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Abstract—Our ISCA 2015 paper [1] provides a new pro-
grammable processing-in-memory (PIM) architecture and system
design that can accelerate key data-intensive applications, with
a focus on graph processing workloads. Our major idea was to
completely rethink the system, including the programming model,
data partitioning mechanisms, system support, instruction set
architecture, along with near-memory execution units and their
communication architecture, such that an important workload
can be accelerated at a maximum level using a distributed
system of well-connected near-memory accelerators. We built
our accelerator system, Tesseract, using 3D-stacked memories
with logic layers, where each logic layer contains general-purpose
processing cores and cores communicate with each other using a
message-passing programming model. Cores could be specialized
for graph processing (or any other application to be accelerated).

To our knowledge, our paper was the first to completely design
a near-memory accelerator system from scratch such that it is
both generally programmable and specifically customizable to
accelerate important applications, with a case study on major
graph processing workloads. Ensuing work in academia and
industry showed that similar approaches to system design can
greatly benefit both graph processing workloads and other
applications, such as machine learning, for which ideas from
Tesseract seem to have been influential.

This short retrospective provides a brief analysis of our ISCA
2015 paper and its impact. We briefly describe the major ideas
and contributions of the work, discuss later works that built on
it or were influenced by it, and make some educated guesses on
what the future may bring on PIM and accelerator systems.

I. BACKGROUND, APPROACH & MINDSET

We started our research when 3D-stacked memories
(e.g., [2–4]) were viable and seemed to have promise for build-
ing effective and practical processing-near-memory systems.
Such near-memory systems could lead to improvements, but
there was little to no research that examined how an accelerator
could be completely (re-)designed using such near-memory
technology, from its hardware architecture to its programming
model and software system, and what the performance and
energy benefits could be of such a re-design. We set out to
answer these questions in our ISCA 2015 paper [1].

We followed several major principles to design our acceler-
ator from the ground up. We believe these principles are still
important: a major contribution and influence of our work was
in putting all of these together in a cohesive full-system design
and demonstrating the large performance and energy benefits
that can be obtained from such a design. We see a similar
approach in many modern large-scale accelerator systems in
machine learning today (e.g., [5–9]). Our principles are:

1. Near-memory execution to enable/exploit the high data
access bandwidth modern workloads (e.g., graph processing)
need and to reduce data movement and access latency.

2. General programmability so that the system can be easily
adopted, extended, and customized for many workloads.

3. Maximal acceleration capability to maximize the per-
formance and energy benefits. We set ourselves free from
backward compatibility and cost constraints. We aimed to
completely re-design the system stack. Our goal was to explore
the maximal performance and energy efficiency benefits we
can gain from a near-memory accelerator if we had complete
freedom to change things as much as we needed. We contrast
this approach to the minimal intrusion approach we also
explored in a separate ISCA 2015 paper [10].

4. Customizable to specific workloads, such that we can
maximize acceleration benefits. Our focus workload was graph

analytics/processing, a key workload at the time and today.
However, our design principles are not limited to graph
processing and the system we built is customizable to other
workloads as well, e.g., machine learning, genome analysis.

5. Memory-capacity-proportional performance, i.e., pro-
cessing capability should proportionally grow (i.e., scale)
as memory capacity increases and vice versa. This enables
scaling of data-intensive workloads that need both memory
and compute.

6. Exploit new technology (3D stacking) that enables tight
integration of memory and logic and helps multiple above prin-
ciples (e.g., enables customizable near-memory acceleration
capability in the logic layer of a 3D-stacked memory chip).

7. Good communication and scaling capability to support
scalability to large dataset sizes and to enable memory-
capacity-proportional performance. To this end, we provided
scalable communication mechanisms between execution cores
and carefully interconnected small accelerator chips to form a
large distributed system of accelerator chips.

8. Maximal and efficient use of memory bandwidth to supply
the high-bandwidth data access that modern workloads need.
To this end, we introduced new, specialized mechanisms for
prefetching and a programming model that helps leverage
application semantics for hardware optimization.

II. CONTRIBUTIONS AND INFLUENCE

We believe the major contributions of our work were 1)
complete rethinking of how an accelerator system should be
designed to enable maximal acceleration capability, and 2) the
design and analysis of such an accelerator with this mindset
and using the aforementioned principles to demonstrate its
effectiveness in an important class of workloads.

