
Retrospective: A Scalable Processing-in-Memory Accelerator
for Parallel Graph Processing

Junwhan Ahn† Sungpack Hong‡ Sungjoo Yoo∇ Onur Mutlu§ Kiyoung Choi∇
†Google DeepMind ‡Oracle Labs §ETH Zürich ∇Seoul National University

Abstract—Our ISCA 2015 paper [1] provides a new pro-
grammable processing-in-memory (PIM) architecture and system
design that can accelerate key data-intensive applications, with
a focus on graph processing workloads. Our major idea was to
completely rethink the system, including the programming model,
data partitioning mechanisms, system support, instruction set
architecture, along with near-memory execution units and their
communication architecture, such that an important workload
can be accelerated at a maximum level using a distributed
system of well-connected near-memory accelerators. We built
our accelerator system, Tesseract, using 3D-stacked memories
with logic layers, where each logic layer contains general-purpose
processing cores and cores communicate with each other using a
message-passing programming model. Cores could be specialized
for graph processing (or any other application to be accelerated).

To our knowledge, our paper was the first to completely design
a near-memory accelerator system from scratch such that it is
both generally programmable and specifically customizable to
accelerate important applications, with a case study on major
graph processing workloads. Ensuing work in academia and
industry showed that similar approaches to system design can
greatly benefit both graph processing workloads and other
applications, such as machine learning, for which ideas from
Tesseract seem to have been influential.

This short retrospective provides a brief analysis of our ISCA
2015 paper and its impact. We briefly describe the major ideas
and contributions of the work, discuss later works that built on
it or were influenced by it, and make some educated guesses on
what the future may bring on PIM and accelerator systems.

I. BACKGROUND, APPROACH & MINDSET

We started our research when 3D-stacked memories
(e.g., [2–4]) were viable and seemed to have promise for build-
ing effective and practical processing-near-memory systems.
Such near-memory systems could lead to improvements, but
there was little to no research that examined how an accelerator
could be completely (re-)designed using such near-memory
technology, from its hardware architecture to its programming
model and software system, and what the performance and
energy benefits could be of such a re-design. We set out to
answer these questions in our ISCA 2015 paper [1].

We followed several major principles to design our acceler-
ator from the ground up. We believe these principles are still
important: a major contribution and influence of our work was
in putting all of these together in a cohesive full-system design
and demonstrating the large performance and energy benefits
that can be obtained from such a design. We see a similar
approach in many modern large-scale accelerator systems in
machine learning today (e.g., [5–9]). Our principles are:

1. Near-memory execution to enable/exploit the high data
access bandwidth modern workloads (e.g., graph processing)
need and to reduce data movement and access latency.

2. General programmability so that the system can be easily
adopted, extended, and customized for many workloads.

3. Maximal acceleration capability to maximize the per-
formance and energy benefits. We set ourselves free from
backward compatibility and cost constraints. We aimed to
completely re-design the system stack. Our goal was to explore
the maximal performance and energy efficiency benefits we
can gain from a near-memory accelerator if we had complete
freedom to change things as much as we needed. We contrast
this approach to the minimal intrusion approach we also
explored in a separate ISCA 2015 paper [10].

4. Customizable to specific workloads, such that we can
maximize acceleration benefits. Our focus workload was graph

analytics/processing, a key workload at the time and today.
However, our design principles are not limited to graph
processing and the system we built is customizable to other
workloads as well, e.g., machine learning, genome analysis.

5. Memory-capacity-proportional performance, i.e., pro-
cessing capability should proportionally grow (i.e., scale)
as memory capacity increases and vice versa. This enables
scaling of data-intensive workloads that need both memory
and compute.

6. Exploit new technology (3D stacking) that enables tight
integration of memory and logic and helps multiple above prin-
ciples (e.g., enables customizable near-memory acceleration
capability in the logic layer of a 3D-stacked memory chip).

7. Good communication and scaling capability to support
scalability to large dataset sizes and to enable memory-
capacity-proportional performance. To this end, we provided
scalable communication mechanisms between execution cores
and carefully interconnected small accelerator chips to form a
large distributed system of accelerator chips.

