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ABSTRACT
Processing-in-memory (PIM) promises to alleviate the data move-
ment bottleneck in modern computing systems. However, current
real-world PIM systems have the inherent disadvantage that their
hardware is more constrained than in conventional processors
(CPU, GPU), due to the difficulty and cost of building processing
elements near or inside the memory. As a result, general-purpose
PIM architectures support fairly limited instruction sets and strug-
gle to execute complex operations such as transcendental functions
and other hard-to-calculate operations (e.g., square root). These
operations are particularly important for some modern workloads,
e.g., activation functions in machine learning applications.

In order to provide support for transcendental (and other hard-
to-calculate) functions in general-purpose PIM systems, we present
TransPimLib, a library that provides CORDIC-based and LUT-based
methods for trigonometric functions, hyperbolic functions, expo-
nentiation, logarithm, square root, etc. We develop an implementa-
tion of TransPimLib for the UPMEM PIM architecture and perform
a thorough evaluation of TransPimLib’s methods in terms of perfor-
mance and accuracy, using microbenchmarks and three full work-
loads (Blackscholes, Sigmoid, Softmax). We open-source all our
code and datasets at https://github.com/CMU-SAFARI/transpimlib.
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1 INTRODUCTION
Processor performance increasing more rapidly than memory per-
formance for decades has caused a wide gap between processing
units and memory units in terms of latency and energy consump-
tion. As a result, access to data has become a major bottleneck in
current computing systems [20, 21, 72, 98, 104, 106]. Processing-
in-memory (PIM) is a promising solution to this data movement
bottleneck. PIM consists of equipping memory with computing
capabilities, either with small functional units near the memory ar-
rays or by using the analog operational properties of memory cells
themselves [52, 98, 114]. PIM provides access to data at significantly
higher bandwidth, lower latency, and lower energy consumption
than conventional compute-centric processors (e.g., CPUs, GPUs).

Explored for more than 50 years [69, 125], PIM’s materialization
into real products was delayed in part by fundamentally differ-
ent requirements of fabrication of memory units and processing
units [27, 30, 108, 120, 138, 144]. Only now we are witnessing the
arrival of the first PIM commercial products and prototypes. UP-
MEM [135], for example, introduced the first general-purpose com-
mercial PIM architecture [46, 47, 50, 131, 135], which integrates

a small in-order core next to each DRAM bank in a DRAM chip.
HBM-PIM [84, 88] and Acceleration DIMM (AxDIMM) [70] are
Samsung’s real PIM prototypes. HBM-PIM features a SIMD unit
that supports multiply-add (MAD) and multiply-accumulate (MAC)
operations between every two banks in HBM [65, 86] layers. HBM-
PIM is designed to accelerate neural network inference. AxDIMM is
a near-rank solution that places an FPGA fabric on a DDRx module
to accelerate specific workloads (e.g., recommendation inference).
Accelerator-in-Memory (AiM) [87] is a GDDR6-based PIM architec-
ture from SK Hynix with specialized units for multiply-accumulate
and activation functions for deep learning. HB-PNM [101] is a
3D-stacked-based PIM architecture from Alibaba, which stacks to-
gether a layer of LPDDR4memory and a logic layer with specialized
accelerators for recommendation systems. Among other character-
istics, these PIM systems have in common that (1) they place PIM
processing elements near memory, and (2) these PIM processing
elements are relatively simple and natively support limited instruc-
tion sets (e.g., integer arithmetic in UPMEM, 16-bit floating-point
MAC/MAD in HBM-PIM or AiM).

Given that instruction sets of current real-world PIM architec-
tures are limited, some complex operations should be emulated
by the runtime library (e.g., integer multiplication/division and
floating-point arithmetic in UPMEM PIM [50, 134]) or are not even
supported. This is usually true for transcendental functions (e.g.,
trigonometric, hyperbolic, exponentiation, logarithm) and other
hard-to-calculate functions (e.g., square root) in PIM architectures.
These functions are used in a variety of important applications, such
as activation functions in machine learning applications [55, 57],
finite element methods [16], ray tracing [44], and option pricing
in the stock market [92]. Prior work [126, 128] has identified the
presence of transcendental functions that are executed thousands
of times in several workloads from various benchmark suites (e.g.,
SPEC CPU2006 [123], SPLASH-2 [140]). Many of these applications
suffer from the data movement bottleneck in conventional proces-
sors and, thus, can potentially benefit from PIM. For example, a
recent PIM benchmarking study [104] identified seven memory-
bound applications that use transcendental functions.

To cope with the need for efficient support for transcendental
functions and other hard-to-calculate functions in PIM architec-
tures, we analyze possible alternatives to compute these functions.
In current computing systems with PIM capabilities [30, 46, 47, 50,
84, 87, 88, 134, 135], there is a host processor (e.g., CPU, GPU) that
offloads memory-bound computations to the PIM processing ele-
ments. Offloading may require moving data from the standard main
memory to the PIM-enabled memory. We identify three possible
alternatives to compute transcendental functions in such systems.

First, the PIM hardware can integrate a special hardware unit for
transcendental functions. As Figure 1(a) represents, a PIM core can
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invoke a “transcendental unit”, which executes the desired function.
Such special units are common in conventional processors, e.g.,
specialized co-processors in CPUs [63] and special function units
in GPUs [102]. To our knowledge, the only real PIM architecture
that provides this kind of support is AiM [87], which employs
lookup tables (LUTs) and a hardware interpolation unit for different
activation functions. Such support may not (1) be affordable for all
PIM designs (given the area cost of additional hardware units [48,
147]), (2) provide a flexible implementation (i.e., with support for
different methods which can better suit different functions), and
(3) provide flexible control on the desired precision.
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Figure 1: Three options for calculation of transcendental
functions in a PIM system.

Second, we can compute transcendental functions on the host
processor, as shown in Figure 1(b). This approach has two draw-
backs: (1) programmers of computing systems with PIM capabilities
need to properly partition the applications, and (2) data needs to
move back-and-forth between PIM cores and the host processor,
which hampers the potential benefit from PIM.

