_arcs; arc += size) {
5 : if (arc->ident > 0) { // frequently mispredicted br.
6 : // function calls and
7 : // operations on the structure pointed to by arc
8 : // ...
9 : }
10: }

Figure 15. An example from mcf showing wrong-path prefetching for later loop iterations.

4.4.2. One Loop Prefetching for Another Although less common and less accurate than wrong-path prefetching

within iterations of the same loop, two different loops can prefetch data for each other if they are both working on the

same data structure.

Figure 16 shows a code example from mcf, a sorting routine which exhibits wrong-path prefetching behavior. The

two while loops in lines 5 and 7 traverse an array of pointers to structures, perm, and compare a member of each

structure to the value cut. It is important to note that the first traversal begins from a lower memory address and works

up, while the second traversal begins at a higher memory address and works down. Both while loops branch based

on a data-dependent condition. We find that when the first while loop mispredicts its branch-terminating condition

and continues executing loop iterations, its accesses to perm[l]->abs cost continue to load data from the upper

part of the perm array and, in the process, serve to prefetch data elements for the second while loop.

1 : l = min; r = max;
2 : cut = perm[ (long)( (l+r) / 2 ) ]->abs_cost;
3 :
4 : do {
5 : while( perm[l]->abs_cost > cut )
6 : l++;
7 : while( cut > perm[r]->abs_cost )
8 : r--;
9 :
10: if( l < r ) {
11: xchange = perm[l];
12: perm[l] = perm[r];
13: perm[r] = xchange;
14: }
15: if( l <= r ) {
16: l++; r--;
17: }
18: } while( l <= r );

Figure 16. An example from mcf showing prefetching between different loops.

4.4.3. Prefetching in Control-Flow Hammocks If a hammock branch is mispredicted, the loads executed on the

mispredicted path in the hammock may provide useful data for the loads that are later executed on the correct path in

the hammock. This happens if both paths of the hammock need the same data.

16



The while loop from mcf benchmark’s refresh potential function, shown in Figure 17, demonstrates this

kind of wrong-path prefetching. This function traverses a linked data structure. Depending on the orientation of

the node visited, a potential is calculated for the node. Note that the values used to calculate the potential are

the same regardless of the orientation of the node. In other words, instructions in the if block and instructions

in the else block use the same data. Therefore, if the branch of the if statement is mispredicted, wrong-path load

instructions will generate requests for node->basic arc->cost and node->pred->potential. Once the

mispredicted branch is resolved, correct-path load instructions will generate requests for the same data, which would

already be in the cache or in flight. Our analysis shows that wrong-path cache misses caused by the if block and the

else block of this hammock constitute 6% of the wrong-path data cache misses in mcf and more than 99% of them

are fully or partially used by instructions on the correct path.

1 : node_t *node;
2 : // initialize node
3 : // ...
4 :
5 : while (node) {
6 :
7 : if (node->orientation == UP) { // mispredicted branch
8 : node->potential = node->basic_arc->cost
9 : + node->pred->potential;
10: } else { /* == DOWN */
11: node->potential = node->pred->potential
12: - node->basic_arc->cost;
13: // ...
14: }
15: // control-flow independent point (re-convergent point)
16: node = node->child;
17: }

Figure 17. An example from mcf showing prefetching in control-flow hammocks.

4.4.4. Prefetching due to Control-Flow Independence We find that control-flow independence [20] is one of the

major factors contributing to the prefetching benefit of wrong-path references. Prefetching data for later loop itera-

tions, as discussed previously, results in prefetching benefits due to control-flow independence, i.e. some portion of

the code executed on the wrong-path is exactly the same as code that needs to be executed on the correct-path and

the wrong-path references in this portion of the code provide prefetching benefits. Another example of prefetching

benefits due to control-flow independence can be seen in Figure 17. In this example, wrong-path execution due to

the mispredicted hammock branch reaches a control-flow independent point after the basic block belonging to the

hammock (line 15). While executing on the wrong path after the control-flow independent point, the processor gen-

erates a request for node->child. Once the mispredicted hammock branch is resolved, the instructions after the

control-flow independent point are re-executed as part of correct-path execution and generate a request for the same

data, which is already in the cache or in flight.
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5. Effects of Wrong-path References on Runahead Execution Processors