8. Maximal and efficient use of memory bandwidth to supply
the high-bandwidth data access that modern workloads need.
To this end, we introduced new, specialized mechanisms for
prefetching and a programming model that helps leverage
application semantics for hardware optimization.

II. CONTRIBUTIONS AND INFLUENCE

We believe the major contributions of our work were 1)
complete rethinking of how an accelerator system should be
designed to enable maximal acceleration capability, and 2) the
design and analysis of such an accelerator with this mindset
and using the aforementioned principles to demonstrate its
effectiveness in an important class of workloads.

One can find examples of our approach in modern large-
scale machine learning (ML) accelerators, which are perhaps
the most successful incarnation of scalable near-memory ex-
ecution architectures. ML infrastructure today (e.g., [5–9])
consists of accelerator chips, each containing compute units
and high-bandwidth memory tightly packaged together, and
features scale-up capability enabled by connecting thousands
of such chips with high-bandwidth interconnection links. The
system-wide rethinking that was done to enable such accel-
erators and many of the principles used in such accelerators
resemble our ISCA 2015 paper’s approach.

The “memory-capacity-proportional performance” principle
we explored in the paper shares similarities with how ML
workloads are scaled up today. Similar to how we carefully
sharded graphs across our accelerator chips to greatly im-
prove effective memory bandwidth in our paper, today’s ML
workloads are sharded across a large number of accelera-
tors by leveraging data/model parallelism and optimizing the
placement to balance communication overheads and compute
scalability [11, 12]. With the advent of large generative models
requiring high memory bandwidth for fast training and infer-
ence, the scaling behavior where capacity and bandwidth are
scaled together has become an essential architectural property
to support modern data-intensive workloads.

The “maximal acceleration capability” principle we used
in Tesseract provides much larger performance and energy
improvements and better customization than the “minimalist”
approach that our other ISCA 2015 paper on PIM-Enabled
Instructions [10] explored: “minimally change” an existing

1



system to incorporate (near-memory) acceleration capability
to ease programming and keep costs low. So far, the industry
has more widely adopted the maximal approach to overcome
the pressing scaling bottlenecks of major workloads. The key
enabler that bridges the programmability gap between the
maximal approach favoring large performance & energy bene-
fits and the minimal approach favoring ease of programming is
compilation techniques. These techniques lower well-defined
high-level constructs into lower-level primitives [12, 13]; our
ISCA 2015 papers [1, 10] and a follow-up work [14] explore
them lightly. We believe that a good programming model that
enables large benefits coupled with support for it across the
entire system stack (including compilers & hardware) will
continue to be important for effective near-memory system
and accelerator designs [14]. We also believe that the maximal
versus minimal approaches that are initially explored in our
two ISCA 2015 papers is a useful way of exploring emerg-
ing technologies (e.g., near-memory accelerators) to better
understand the tradeoffs of system designs that exploit such
technologies.

III. INFLUENCE ON LATER WORKS

Our paper was at the beginning of a proliferation of scalable
near-memory processing systems designed to accelerate key
applications (see [15] for many works on the topic). Tesseract
has inspired many near-memory system ideas (e.g., [16–28])
and served as the de facto comparison point for such systems,
including near-memory graph processing accelerators that built
on Tesseract and improved various aspects of Tesseract. Since
machine learning accelerators that use high-bandwidth mem-
ory (e.g., [5, 29]) and industrial PIM prototypes (e.g., [30–41])
are now in the market, near-memory processing is no longer
an “eccentric” architecture it used to be when Tesseract was
originally published.

Graph processing & analytics workloads remain as an
important and growing class of applications in various forms,
ranging from large-scale industrial graph analysis engines
(e.g., [42]) to graph neural networks [43]. Our focus on large-
scale graph processing in our ISCA 2015 paper increased
attention to this domain in the computer architecture com-
munity, resulting in subsequent research on efficient hardware
architectures for graph processing (e.g., [44–46]).