Third, we can implement fast and self-contained calculation
methods for transcendental functions using existing instructions
(native or emulated) in the PIM core, as Figure 1(c) shows. While
polynomial approximations [28, 67, 124] are frequently used such
methods, there is no study of other methods, such as CORDIC [136],
or a comprehensive exploration of LUT-based methods [94, 111,
112, 129].

Our goal is to explore different methods for calculating transcen-
dental and other hard-to-calculate functions in PIM systems. We de-
velop our methods for the UPMEM PIM architecture [30, 46, 47, 50],
the first publicly-available PIM architecture, which consists of
general-purpose in-order cores placed near DRAM banks. As a re-
sult of our study, we present TransPimLib, an open-source library of

transcendental and other hard-to-calculate functions for PIM. Tran-
sPimLib implements CORDIC-based methods, LUT-based methods,
and combinations and variations of them (with and without inter-
polation). In total, TransPimLib uses eight different methods for
trigonometric functions (sine, cosine, tangent), hyperbolic func-
tions (sinh, cosh, tanh), exponentiation, logarithm, square root, and
GELU (Gaussian Error Linear Unit) [56].1

We compare all of TransPimLib’s methods in terms of accuracy,
execution cycles in the PIM cores, setup time in the host CPU, and
memory consumption. TransPimLib’s methods provide accuracy
of up to 10−9 root-mean-square absolute error (RMSE). LUT-based
methods, in particular our LDEXP-based Fuzzy Lookup Table (L-LUT )
method, demonstrate the best tradeoff between performance and
accuracy. The non-interpolated L-LUT method requires no multi-
plication or other complex operations while achieving RMSE=10−7.
The interpolated L-LUT method has a accuracy of RMSE=10−9 at
the expense of just one multiplication.

We evaluate TransPimLib’s functions for three full workloads:
Blackscholes [92], Sigmoid [55], and Softmax [6]. The fastest PIM
version of Blackscholes outperforms a 32-thread CPU baseline by
62%. The PIM versions of Sigmoid and Softmax, which are typically
used as activation functions in neural networks, provide competi-
tive performance to their 32-thread CPU counterparts and prove
that TransPimLib can reduce data movement between PIM cores
and the host CPU (as it is needed in Figure 1(b), where transcen-
dental functions run in the host CPU).

Our main contributions are as follows:
• We present TransPimLib, the first library of transcendental
and other hard-to-calculate functions for PIM architectures.
TransPimLib contains CORDIC-based and LUT-based meth-
ods, and combinations and variations of them.

• We propose new LUT-based methods, called L-LUT , D-LUT,
and DL-LUT (Section 3.2), which demonstrate good suit-
ability for general-purpose PIM architectures with limited
instruction sets, such as the UPMEM PIM system.

• We evaluate TransPimLib’s methods in terms of accuracy,
execution cycles in the PIM cores, setup time in the host CPU,
and memory consumption. We also evaluate TransPimLib’s
functions for three real workloads (Blackscholes, Sigmoid,
Softmax).

• We open-source TransPimLib, as well as all codes and
datasets used for evaluation, in our GitHub repository [110].

2 BACKGROUND
This section provides the necessary background on current real-
world processing-in-memory systems (Section 2.1), and on tran-
scendental functions and calculation methods (Section 2.2).

2.1 Processing-in-Memory (PIM)
Processing-in-memory (PIM) is a computing paradigm that ad-
vocates for memory-centric computing systems, where memory
becomes an active system component with computing capabili-
ties. These capabilities can be either (1) small processing elements
(general-purpose cores and/or accelerators) placed near the mem-
ory arrays (e.g., [3–5, 14, 15, 19, 22, 24, 35, 41, 43, 49, 51, 58, 59,
1We open source TransPimLib to facilitate reproducibility and future research [110].
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73, 76, 99, 105, 107, 118, 119, 145, 148], or (2) mechanisms that
compute by using the analog operational properties of memory
components (e.g., by simultaneously activating multiple memory
cells [2, 7–12, 17, 23, 25, 26, 33, 37, 39, 40, 52–54, 60, 68, 74, 75, 81–
83, 89–91, 103, 114–117, 137, 141–143, 146]). First proposed more
than 50 years ago [69, 125], processing-in-memory is a compelling
solution to alleviate the data movement bottleneck [96–98], which
is caused by the need for moving data between memory units and
compute units in processor-centric systems. Such bottleneck has
only become worse over the years due to the faster development of
processor performance over memory performance.

PIM architectures are becoming a reality, with the commercial-
ization of the UPMEM PIM architecture [47, 131, 135], and the
announcement of HBM-PIM [84, 88], AxDIMM [70], AiM [87], and
HB-PNM [101] (all four prototyped and evaluated in real systems).
UPMEM places a small general-purpose in-order core (called DPU )
near each memory bank of a DDR4 DRAM chip. HBM-PIM fea-
tures a SIMD unit (called PCU ) between every two banks in the
memory layers of an HBM stack [65]. HBM-PIM is designed for
machine learning inference. Thus, its SIMD units execute only a
reduced set of instructions (i.e., 16-bit floating-point multiplication
and addition). AxDIMM [70] is a DIMM-based solution with an
FPGA inside the buffer chip of the DIMM. The FPGA can accel-
erate memory-bound workloads, such as recommendation infer-
ence [70] or database operations [85]. AiM [87] is a GDDR6-based
PIM architecture with a near-bank processing unit (called PU ) that
executes multiply-and-accumulate operations and activation func-
tions. Same as HBM-PIM, AiM targets machine learning workloads.
HB-PNM [101] is a 3D-stacked based PIM solution for recommen-
dation systems. HB-PNM stacks one layer of LPDDR4 DRAM [66]
on one logic layer connected through hybrid bonding (HB) technol-
ogy [38]. The logic layer embeds two types of specialized engines
for matching and ranking, which are the memory-bound steps of
the evaluated recommendation system.

