ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems

Jinglei Ren (Tsinghua University) Jishen Zhao (UC, Santa Cruz) Samira Khan (University of Virginia) Jongmoo Choi (Dankook University) Yongwei Wu (Tsinghua University) Onur Mutlu (CMU)

NVM provides an opportunity to manipulate persistent data directly

Problem: System crash can result in permanent data corruption in NVM

Current Solution: Explicit interfaces to manage consistency NV-Heaps [ASPLOS'11], BPFS [SOSP'09],

Mnemosyne [ASPLOS'11]

GOAL: Software transparent consistency in persistent memory systems

Execute legacy apps, No burden on programmers, Enable easier integration of NVM

ThyNVM

Idea: Periodic checkpointing of data managed by hardware

Insight: A tradeoff between checkpointing latency and metadata storage overhead

Checkpointing granularity

- Small granularity: large metadata
- Large granularity: small metadata

Latency and location

- Writeback from DRAM: long latency
- Remap in NVM: short latency

1. DUAL GRANULARITY CHECKPOINTING

Running Checkpointing Running Checkpointing Running Checkpointing Checkpointing Checkpointing Checkpointing Checkpointing Checkpointing Epoch 0

Epoch 1

Epoch 2

Hides the long latency of Page Writeback

Ideal DRAM: DRAM-based, no cost for consistency,

Lowest latency system

Ideal NVM: NVM-based, no cost for consistency, NVM has higher latency than DRAM

Journaling: Hybrid, commit dirty cache blocks, Leverages DRAM to buffer dirty blocks

Shadow Paging: Hybrid, copy-on-write pages, Leverages DRAM to buffer dirty pages

ADAPTIVITY TO ACCESS PATTERN

OVERLAPPING CHECKPOINTING AND

Stalls the application for a negligible time

PERFORMANCE OF LEGACY CODE Ideal DRAM Ideal NVM ThyNVM Output Outpu

Within -4.9%/+2.7% of an idealized DRAM/NVM system
Provides consistency without significant performance overhead