One can find examples of our approach in modern large-
scale machine learning (ML) accelerators, which are perhaps
the most successful incarnation of scalable near-memory ex-
ecution architectures. ML infrastructure today (e.g., [5–9])
consists of accelerator chips, each containing compute units
and high-bandwidth memory tightly packaged together, and
features scale-up capability enabled by connecting thousands
of such chips with high-bandwidth interconnection links. The
system-wide rethinking that was done to enable such accel-
erators and many of the principles used in such accelerators
resemble our ISCA 2015 paper’s approach.

The “memory-capacity-proportional performance” principle
we explored in the paper shares similarities with how ML
workloads are scaled up today. Similar to how we carefully
sharded graphs across our accelerator chips to greatly im-
prove effective memory bandwidth in our paper, today’s ML
workloads are sharded across a large number of accelera-
tors by leveraging data/model parallelism and optimizing the
placement to balance communication overheads and compute
scalability [11, 12]. With the advent of large generative models
requiring high memory bandwidth for fast training and infer-
ence, the scaling behavior where capacity and bandwidth are
scaled together has become an essential architectural property
to support modern data-intensive workloads.

The “maximal acceleration capability” principle we used
in Tesseract provides much larger performance and energy
improvements and better customization than the “minimalist”
approach that our other ISCA 2015 paper on PIM-Enabled
Instructions [10] explored: “minimally change” an existing
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system to incorporate (near-memory) acceleration capability
to ease programming and keep costs low. So far, the industry
has more widely adopted the maximal approach to overcome
the pressing scaling bottlenecks of major workloads. The key
enabler that bridges the programmability gap between the
maximal approach favoring large performance & energy bene-
fits and the minimal approach favoring ease of programming is
compilation techniques. These techniques lower well-defined
high-level constructs into lower-level primitives [12, 13]; our
ISCA 2015 papers [1, 10] and a follow-up work [14] explore
them lightly. We believe that a good programming model that
enables large benefits coupled with support for it across the
entire system stack (including compilers & hardware) will
continue to be important for effective near-memory system
and accelerator designs [14]. We also believe that the maximal
versus minimal approaches that are initially explored in our
two ISCA 2015 papers is a useful way of exploring emerg-
ing technologies (e.g., near-memory accelerators) to better
understand the tradeoffs of system designs that exploit such
technologies.

III. INFLUENCE ON LATER WORKS

Our paper was at the beginning of a proliferation of scalable
near-memory processing systems designed to accelerate key
applications (see [15] for many works on the topic). Tesseract
has inspired many near-memory system ideas (e.g., [16–28])
and served as the de facto comparison point for such systems,
including near-memory graph processing accelerators that built
on Tesseract and improved various aspects of Tesseract. Since
machine learning accelerators that use high-bandwidth mem-
ory (e.g., [5, 29]) and industrial PIM prototypes (e.g., [30–41])
are now in the market, near-memory processing is no longer
an “eccentric” architecture it used to be when Tesseract was
originally published.

Graph processing & analytics workloads remain as an
important and growing class of applications in various forms,
ranging from large-scale industrial graph analysis engines
(e.g., [42]) to graph neural networks [43]. Our focus on large-
scale graph processing in our ISCA 2015 paper increased
attention to this domain in the computer architecture com-
munity, resulting in subsequent research on efficient hardware
architectures for graph processing (e.g., [44–46]).

IV. SUMMARY AND FUTURE OUTLOOK

We believe that our ISCA 2015 paper’s principled re-
thinking of system design to accelerate an important class
of data-intensive workloads provided significant value and
enabled/influenced a large body of follow-on works and ideas.
We expect that such rethinking of system design for key
workloads, especially with a focus on “maximal acceleration
capability,” will continue to be critical as pressing technology
and application scaling challenges increasingly require us to
think differently to substantially improve performance and
energy (as well as other metrics). We believe the principles
exploited in Tesseract are fundamental and they will remain
useful and likely become even more important as systems
become more constrained due to the continuously-increasing
memory access and computation demands of future workloads.
We also project that as hardware substrates for near-memory
acceleration (e.g., 3D stacking, in-DRAM computation, NVM-
based PIM, processing using memory [15]) evolve and mature,
systems will take advantage of them even more, likely using
principles similar to those used in the design of Tesseract.
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