This section examines the performance impact of wrong-path memory references on a processor that implements

runahead execution [7, 17]. Runahead execution is a speculation technique that utilizes the idle cycles due to L2 cache

misses to perform pre-execution in order to generate long-latency prefetches. A runahead execution processor initiates

speculative processing if the oldest instruction in the instruction window is an L2 miss and pre-executes the instruction

stream until the L2 miss is complete. During this speculative processing mode, called runahead mode [17], the

processor may mispredict a branch and may remain on the wrong program path for a long time, since the mispredicted

branch may be data-dependent on the L2 miss, which has not been completed yet. Due to the existence of these

unresolvable mispredicted branches (called divergence points in [17]), it is possible that a runahead processor spends

more time on the wrong-path than a traditional out-of-order processor. Therefore, the performance impact of wrong-

path memory references may be larger on a runahead processor than on a traditional processor. As runahead execution

has been shown to be a very effective prefetching mechanism used to approximate the memory latency tolerance of a

large instruction window [5, 8], we would like to examine and understand the effects of wrong-path memory references

on the performance of a runahead processor. We model runahead execution as described by Mutlu et al. [17] on our

baseline processor described in Section 2.

5.1. Wrong Path Modeling and Performance Improvement of Runahead Execution

As runahead execution is an aggressive form of speculative execution, not modeling wrong-path memory references

may affect the performance improvement estimates of implementing runahead execution. Figure 18 shows the IPC

improvement obtained by adding runahead execution to the baseline processor. The left bar for each benchmark

shows the improvement if the simulator used correctly models the wrong-path memory references and the right bar

shows the improvement if the simulator does not model the wrong-path memory references. IPC improvement of

runahead execution is significantly higher if wrong-path references are correctly modeled, especially for vpr, mcf,

parser, vortex, and bzip2. In mcf, the most significant benefit of runahead execution comes from prefetches generated

on the wrong path. Not modeling these prefetches significantly underestimates the IPC improvement achievable by

runahead execution. If wrong-path references are not modeled the average IPC improvement of runahead execution is

estimated as 17%, whereas the correct average IPC improvement is 30%.

Figure 19 shows that the five benchmarks that show significant difference in the performance improvement of runa-

head (vpr, mcf, parser, vortex, bzip2) when wrong-path memory references are not modeled spend a very significant

portion of their fetch cycles on the wrong path and fetch and execute a significant percentage of instructions on the

wrong path. In mcf, 20% of all executed instructions are wrong-path instructions. In the baseline processor with-

out runahead execution 10% of all executed instructions are wrong-path instructions, as shown in Figure 1. Hence,

runahead execution significantly increases the number of wrong-path references executed in mcf. This is true also for
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Figure 18. IPC improvement of adding runahead execution to the baseline processor if wrong-path memory
references are or are not modeled.

vpr, parser, vortex, and bzip2. Not modeling these references, which provide useful prefetching benefits, results in the

underestimation of the performance improvement of runahead execution.
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Figure 19. Percentage of total cycles spent on the wrong path, percentage of instructions fetched on the wrong
path, and percentage of instructions (memory and non-memory) executed on the wrong path in the runahead
processor.

5.2. Effect of Memory Latency on Runahead Processors

Figure 20 shows the percent error in IPC of the runahead execution processor when wrong-path memory references

are not modeled for three main memory latencies. Similar to our findings on traditional out-of-order processors in

Section 3, not modeling wrong-path references result in a significant error and the error increases as the memory

latency increases. We observe that wrong-path memory references have a much larger impact on the IPC estimates of
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a runahead execution processor. For example, if wrong-path references are not modeled, the error in the IPC estimate

for the mcf benchmark is 63% for a 1000-cycle memory latency. Error in IPC is more than 5% for five benchmarks:

vpr, mcf, parser, vortex, and bzip2. Hence, wrong-path references are very important to model in order to get accurate

IPC estimates in a runahead execution processor, more so than in a traditional out-of-order processor.
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Figure 20. Error in the IPC of the runahead execution processor for three different memory latencies if wrong-
path memory references are not simulated.