These five real-world PIM systems have some important common
characteristics, as depicted in Figure 2. First, there is a host processor
(CPU or GPU), typically with a deep cache hierarchy, which has
access to (1) standard main memory, and (2) PIM-enabled memory
(i.e., UPMEM DIMMs, HBM-PIM stacks, AxDIMM DIMMs, AiM
GDDR6, HB-PNM LPDDR4). Second, the PIM-enabled memory
chip contains multiple PIM processing elements (PIM PEs), which
have access to memory (either memory banks or ranks) with much
higher bandwidth and lower latency than the host processor. Third,
the PIM processing elements (either general-purpose cores, SIMD
units, FPGAs, or specialized processors) run at only a few hundred
megahertz, and have a small number of registers and relatively small
(or no) cache or scratchpad memory. Fourth, PIM PEs may not be
able to communicate directly with each other (e.g., UPMEM DPUs,
HBM-PIM PCUs or AiM PUs in different chips), and communication
between them happens via the host processor. Figure 2 shows a
high-level view of such a state-of-the-art processing-in-memory
system.

In this work, we use the UPMEM PIM architecture [30, 47, 131,
133–135], the first PIM architecture to be commercialized in real
hardware. The UPMEM PIM architecture uses conventional 2D
DRAM arrays and combines them with general-purpose processing
cores, calledDRAM Processing Units (DPUs), on the same chip. There
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Figure 2: Example state-of-the-art processing-in-memory
system with general-purpose PIM cores. The host CPU has
access to𝑚 standard memory modules and 𝑛 PIM-enabled
memory modules.

are 8 DPUs and 8 DRAM banks per chip, and 16 chips per DIMM (8
chips/rank). DPUs are relatively deeply pipelined and fine-grained
multithreaded [121, 122, 130]. DPUs run software threads, called
tasklets, which are programmed in Single Program Multiple Data
(SPMD) manner.

DPUs have a 32-bit RISC-style general-purpose instruction
set [134]. They feature native support for 32-bit integer, but some
complex operations (e.g., 32-bit integer multiplication/division) and
floating-point operations are emulated [47].

Each DPU has exclusive access to its own (1) 64-MB DRAM bank,
called Main RAM (MRAM), (2) 24-KB instruction memory, called
Instruction RAM (IRAM), and (3) 64-KB scratchpad memory, called
Working RAM (WRAM). The host CPU can access the MRAM banks
for copying input data (from main memory to MRAM) and retriev-
ing results (from MRAM to main memory). These CPU-DPU/DPU-
CPU transfers can be performed in parallel (i.e., concurrently across
multiple MRAM banks), if the size of the buffers transferred from/to
all MRAMbanks is the same. Otherwise, the data transfers should be
performed serially. Since there is no direct communication channel
between DPUs, all inter-DPU communication takes place through
the host CPU by using DPU-CPU and CPU-DPU data transfers. We
refer the reader to our prior work [46, 47, 50] for a comprehensive
introduction to and analysis of the UPMEM PIM system.

Throughout this paper, we use generic terminology, since our
implementation strategies are applicable to PIM systems like the
generic one described in Figure 2, and not exclusive to the UPMEM
PIM architecture. Thus, we use the terms PIM core, PIM thread,
DRAM bank, scratchpad, and Host-PIM/PIM-Host transfer, which cor-
respond to DPU, tasklet, MRAM bank,WRAM, and CPU-DPU/DPU-
CPU transfer in UPMEM’s terminology [134].

2.2 Transcendental Functions
Transcendental functions [34, 80] are functions that do not satisfy a
polynomial equation. As a result, they cannot be exactly expressed
with a finite number of algebraic operations (e.g., addition, sub-
traction, multiplication, division, power, root). Commonly-used
transcendental functions are trigonometric functions (e.g, sine, co-
sine), exponential functions, and logarithm functions. In this work,
we also target other functions that are not transcendental, but hard
to calculate (e.g., square root).

There are various methods to calculate transcendental functions,
such as Taylor approximation [67, 124], minimax polynomials [67],
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CORDIC [79, 95, 136], and table-based methods [94, 111, 112, 129].
In this work, we focus on (1) CORDIC [136] and (2) fuzzy lookup
tables [94, 111, 112, 129], since these methods have low usage of
floating-point multiplication (more expensive than addition/sub-
traction in current general-purpose PIM architectures [50, 133]). We
introduce both methods in Sections 2.2.1 and 2.2.2. In Section 2.2.3,
we describe how we extend the input range of these methods.

2.2.1 CORDIC. CORDIC [136] is an iterative method that uses
only bit-shifts, additions, and table lookups. The maximum error
shrinks exponentially with the number of iterations [79]. We use
CORDIC in rotation mode [136], which computes a function value
(e.g., sine, cosine) for a given input (an angle 𝜃 ). CORDIC starts with

an angle 𝜃0 = 𝜃 and a vector 𝑣0 =
[
1
0

]
. In each iteration (𝑖 > 0), we

update 𝜃𝑖 and rotate the vector by multiplying it with a 2× 2matrix
𝑀𝑖 : 𝑣𝑖+1 = 𝑘𝑖 ·𝑀𝑖 ·𝑣𝑖 .𝑘𝑖 is a stretching factor.𝑀𝑖 represents a rotation
by an angle 𝜙𝑖 , which decreases in each iteration. The values of
𝜙𝑖 can be precalculated and kept in a table. After 𝑛 iterations, the
output vector 𝑣𝑛 contains function values for 𝜃 . Table 1 shows
common rotation matrices, angles, stretching factors, and functions
they are used for.

Table 1: CORDIC’s Rotation Matrices, Angles, and Stretching
Factors

Matrix 𝑀𝑖 𝜙𝑖 𝑘𝑖 Functions

Circular
[

1 ∓2−𝑖
±2−𝑖 1

]
±𝑎𝑟𝑐𝑡𝑎𝑛(2−𝑖 )