IV. SUMMARY AND FUTURE OUTLOOK

We believe that our ISCA 2015 paper’s principled re-
thinking of system design to accelerate an important class
of data-intensive workloads provided significant value and
enabled/influenced a large body of follow-on works and ideas.
We expect that such rethinking of system design for key
workloads, especially with a focus on “maximal acceleration
capability,” will continue to be critical as pressing technology
and application scaling challenges increasingly require us to
think differently to substantially improve performance and
energy (as well as other metrics). We believe the principles
exploited in Tesseract are fundamental and they will remain
useful and likely become even more important as systems
become more constrained due to the continuously-increasing
memory access and computation demands of future workloads.
We also project that as hardware substrates for near-memory
acceleration (e.g., 3D stacking, in-DRAM computation, NVM-
based PIM, processing using memory [15]) evolve and mature,
systems will take advantage of them even more, likely using
principles similar to those used in the design of Tesseract.

REFERENCES
[1] J. Ahn et al., “A Scalable Processing-in-Memory Accelerator for Parallel

Graph Processing,” in ISCA, 2015.
[2] Hybrid Memory Cube Consortium, “HMC Specification 1.1,” 2013.
[3] J. Jeddeloh and B. Keeth, “Hybrid Memory Cube: New DRAM Archi-

tecture Increases Density and Performance,” in VLSIT, 2012.
[4] JEDEC, “High Bandwidth Memory (HBM) DRAM,” Standard No.

JESD235, 2013.

[5] N. Jouppi et al., “TPU v4: An Optically Reconfigurable Supercomputer
for Machine Learning with Hardware Support for Embedding,” in ISCA,
2023.

[6] J. Fowers et al., “A Configurable Cloud-Scale DNN Processor for Real-
Time AI,” in ISCA, 2018.

[7] S. Lie, “Cerebras Architecture Deep Dive: First Look Inside the Hard-
ware/Software Co-Design for Deep Learning,” in IEEE Micro, 2023.

[8] E. Talpes et al., “The Microarchitecture of DOJO, Tesla’s Exa-Scale
Computer,” in IEEE Micro, 2023.

[9] A. Ishii and R. Wells, “NVLink-Network Switch - NVIDIA’s Switch
Chip for High Communication-Bandwidth SuperPODs,” in Hot Chips,
2022.

[10] J. Ahn et al., “PIM-Enabled Instructions: A Low-Overhead, Locality-
Aware Processing-in-Memory Architecture,” in ISCA, 2015.

[11] R. Pope et al., “Efficiently Scaling Transformer Inference,” in MLSys,
2023.

[12] D. Lepikhin et al., “GShard: Scaling Giant Models with Conditional
Computation and Automatic Sharding,” in ICLR, 2021.

[13] S. Wang et al., “Overlap Communication with Dependent Computation
via Decomposition in Large Deep Learning Models,” in ASPLOS, 2023.

[14] J. Ahn et al., “AIM: Energy-Efficient Aggregation Inside the Memory
Hierarchy,” ACM TACO, vol. 13, no. 4, 2016.

[15] O. Mutlu et al., “A Modern Primer on Processing in Memory,” Emerging
Computing: From Devices to Systems, 2021, https://arxiv.org/abs/2012.
03112.

[16] M. Zhang et al., “GraphP: Reducing Communication for PIM-Based
Graph Processing with Efficient Data Partition,” in HPCA, 2018.

[17] L. Song, “GraphR: Accelerating Graph Processing Using ReRAM,” in
HPCA, 2018.

[18] Y. Zhuo et al., “GraphQ: Scalable PIM-Based Graph Processing,” in
MICRO, 2019.

[19] G. Dai et al., “GraphH: A Processing-in-Memory Architecture for Large-
Scale Graph Processing,” IEEE TCAD, 2018.

[20] G. Li et al., “GraphIA: An In-situ Accelerator for Large-scale Graph
Processing ,” in MEMSYS, 2018.

[21] S. Rheindt et al., “NEMESYS: Near-Memory Graph Copy Enhanced
System-Software,” in MEMSYS, 2019.