Figure 20 also shows that wrong-path references have a positive effect on the overall performance of a runahead

processor for most of the evaluated benchmarks. The only benchmark where wrong-path references have a significant

negative effect on overall performance is gcc. As compared to a traditional processor that was examined in Figure 4,

wrong-path references have a more positive effect on a runahead processor. We find that there are two major reasons

for this:

1. A runahead processor executes more instructions on the wrong path than a traditional processor, since the number

of instructions executed during runahead mode is not limited by the processor’s instruction window size. The

higher the number of wrong-path instructions executed that provide prefetching benefits for the correct path as

analyzed in Section 4.4, the higher the positive performance impact of wrong-path memory references.

2. A runahead processor is much better able to tolerate the negative effects of the wrong-path references such as

cache pollution than a traditional processor [15].

Figure 21 shows that the percentage (and therefore, the number of executed wrong-path instructions significantly

increases with increased memory latency on a runahead processor, on average. Note that this behavior is different

from the observations we made for a traditional processor in Figure 5 in Section 3. As runahead execution enables the

processor to execute more instructions than the processor’s instruction window allows, more wrong-path instructions
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are executed by the runahead processor with increased memory latency. The increase in the number of executed

wrong-path memory references increases the impact they have on performance.
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Figure 21. Percentage of executed wrong-path instructions out of all executed instructions for three different
memory latencies on a runahead processor.

5.3. Effect of Instruction Window Size on Runahead Processors

Runahead execution effectively enlarges the instruction window size of an out-of-order processor by capturing the

prefetching benefits of a larger instruction window [17]. Since the number of instructions executed during runahead

execution is not limited by the size of the instruction window, we would expect that the error in IPC would not change

significantly if wrong-path references are not modeled on runahead processors with larger instruction windows. To

test this hypothesis we evaluate the performance impact of not modeling wrong-path memory references on runahead

processors with three different instruction window sizes. Figure 22 shows the error in IPC estimates for runahead

processors with three different instruction window sizes, when wrong-path memory references are not modeled. As

anticipated, error in IPC does not change significantly with increased window size. Hence, unlike the results presented

for a traditional processor in Section 3.1, the instruction window size of a runahead execution processor does not

significantly affect the performance impact of wrong-path memory references.

5.4. Effect of Hardware Prefetching on Runahead Processors

We also evaluate the performance impact of wrong-path memory references on runahead execution processors that

employ an aggressive stream prefetcher, which is described in Section 3.2. Figure 23 shows the IPC improvement

obtained by adding runahead execution to the baseline processor with a stream prefetcher when wrong-path references

are correctly modeled (left bars) and when they are not modeled (right bars). Similar to the observation made for the

processor without a stream prefetcher (Figure 18), IPC improvement provided by runahead execution is significantly
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Figure 22. Error in the IPC of the runahead execution processor for three different instruction window sizes if
wrong-path memory references are not simulated.

higher if wrong-path references are correctly modeled. Hence, it is very important to model wrong-path memory

references to get an accurate estimate of the performance improvement due to runahead execution on both processors

that employ stream prefetching and processors that do not.
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Figure 23. IPC improvement of adding runahead execution to the baseline processor with a stream prefetcher
if wrong-path memory references are or are not modeled.

Figures 24 and 25 show the performance impact of not modeling wrong-path memory references on runahead

processors that employ stream prefetching, for a variety of memory latencies and instruction window sizes. Comparing

the performance impact shown in these figures to that shown in Figures 20 and 22, we see that the performance impact

of wrong-path references is very similar on those runahead processors with stream prefetching and those without.