√
1 + 2−2𝑖 𝑠𝑖𝑛, 𝑐𝑜𝑠, 𝑡𝑎𝑛, 𝑎𝑟𝑐𝑡𝑎𝑛

Hyperbolic
[

1 ±2−𝑖
±2−𝑖 1

]
±𝑎𝑡𝑎𝑛ℎ(2−𝑖 ) 2−𝑖−1+1

2−𝑖−1 𝑠𝑖𝑛ℎ, 𝑐𝑜𝑠ℎ, 𝑡𝑎𝑛ℎ, 𝑒𝑥𝑝, 𝑙𝑜𝑔, 𝑠𝑞𝑟𝑡, 𝑎𝑡𝑎𝑛ℎ

Linear
[

1 0
±2−𝑖 1

]
±2−𝑖 1 multiplication, division

2.2.2 Fuzzy Lookup Tables. Lookup tables are widely used to gen-
erate a variety of functions [94, 111, 112, 129]. Since lookup tables
are limited in size, it is not always possible to return exact output
values, but easier to return fuzzy (or approximate) matches. For
a given input 𝑥 , we obtain an output 𝑓 (𝑥) that approximates the
original function 𝑓 (𝑥). First, we use a function 𝑎(𝑥) that returns an
address. 𝑎(𝑥) typically maps a range of inputs 𝑥 to a single address.
For example, 𝑎(𝑥) may simply round down, such that all values in
the range [0, 1) map to address 0. Second, we access the lookup
table with 𝑎(𝑥) as the address, and the table returns 𝑙 (𝑎(𝑥)) = 𝑓 (𝑥).

In order to generate the lookup table, we need a helper function
𝑎−1 (), which is the pseudo-inverse of 𝑎(𝑥) in the sense that 𝑥 =

𝑎(𝑎−1 (𝑥)),∀𝑥 . For the previous example,𝑎−1 (0) returns one specific
value in the range [0, 1). Thus, address 0 of the lookup table will
contain 𝑓 (𝑎−1 (0)), i.e., the lookup result for any input in [0, 1). The
function 𝑎−1 () determines the spacing between table entries and,
thus, the maximum error. For example, in [0, 1) the maximum error
will be different if the table contains 𝑓 (0) or 𝑓 (0.5). A good spacing
places more entries where the function’s slope is steeper, in order
to minimize the error. As a result, the spacing is in proportion to
the function’s first derivative (𝑓 ′(𝑥)). For this reason, the selection
of a good 𝑎−1 () is not always trivial. However, 𝑎−1 () is only used
during table generation, not during table lookups, which allows us
to improve the accuracy (minimize the maximum error) without
affecting performance.

We can use interpolation to further improve the accuracy. In this
case, we query two lookup table entries, e.g., 𝑙 (𝑎(𝑥)) and 𝑙 (𝑎(𝑥) +1).
Then, we approximate 𝑓 (𝑥) as 𝑓 (𝑥) = 𝑙 (𝑎(𝑥)) + 𝑙 (𝑎(𝑥) + 1) −
𝑙 (𝑎(𝑥)) · Δ, where Δ represents where the input resides between
the two lookup table entries. For example, Δ = 0.5 means that
the input 𝑥 is exactly in between the two entries. In the general
case, Δ =

𝑥−𝑎−1 (𝑎 (𝑥))
𝑎−1 (𝑎 (𝑥)+1)−𝑎−1 (𝑎 (𝑥)) , which needs to be calculated for

each input 𝑥 . This calculation can be greatly simplified for our
target functions, as we show in Section 3.2.1. Regarding the spacing
between entries (𝑎−1 ()), the error grows when a function’s slope
changes quickly (i.e., when the rate of change of the function’s
first derivative is high). Thus, a desirable spacing should follow the
function’s second derivative (𝑓 ′′(𝑥)).

2.2.3 Range Extensions. Both CORDIC and lookup tables support
limited ranges of inputs. For some transcendental functions, it is
possible to extend the range by performing a conversion that de-
pends on the function itself. For example, trigonometric functions
(e.g., sine, cosine) take advantage of the fact that the output repeats
every 2𝜋 . For other functions, such as square root, logarithm, and
exponentiation, we can separate exponent and mantissa. For exam-
ple, to calculate the logarithm of 𝑥 = 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 (𝑥) ·𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎(𝑥),
we convert 𝑙𝑜𝑔(𝑥) = 𝑙𝑜𝑔(2) · 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 (𝑥) + 𝑙𝑜𝑔(𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎(𝑥)).

3 TRANSPIMLIB: IMPLEMENTATION
Given their relatively simple hardware, general-purpose PIM cores
do not support complex operations (e.g., [50, 84, 88, 133]), such
as transcendental (e.g., trigonometric, logarithm, exponentiation)
and other hard-to-calculate functions (e.g., square root). To fill
this gap, we present TransPimLib, a library of transcendental and
other hard-to-calculate functions for general-purpose PIM cores.
TransPimLib leverages the implementation methods introduced in
Section 2.2 (e.g., CORDIC, lookup tables), and variations and com-
binations of them. Table 2 shows TransPimLib’s implementation
methods and supported functions.2

Table 2: TransPimLib’s Implementation Methods and Sup-
ported Functions

Supported Functions
Implementation Method sin cos tan sinh cosh tanh exp log sqrt GELU
CORDIC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
M-LUT ✓ ✓ ✓ ✓ ✓ ✓
M-LUT+Interpolation ✓ ✓ ✓ ✓ ✓ ✓
L-LUT ✓ ✓ ✓ ✓ ✓ ✓
L-LUT+Interpolation ✓ ✓ ✓ ✓ ✓ ✓
D-LUT+Interpolation ✓ ✓ ✓
DL-LUT+Interpolation ✓ ✓ ✓
CORDIC+LUT ✓ ✓ ✓ ✓ ✓ ✓ ✓

TransPimLib provides files [110] to be included, using the
#include directive, in the host CPU code (for the necessary setup,
e.g., loading lookup tables) and the PIM core code for the different
implementation methods. The APIs are simple and intuitive. For
example, for the sine function: float sinf (float x);

2We provide all implementation methods for sine on the UPMEM PIM architec-
ture [135]. Based on our preliminary analysis of these methods, we also provide
the most suitable methods for each of the other supported functions. Future work can
extend TransPimLib with new supported functions.
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3.1 CORDIC-based Implementations
TransPimLib contains CORDIC implementations of trigonometric
(sin, cos, tan) and hyperbolic (sinh, cosh, tanh) functions, exponen-
tiation, logarithm, and square root.