[22] L. Belayneh and V. Bertacco, “GraphVine: Exploiting Multicast for
Scalable Graph Analytics,” in DATE, 2020.

[23] N. Challapalle et al., “GaaS-X: Graph Analytics Accelerator Supporting
Sparse Data Representation using Crossbar Architectures,” in ISCA,
2020.

[24] M. Zhou et al., “Ultra Efficient Acceleration for De Novo Genome
Assembly via Near-Memory Computing,” in PACT, 2021.

[25] X. Xie et al., “SpaceA: Sparse Matrix Vector Multiplication on
Processing-in-Memory Accelerator,” in HPCA, 2021.

[26] M. Zhou et al., “HyGraph: Accelerating Graph Processing with Hybrid
Memory-Centric Computing,” in DATE, 2021.

[27] M. Lenjani et al., “Gearbox: A Case for Supporting Accumulation
Dispatching and Hybrid Partitioning in PIM-based Accelerators,” in
ISCA, 2022.

[28] M. Orenes-Vera et al., “Dalorex: A Data-Local Program Execution and
Architecture for Memory-Bound Applications,” in HPCA, 2023.

[29] J. Choquette, “Nvidia Hopper GPU: Scaling Performance,” in Hot Chips,
2022.

[30] F. Devaux, “The True Processing In Memory Accelerator,” in Hot Chips,
2019.

[31] J. Gómez-Luna et al., “Benchmarking a New Paradigm: Experimental
Analysis and Characterization of a Real Processing-in-Memory System,”
IEEE Access, 2022.

[32] J. Gomez-Luna et al., “Evaluating Machine Learning Workloads on
Memory-Centric Computing Systems,” in ISPASS, 2023.

[33] S. Lee et al., “Hardware Architecture and Software Stack for PIM Based
on Commercial DRAM Technology: Industrial Product,” in ISCA, 2021.

[34] Y.-C. Kwon et al., “25.4 A 20nm 6GB Function-In-Memory DRAM,
Based on HBM2 with a 1.2 TFLOPS Programmable Computing Unit
Using Bank-Level Parallelism, for Machine Learning Applications,” in
ISSCC, 2021.

[35] L. Ke et al., “Near-Memory Processing in Action: Accelerating Person-
alized Recommendation with AxDIMM,” IEEE Micro, 2021.

[36] D. Lee et al., “Improving In-Memory Database Operations with Accel-
eration DIMM (AxDIMM),” in DaMoN, 2022.

[37] S. Lee et al., “A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based
Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Var-
ious Activation Functions for Deep-Learning Applications,” in ISSCC,
2022.

[38] D. Niu et al., “184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid
Bonding with Process-Near-Memory Engine for Recommendation Sys-
tem,” in ISSCC, 2022.

[39] Y. Kwon, “System Architecture and Software Stack for GDDR6-AiM,”
in HCS, 2022.

[40] G. Singh et al., “FPGA-based Near-Memory Acceleration of Modern
Data-Intensive Applications,” IEEE Micro, 2021.

[41] G. Singh et al., “Accelerating Weather Prediction using Near-Memory
Reconfigurable Fabric,” ACM TRETS, 2021.

[42] S. Hong et al., “PGX.D: A Fast Distributed Graph Processing Engine,”
in SC, 2015.

[43] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph
Convolutional Networks,” in ICLR, 2017.

[44] L. Nai et al., “GraphPIM: Enabling Instruction-Level PIM Offloading
in Graph Computing Frameworks,” in HPCA, 2017.

[45] M. Besta et al., “SISA: Set-Centric Instruction Set Architecture for
Graph Mining on Processing-in-Memory Systems,” in MICRO, 2021.

[46] T. J. Ham et al., “Graphicionado: A High-Performance and Energy-
Efficient Accelerator for Graph Analytics,” in MICRO, 2016.

2

https://arxiv.org/abs/2012.03112
https://arxiv.org/abs/2012.03112

	Background, Approach & Mindset
	Contributions and Influence
	Influence on Later Works
	Summary and Future Outlook
	References