Thus, stream prefetching does not significantly affect the performance impact of wrong-path memory references on
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Figure 24. Error in the IPC of the runahead execution processor with a stream prefetcher for three different
memory latencies if wrong-path memory references are not simulated.

runahead execution processors, a conclusion which was shown to hold true for non-runahead out-of-order processors

in Section 3.2.
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Figure 25. Error in the IPC of the runahead execution processor with a stream prefetcher for three different
instruction window sizes if wrong-path memory references are not simulated.

5.5. Analysis of the Effects on Runahead Processors

We examine the performance impact of the negative effects of wrong-path memory references on a runahead exe-

cution processor by individually and ideally eliminating the causes of negative performance impact. Figure 26 shows

the performance improvement obtained if the bandwidth/resource contention, I-Cache pollution, D-Cache pollution,

L2 cache pollution, and pollution in all caches caused by wrong-path memory references are eliminated. Similar to

the results obtained for a traditional processor (Sections 4.1 and 4.3), eliminating the bandwidth/resource contention,
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I-Cache pollution, and D-Cache pollution caused by wrong-path references do not significantly improve the perfor-

mance of a runahead execution processor. On the other hand, eliminating the L2 cache pollution caused by wrong-path

references significantly increases the IPC of a runahead execution processor. We conclude that L2 cache pollution is

the most significant negative effect of wrong-path memory references, on runahead processors as well as traditional

high-performance processors.
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Figure 26. IPC improvement over the runahead processor if negative effects caused by wrong-path references
are eliminated.

Figure 27 shows the normalized number of L2 cache misses in the runahead model that correctly models wrong-

path memory references and the runahead model that does not execute wrong-path memory references. For gcc, the

number of L2 cache misses suffered by correct-path instructions (correct-path miss + partially-used wrong-path miss

in Figure 27) increases significantly when wrong-path references are modeled, due to the pollution caused by unused

wrong-path L2 cache misses. This is the reason for the IPC degradation in gcc when wrong-path references are

correctly modeled. For all other benchmarks except crafty, correctly modeling the wrong-path references reduces the

number of L2 cache misses suffered by correct-path instructions. This reduction is 20% for mcf, whose performance

is significantly underestimated when wrong-path references are not modeled.

We also analyzed the code structures that cause the prefetching benefits of wrong-path memory references in a

runahead execution processor. We found that the code structures identified in Section 4.4 for a traditional processor

are also the major causes of prefetching benefits in a runahead processor.

6. Related Work

Previous work in the area of analyzing the effects of wrong-path memory references on processor performance

generally focused on evaluating the performance impact in terms of cache hit rates. Only a few researchers studied the

impact of wrong-path references on overall processor performance, usually using processor models and main memory
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Figure 27. Normalized number of L2 cache misses for the runahead model that correctly models wrong-path
memory references (leftmost bars) and the runahead model that does not execute wrong-path memory refer-
ences (rightmost bars).

latencies that are unrealistic by today’s standards. Also, the previous studies did not identify the exact reasons why

wrong-path references reduce performance or what kind of program constructs lead to the prefetching effects. No

previous work we are aware of examined the effect of wrong-path references in a runahead execution processor that

implements very aggressive speculative execution. Hence, this paper makes four major contributions to the speculative

execution research:

1. It analyzes the overall performance impact of wrong-path memory references with realistic main memory laten-

cies and instruction window sizes for current and near-future processors.

2. It identifies the major reason (L2 cache pollution) as to why wrong-path memory references reduce performance.

3. It provides insights into why wrong-path memory references increase performance by providing code examples

from real programs that show why wrong-path memory references provide prefetching benefits.

4. It examines the overall performance impact of wrong-path memory references in a runahead execution processor

and shows that modeling wrong-path memory references is crucial to get an accurate estimate on the performance

improvement provided by runahead execution.