We illustrate their implementation using the sine function as an
example. As Figure 3(a) shows, the calculation takes six steps. First,
we translate the input value (angle) to the range 0 to 2𝜋 . Second,
if the input is a floating-point value, we convert it to fixed-point
format.3 Our fixed-point format uses 28 bits for the fractional part,
3 bits for the integer part (enough to represent up to 2𝜋 ), and 1 sign
bit. Third, the range is further reduced to the range from 0 to 𝜋

2
(the quadrant, i.e., 0 to 𝜋

2 ,
𝜋
2 to 𝜋 , 𝜋 to 3𝜋

2 , 3𝜋2 to 2𝜋 , is also saved
to not lose information). Fourth, the CORDIC algorithm iterates
until it obtains the sine of the input angle. Fifth, we adjust the sine
value based on the quadrant of the input angle. Sixth, we convert
the output value back to floating point format.
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Figure 3: TransPimLib’s CORDIC-based implementations of
sine and square root functions.

Other functions may require additional steps. For example, our
square root implementation (Figure 3(b)) uses a final range exten-
sion step.

TransPimLib does not implement multiplication and division (see
Table 1), which are not natively supported by the UPMEM PIM ar-
chitecture, because the emulations of the runtime library [50] have
similar complexity as potential CORDIC-based implementations
and no range limitations.

3.2 Lookup Table-based Implementations
TransPimLib implements several lookup table-based methods that
differ in their address generation functions (𝑎() and 𝑎−1 ()). These
methods provide different tradeoffs, as we explain next.

3.2.1 Multiplication-based Fuzzy Lookup Table (M-LUT). This
method defines regular spacing between table entries [139]. We
define the address generation function 𝑎(𝑥) = 𝑟𝑜𝑢𝑛𝑑 ((𝑥 − 𝑝) · 𝑘),
where 𝑝 and 𝑘 are constants. 𝑘 represents the density of the lookup
table, which is the inverse of the spacing. 𝑝 defines what input

3CORDIC can operate with fixed-point arithmetic [79], which is natively supported
by the UPMEM PIM architecture [50].

value 𝑥 corresponds to address 0 of the lookup table. For exam-
ple, to map the interval [0, 5] to a 12-entry M-LUT, we can use
𝑘 = 12

5 = 2.4 and 𝑝 = 5
2·12 = 0.20834. Thus, an input 𝑥 = 3

translates to 𝑎(3) = 𝑟𝑜𝑢𝑛𝑑 ((3 − 0.20834) · 2.4) = 𝑟𝑜𝑢𝑛𝑑 (6.7) = 7.
Figure 4(a) depicts the coverage of a 12-entry M-LUT with density
2.4 for the interval [0, 5].
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Fig. 6: Example lookup table density (y axis) for the input
range [0, 5] (x axis) and 12 LUT entries.

3) Direct Float Conversion-based Fuzzy Lookup Table (D-
LUT): As we mention in Section II-B2, a good spacing
depends on the approximated function to minimize the error.
This may need non-linear address generation functions, which
are generally more computationally expensive than multiplica-
tions. We circumvent this issue by exploiting the natural non-
linearity of the floating-point format. We propose an address
generation function that uses (1) the last n bits of the exponent,
and (2) p bits of the mantissa. This results in a piece-wise
linear density with 2n steps of 2p addresses each. The density
of each step is inverse to the input value, i.e., high density for
small inputs and low density for large inputs. For example, for
our 12-entry table, we can use n = 2 (thus, exponents 20, 21,
22) and p = 2 (thus, 4 entries per exponent). As Figure 6(c)
shows, the resulting density is 4 in [1, 2), 2 in [2, 4), and 1
in [4, 8).

The limitation of the D-LUT is that there are no LUT entries
between the smallest exponent (e.g., 20) and 0, which may
cause large inaccuracy for LUT queries near 0. To deal with

this issue, we propose a combined L-LUT + D-LUT method
(Section III-C1).

C. Combined Implementations

In addition to the previous implementations, TransPim-
Lib combines pairs of methods to inherit the strengths of both.

1) Direct Float Conversion + LDEXP-based Fuzzy Lookup
Tables (DL-LUT): This combination solves the limitation of
D-LUT (i.e., no entries between the smallest exponent and 0)
by combining with a D-LUT with an L-LUT. The DL-LUT
uses (1) an L-LUT between 0 and the smallest exponent, and
(2) a D-LUT for larger inputs, providing a density pattern as
depicted in Figure 6(d).

2) CORDIC + LDEXP-based Fuzzy Lookup Table
(CORDIC+LUT): Prior work [2] proposes to replace the
first few iterations of CORDIC with an L-LUT (while still
updating ✓i). This provides a flexible tradeoff between
computing cost, table size, and precision, within the bounds
of pure CORDIC and pure L-LUT approaches, and more
freedom than interpolation.

IV. EVALUATION

A. Methodology

We evaluate TransPimLib on a real-world system with the
UPMEM PIM architecture. It consists of a host CPU (2-socket
Intel Xeon at 2.10 GHz), standard main memory (128 GB),
and 20 UPMEM PIM DIMMs (160 GB and 2560 PIM cores).

In Section IV-B, we evaluate TransPimLib’s CORDIC,
LUT-based, and combined implementations on a single PIM
core using microbenchmarks, in order to compare them in
terms of performance, precision, memory consumption, and
setup time. Our microbenchmarks compute transcendental
functions (all versions of all functions in Table II) for the
elements of an array (of 216 floating-point values) that resides
in a DRAM bank (MRAM in UPMEM terminology). The
PIM core moves chunks of the array into the scratchpad
memory (WRAM in UPMEM terminology) and operates on
each element. For performance comparison, we measure total
execution cycles using a hardware counter [34]. For precision
comparison, we compare to the output of the host CPU,
computed with the standard math library.

In Section IV-C, we evaluate two full workloads that use
transcendental functions (Blackscholes, Softmax) and compare
them to a CPU-only version.