Several papers examined the effect of speculative execution on cache and processor performance. We hereby

provide a brief survey of related research and discuss its relation to this paper.
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Butler compared the performance of trace-driven versus execution-driven simulation for the SPEC89 integer bench-

marks on a machine with a 10-cycle memory latency [3]. Butler showed that, in general, execution-driven simulation

performs worse than trace-driven simulation and the main reason for this is pollution of the branch prediction struc-

tures. However, a performance improvement is observed on one benchmark, gcc, when the instruction and data caches

are speculatively updated, but the branch prediction structures are not speculatively updated. We confirm the result that

speculative memory references can improve performance and find that the beneficial effects are even more pronounced

with longer memory latencies.

Pierce and Mudge studied the effect of wrong-path memory references on cache hit rates [18]. They developed a

tool used to simulate wrong-path memory accesses and use this tool to show that wrong-path memory accesses allocate

useful data and instruction cache blocks 50% of the time on the SPEC92 C benchmarks. Their study used trace-driven

simulation, which leads to inaccuracies in modeling the wrong-path effects. Since trace-driven simulators cannot

execute wrong-path instructions, Pierce and Mudge injected a fixed number of instructions to emulate the wrong path.

This is not realistic, as pointed out in [6], because the number of instructions executed on the wrong-path is not fixed

in a real processor. In this paper, we use an execution-driven simulator that faithfully models the wrong-path execution

as it would happen in a real processor.

Combs et al. also studied the effects of wrong-path memory references on cache behavior and processor perfor-

mance [6]. Similar to our results, they found that wrong-path references are beneficial performance in some bench-

marks, but detrimental for performance in some others. On average, they reported that wrong-path references are

beneficial for performance, increasing the average IPC slightly by 1% on SPEC95 integer benchmarks. Combs et

al. did not examine the wrong-path effects on processors with main memory latencies longer than 150 cycles. We

show that, with longer memory latencies seen in state-of-the-art processors [23], wrong-path memory references have

a more significant impact on processor performance. We also analyze in detail the causes of the positive impact of

wrong-path references, providing code examples from benchmarks, and the causes of the negative impact of wrong-

path references.

Pierce and Mudge introduced an instruction cache prefetching mechanism, which leverages the usefulness of

wrong-path memory references to the instruction cache [19]. Their mechanism fetches both the fall-through and target

addresses of conditional branch instructions, i.e., they prefetch both the correct-path and wrong-path instructions. They

found that wrong-path prefetching improves performance by up to 4% over a next-line prefetching mechanism. Pierce

and Mudge observed that the effectiveness of wrong-path prefetching increases as the memory latency is increased.

Lee et al. studied instruction cache fetch policies on a processor with speculative execution using a cache simu-

lator [11]. They found that the prefetching benefit of wrong-path instruction cache misses outweighs their pollution

effect, measured in terms of instruction cache hit rate. They did not examine the impact of wrong-path instruction

cache references on overall IPC performance.
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Bahar and Albera investigated a method of capturing the beneficial aspects of speculative memory references while

avoiding the pollution effects of wrong-path memory accesses [1]. They assumed a priori that wrong-path references

degrade performance. Their mechanism uses a branch confidence predictor to indicate when the processor is likely on

the wrong path in which case, the results of all memory accesses are placed into a separate fully-associative 16-entry

buffer. A maximum performance improvement of 3.4% is observed when the results of all wrong-path references are

stored in the separate buffer. However this performance improvement is due primarily to the additional associativity

provided by the separate buffer [1]. We refute Bahar and Albera’s assumption that wrong-path references always

degrade performance and show that wrong-path references do benefit performance in many cases.

Moudgill et al. investigated the effect wrong-path memory accesses have on IPC and data cache miss rates [14].

Their objective was to determine whether, in light of speculative execution, trace-driven simulators can accurately

inform the design decisions made during processor development. They compared the IPC of a processor running the

SPEC95 integer benchmarks with and without wrong path memory accesses; their memory latency was 40 cycles.

They found that the IPC difference is negligible in all but one case (an unexplained outlier with a difference of 4% in

IPC occurs for the benchmark compress). We show that processor performance is less sensitive to wrong-path memory

accesses when using low memory latencies, hence the negligible differences in IPC reported by Moudgill et al.

Sendag et al. proposed the use of a fully-associative Wrong Path Cache to eliminate the cache pollution caused by

wrong-path load references [21]. Similar to Bahar and Albera’s proposal [1], this cache is accessed in parallel with

the L1 data cache. Data brought into the processor by wrong-path load instructions and evicted from the L1 cache are

both stored in the Wrong Path Cache. Hence, the Wrong Path Cache serves both as a victim cache [9] and a buffer to

store data fetched by wrong path load references. This approach eliminates the pollution caused by wrong-path load

references in the L1 cache, but does not eliminate the pollution caused in the L2 cache, which is a bigger problem as

we have already described.

Mutlu et al. proposed using the first-level caches as filters to reduce the second-level cache pollution caused by

speculative memory references, including both wrong-path and hardware prefetcher references [15]. Their mechanism

takes advantage of the observation that first-level cache pollution caused by speculative references is less detrimental to

performance than second-level cache pollution. Their approach reduces the L2 cache pollution caused by speculative

references both for out-of-order and runahead processors, without requiring extra storage for the data fetched by

speculative references.

Jourdan et al. analyzed the effects of wrong-path execution on the branch prediction structures [10]. They found that

control-flow instructions executed on the wrong-path cause pollution in the return address stack and the global branch

history register, which results in performance degradation. To alleviate this problem, they proposed mechanisms to

recover the state of the return address stack and the global branch history register upon a branch misprediction recovery.
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Manne et al. observed that execution down the wrong program path results in a significant number of increase

in executed instructions, which they called extra work [12]. Their observation is similar to the observations made

in this paper with regard to the number of instructions executed on the wrong path. Manne et al. proposed pipeline

gating to reduce the extra work performed in the processor pipeline due to branch mispredictions. They showed that

pipeline gating reduces the number of extra executed instructions, thereby reducing the overall energy consumed by

the processor.

Lastly, Bhargava et al. observed that the major disadvantage of trace-driven simulation is its inability to model the

fetch and execution of speculative instructions [2]. They proposed a method for augmenting a trace-driven simulator

to model the effects of speculative execution, including most memory references from the wrong path. Such a method

provides the correctness benefit of modeling some wrong-path memory references while still preserving the speed of

fast trace-driven simulation.

7. Conclusions

In this paper, we evaluate the effects wrong-path references have on the performance of out-of-order and runahead

execution processors. Our evaluation reveals the following conclusions:

1. Modeling wrong-path memory references is important, since not modeling them leads to errors of up to 10% in

IPC estimates for an out-of-order processor and up to 63% in IPC estimates for a runahead execution processor.

2. Modeling wrong-path memory references will be more important in future processors with longer memory laten-

cies and larger instruction windows.

3. In general, wrong-path memory references are beneficial for processor performance because they prefetch data

into processor caches.

4. The dominant negative effect of wrong-path memory references is the pollution they cause in the L2 cache.

Pollution in the first-level caches or bandwidth and resource usage of wrong-path references do not significantly

impact performance.

5. The prefetching benefit of wrong-path references can be caused by different code structures. For the benchmarks

examined, the main benefit comes from wrong-path prefetching of the data used by a loop iteration before that

iteration is executed on the correct-path.

6. Not modeling wrong-path references significantly underestimates the performance improvement provided by

runahead execution. This is because wrong-path references are generally very beneficial for performance in a

runahead execution processor.

7. Stream prefetching does not significantly affect the performance impact of wrong-path memory references.
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In light of these results, to increase the performance of processors, designers should focus on eliminating the L2

cache pollution caused by wrong-path memory references. Perhaps compilers should also structure the code such that

wrong-path execution always provides prefetching benefits for later correct-path execution, especially for references

that have a high probability of cache miss and around branches that are frequently mispredicted. The designers of

runahead execution processors should correctly model the wrong-path memory references in order to get accurate

estimates of the IPC performance of the runahead processor and the performance improvement provided by runahead

execution.
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