B. Microbenchmarks

C. Benchmarks
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are generally more computationally expensive than multiplica-
tions. We circumvent this issue by exploiting the natural non-
linearity of the floating-point format. We propose an address
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between the smallest exponent (e.g., 20) and 0, which may
cause large inaccuracy for LUT queries near 0. To deal with
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(CORDIC+LUT): Prior work [2] proposes to replace the
first few iterations of CORDIC with an L-LUT (while still
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depends on the approximated function to minimize the error.
This may need non-linear address generation functions, which
are generally more computationally expensive than multiplica-
tions. We circumvent this issue by exploiting the natural non-
linearity of the floating-point format. We propose an address
generation function that uses (1) the last n bits of the exponent,
and (2) p bits of the mantissa. This results in a piece-wise
linear density with 2n steps of 2p addresses each. The density
of each step is inverse to the input value, i.e., high density for
small inputs and low density for large inputs. For example, for
our 12-entry table, we can use n = 2 (thus, exponents 20, 21,
22) and p = 2 (thus, 4 entries per exponent). As Figure 6(c)
shows, the resulting density is 4 in [1, 2), 2 in [2, 4), and 1
in [4, 8).
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between the smallest exponent (e.g., 20) and 0, which may
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LUT): As we mention in Section II-B2, a good spacing
depends on the approximated function to minimize the error.
This may need non-linear address generation functions, which
are generally more computationally expensive than multiplica-
tions. We circumvent this issue by exploiting the natural non-
linearity of the floating-point format. We propose an address
generation function that uses (1) the last n bits of the exponent,
and (2) p bits of the mantissa. This results in a piece-wise
linear density with 2n steps of 2p addresses each. The density
of each step is inverse to the input value, i.e., high density for
small inputs and low density for large inputs. For example, for
our 12-entry table, we can use n = 2 (thus, exponents 20, 21,
22) and p = 2 (thus, 4 entries per exponent). As Figure 6(c)
shows, the resulting density is 4 in [1, 2), 2 in [2, 4), and 1
in [4, 8).

The limitation of the D-LUT is that there are no LUT entries
between the smallest exponent (e.g., 20) and 0, which may
cause large inaccuracy for LUT queries near 0. To deal with

this issue, we propose a combined L-LUT + D-LUT method
(Section III-C1).
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Figure 4: Example lookup table density (y axis) for the input
range [0, 5] (x axis) and 12 LUT entries for TransPimLib’s
four different LUT implementations.

For the M-LUT, the inverse operation is 𝑎−1 (𝑎(𝑥)) = 𝑎 (𝑥)
𝑘

+ 𝑝 .
For our previous example, address 7 of the M-LUT stores the exact
value for the input 𝑥 = 7/2.4 + 0.20834 = 3.125.

The M-LUT’s address generation needs one subtraction, one
multiplication, and one step of rounding or truncation. For inter-
polated M-LUTs, we use the address generation function 𝑎(𝑥) =
𝑓 𝑙𝑜𝑜𝑟 ((𝑥 − 𝑝) · 𝑘) to get the next smaller lookup table address. The
calculation of Δ simplifies to Δ = 𝑓 𝑙𝑜𝑜𝑟 ((𝑥 −𝑝) ·𝑘) − (𝑥 −𝑝) ·𝑘 . As
a result, with respect to the M-LUT, the interpolated M-LUT needs
one extra lookup table query, one extra multiplication (to compute
𝑓 (𝑥)), and one extra subtraction (to compute Δ).

3.2.2 LDEXP-based Fuzzy Lookup Table (L-LUT). Multiplication is
generally expensive [47, 50], but we can make it cheaper if we multi-
ply by 2𝑛 . We use the function ldexp(arg, exp), which is common
in standard math libraries [1], to perform the operation 𝑎𝑟𝑔 · 2𝑒𝑥𝑝 .
This function is not available among UPMEM library functions, but
we implemented it in accordance with the C99 standard [36].

For the L-LUT, we define the address generation function as
𝑎(𝑥) = 𝑟𝑜𝑢𝑛𝑑 ((𝑥 − 𝑝) · 2𝑛), which loses some freedom to design
lookup tables (the density 𝑘 must be a power-of-two), but avoids
costly multiplication [47, 50]. For the example of a 12-entry lookup
table for the interval [0, 5], we can no longer have density 𝑘 = 2.4,
but 𝑘 = 2 (i.e., a power of 2). This results in an L-LUT of lower
precision than the M-LUT, but expands the range to the interval [0,
6] (Figure 4(b)).

3.2.3 Direct Float Conversion-based Fuzzy Lookup Table (D-LUT).
As we mention in Section 2.2.2, a good spacing depends on the
approximated function to minimize the error. This may need non-
linear address generation functions, which are generally more com-
putationally expensive than multiplications. We circumvent this
issue by exploiting the natural non-linearity of the floating-point
format. We propose an address generation function that uses (1)
the last 𝑛 bits of the exponent, and (2) 𝑝 bits of the mantissa. This
results in a piece-wise linear density with 2𝑛 steps of 2𝑝 addresses
each. The density of each step is inversely proportional to the input
value, i.e., high density for small inputs and low density for large
inputs. For example, for our 12-entry table, we can use 𝑛 = 2 (thus,
exponents 20, 21, 22) and 𝑝 = 2 (thus, 4 entries per exponent). As
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Figure 4(c) shows, the resulting density is 4 in [1, 2), 2 in [2, 4), and
1 in [4, 8).

The limitation of the D-LUT is that there are no LUT entries
between the smallest exponent (e.g., 20) and 0, which may cause
large inaccuracy for LUT queries near 0. To deal with this issue,
we propose a combined L-LUT + D-LUT method called DL-LUT
(Section 3.3.1).

3.3 Combined Implementations
In addition to the previous implementations, TransPimLib combines
pairs of implementation methods to leverage the strengths of two
different implementation methods.

3.3.1 Direct Float Conversion + LDEXP-based Fuzzy Lookup Tables
(DL-LUT). This combination solves the limitation of D-LUT (i.e.,
no entries between the smallest exponent and 0) by combining a
D-LUT with an L-LUT. The DL-LUT uses (1) an L-LUT between
0 and the smallest exponent, and (2) a D-LUT for larger inputs,
providing a density pattern as depicted in Figure 4(d).

3.3.2 CORDIC + LDEXP-based Fuzzy Lookup Table (CORDIC+LUT).
Prior work [13] proposes to replace the first few iterations of
CORDICwith a LUT (while still updating𝜃𝑖 ). This provides a flexible
tradeoff between computing cost, table size, and precision, within
the bounds of pure CORDIC and pure LUT approaches (TransPim-
Lib uses L-LUT for this combined method).

4 EVALUATION
This section presents our evaluation of TransPimLib on a real-world
PIM system. Section 4.1 introduces our evaluation methodology.
Section 4.2 presents a microbenchmark-based analysis of the differ-
ent calculation methods used in TransPimLib. Section 4.3 presents
the evaluation of TransPimLib for three real workloads on the PIM
system and the comparison to their multithreaded CPU implemen-
tations of the three real methods.

4.1 Methodology
We evaluate TransPimLib on a real-world system with the UPMEM
PIM architecture. The system consists of a host CPU (2-socket Intel
Xeon with 32 cores at 2.10 GHz), standard main memory (128 GB),
and 20 UPMEM PIM DIMMs (159 GB and 2545 PIM cores at 350
MHz) [132].

4.1.1 Microbenchmarks. In Section 4.2, we evaluate TransPimLib’s
CORDIC, LUT-based, and combined implementations on a single
PIM core (DPU in UPMEM terminology) usingmicrobenchmarks, in
order to compare them in terms of (1) performance, (2) accuracy, (3)
memory consumption, and (4) setup time. Our microbenchmarks
compute all our implemented transcendental functions (i.e., all
versions of all functions in Table 2) for the elements of an array (of
216 floating-point values with random uniform distribution) that
resides in a DRAM bank (MRAM in UPMEM terminology). The
PIM core moves chunks of the array into the scratchpad memory
(WRAM in UPMEM terminology) and operates on each element.

For performance comparison, we measure total execution cycles
using a hardware counter [134].

For accuracy comparison, we compare to the output of the host
CPU, computed with the standard math library. We obtain the

root-mean-square absolute error (RMSE), which we analyze in Sec-
tion 4.2. Maximum absolute error and error in terms of units of last
place (ULP) [45] show very similar trends to the RMSE.

For memory consumption, we account for all tables and variables
that we allocate in the DRAM bank of a PIM core.

For setup time, we include the generation of any tables or vari-
ables on the host CPU, and their transfers to the DRAM bank of a
PIM core.

4.1.2 Benchmarks. In Section 4.3, we implement three full work-
loads that use transcendental functions (Blackscholes, Sigmoid, and
Softmax) on the UPMEM PIM architecture, and compare them to
their CPU-only versions.

Blackscholes [18, 92] calculates the prices for a portfolio of op-
tions with a partial differential equation. This benchmark uses
several functions that benefit from TransPimLib: exponentiation,
logarithm, square root, and cumulative normal distribution function
(CNDF). The original benchmark implements CNDF using polyno-
mial approximation. We also implement CNDF using TransPimLib’s
LUT-based methods. In our experiments, we use an input vector of
10M elements.

Sigmoid [55] is a bounded differentiable function whose deriva-
tive is always positive. A general equation of the Sigmoid function
with a scalar input 𝑥 is defined as 𝑆 (𝑥) = 1

1+𝑒−𝑥 . Sigmoid is com-
monly used in logistic regression [57] to compute the probability of
an output event. It is also frequently used as an activation function
in neural networks. Our Sigmoid benchmark takes an input vector
of 30M elements and computes the Sigmoid output of each input
element.

Softmax [6] is a function that turns a vector of 𝐾 real values
into a vector of 𝐾 real values that sum to 1 (𝜎 (z) 𝑗 = 𝑒

𝑧𝑗∑𝐾
𝑘=1 𝑒

𝑧𝑘
).

Softmax is frequently used as the last layer of neural networks and
in reinforcement learning.4 In our experiments, the input vector
contains 30M values.

On the UPMEM PIM architecture, we implement PIM baselines
of these three workloads that do not use TransPimLib functions.
These baseline PIM implementations are instead based on polyno-
mial approximation [67, 124]. For the PIM implementations that
use TransPimLib, we use interpolated M-LUT and L-LUT meth-
ods for both Blackscholes, Sigmoid, and Softmax. Additionally, we
implement a version of Blackscholes that operates on fixed-point
values.

4.2 Microbenchmarks Results
We use microbenchmarks to evaluate all implementation methods
and supported functions in Table 2. In this section, we analyze
the different implementation methods for the sine function, as a
representative function. We evaluate floating-point versions of all
implementation methods, and also fixed-point versions of L-LUT
methods. Our observations and takeaways are applicable to the
other functions as well.

We run experiments for all CORDIC, LUT-based, and combined
methods where we tune the methods (e.g., number of iterations

4At the time of writing, there are no public implementations of neural networks
(e.g., convolutional neural networks) or reinforcement learning for the UPMEM PIM
architecture where we can test TransPimLib-based Softmax. Such implementations
are out of the scope of this work but TransPimLib can be a useful resource for them.
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in CORDIC-based methods, LUT size in LUT-based methods) to
obtain an accuracy range, i.e., different root-mean-square absolute
errors between 10−4 and 10−9. The desired accuracy impacts the
execution time (on the PIM side), the setup time (on the host CPU
side), and the memory consumption (on the PIM side). Hence, we
analyze (1) performance (execution cycles on the PIM core), (2)
setup time (seconds), and (3) memory consumption (bytes) as a
function of the root-mean-square absolute error (RMSE).

4.2.1 Execution Cycles. Figure 5 shows the execution cycles (per
input element) on a PIM core for the different TransPimLib methods
that implement the sine function as a function of the accuracy
provided by themethod. LUT-based versions place the LUT in either
the PIM core’s DRAM bank (MRAM, solid line) or the scratchpad
(WRAM, dashed line). We make five observations.
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Figure 5: Execution cycles (y axis, linear scale) per input
element on one PIM core as a function of root-mean-square
absolute error values (x axis, logarithmic scale) for different
TransPimLib implementations of the sine function.

First, each LUT-based method consumes the same number of
cycles for any RMSE, because the number of LUT accesses and oper-
ations is independent of the LUT size. LUT-based methods with the
same number of floating-point multiplications take similar number
of execution cycles, i.e., the number of floating-point multiplica-
tions determines the number of execution cycles. The slowest of the
LUT-basedmethods is the interpolatedM-LUTmethod (yellow line),
which executes two floating-pointmultiplications per input element.
Non-interpolated M-LUT (purple) and interpolated L-LUT (green)
execute one multiplication, while non-interpolated L-LUT (cyan)
needs no multiplications. As a result, L-LUT methods (with our cus-
tom LDEXP operation, Section 3.2.2) outperform M-LUT methods
for the entire accuracy range. Interpolated L-LUT reduces the cy-
cle count by ∼50% over interpolated M-LUT, and non-interpolated
L-LUT reduces the count by ∼80% over non-interpolated M-LUT.
The fixed-point version of the non-interpolated L-LUT method
(teal) does not improve the performance over its floating-point
counterpart (none of them use multiplications). However, the fixed-
point version of the interpolated L-LUT (orange) doubles the per-
formance of the floating-point version of the interpolated L-LUT
(green) on the UPMEM PIM architecture, where floating-point mul-
tiplications are significantly more costly than fixed-point multipli-
cations [47, 50].

Second, CORDIC-based methods take more execution cycles to
provide higher accuracy, because accuracy increases with each
iteration of the CORDIC algorithm. CORDIC+LUT runs faster than
pure CORDIC, as it replaces the initial iterations of the CORDIC
algorithm with an L-LUT query.

Third, L-LUT methods obtain the best tradeoff in terms of perfor-
mance and accuracy. Note that curves that are closer to the bottom-
left corner of the plot (e.g., interpolated floating-point L-LUT, inter-
polated fixed-point L-LUT) are better. Interpolated floating-point
and fixed-point L-LUT methods are only 2-3 times more costly than
a single-precision floating-point and an integer multiplication, re-
spectively. As a result, L-LUT methods have an inherent advantage
on PIM architectures over other methods, such as Taylor approxi-
mation [67, 124], where one floating-point multiplication is needed
for each bit of precision (e.g., ∼28 multiplications for RMSE=10−9).

Fourth, there is no significant performance difference between
allocating and accessing LUTs in the DRAM bank (MRAM, solid
line) or in the scratchpad (WRAM, dashed line), and this observa-
tion holds for any number of PIM threads running on the PIM core.
However, the scratchpad is significantly smaller than the DRAM
bank. Thus, the accuracy is limited by the maximum possible LUT
size (most noticeably for non-interpolated methods, e.g., in Fig-
ure 5, non-interpolated fixed-point L-LUT results in RMSE=∼10−6
in WRAM (teal, dashed) but ∼10−7 in MRAM (teal, solid)). As such,
placing LUTs in MRAM can be a good choice to save WRAM space
for input/output operands.

Fifth, at around RMSE=10−9, further increasing the LUT size or
the number of CORDIC iterations does not provide further accu-
racy increase. In our experiments, we also measure the maximum
absolute error to be around 10−7 (not shown in Figure 5). Intuitively,
this is due to the precision of floating-point values being limited to
4 · 2−24 (2.38 · 10−7) for inputs in the range [4, 8) (inputs values are
in the range [0, 2𝜋]). For fixed-point values, we use a 28-bit frac-
tional part, such that the precision of 2−28 (3.7 · 10−9) is sufficient to
match the accuracy provided by floating-point values. This makes
fixed-point L-LUT methods a good choice for general-purpose PIM
architectures such as UPMEM PIM, where floating-point computa-
tion is not natively supported.
Key Takeaway 1. Interpolated L-LUT methods (lookup table with
LDEXP operation) offer the best tradeoff in terms of performance and
accuracy.

4.2.2 Setup Time in Host CPU. Figure 6 shows the setup time on
the host CPU for each implementation method as a function of
the accuracy provided by the method. In combination with the
execution cycles on the PIM core, the setup time gives us a more
complete understanding about when to use CORDIC-based or LUT-
based methods. We make two observations.

First, CORDIC-based methods have flat setup times while LUT-
based methods have setup times that increase with the table size.
We observe that pure CORDIC implementations can provide higher
performance (i.e., lower setup time) than LUT-based methods when
the total number of transcendental operations in a workload is
low. For example, we can compare L-LUT and pure CORDIC at
RMSE=10−9: (1) CORDIC takes 5380 cycles more than L-LUT on
the PIM core, and (2) L-LUT’s setup time on the host CPU is∼5·10−4
seconds longer than CORDIC’s setup time.With a PIM core running
at 425MHz, a PIM kernel would need to execute∼40 sine operations
for the L-LUT sine to amortize the setup time with respect to the
CORDIC-based sine. Thus, CORDIC appears to be preferable for
kernels computing just a few transcendental functions (e.g., less
than 40 sine operations in the previous example).
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Figure 6: Setup time in seconds (y axis, linear scale) on the
host CPU as a function of root-mean-square absolute er-
ror values (x axis, logarithmic scale) for different TransPim-
Lib implementations of the sine function.

Second, CORDIC+LUT has higher setup times than pure
CORDIC due to the use of a LUT for the initial iterations. How-
ever, CORDIC+LUT’s setup times are mostly flat due to the use
of CORDIC for later iterations. Compared to CORDIC and L-LUT,
CORDIC+LUT is a good choice for kernels with very few transcen-
dental functions that require high accuracy.
Key Takeaway 2. CORDIC-based methods are preferable when a
PIM kernel needs to execute just a few transcendental functions (e.g.,
less than 40 sine operations in a kernel running on the UPMEM PIM
architecture) due to their low setup time in the host CPU.

4.2.3 Memory Consumption. Figure 7 shows the memory con-
sumption (in bytes) per PIM core of all LUT- and CORDIC-based
implementation methods as a function of root-mean-square abso-
lute error values. We make several observations.
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Figure 7: Memory consumption in bytes (y axis, logarithmic
scale) per PIM core as a function of root-mean-square ab-
solute error values (x axis, logarithmic scale) for different
TransPimLib implementations of the sine function.

First, accuracy of non-interpolated LUT-based methods is limited
by the amount of available memory (DRAM bank or scratchpad).
Thus, they are only recommended when fast calculation is needed
but lower accuracy is acceptable.

Second, CORDIC and CORDIC+LUT methods have the advan-
tage that their memory consumption does not grow exponentially.
Thus, they are recommended for applications that require high
accuracy, where the amount of memory that can be devoted to
TransPimLib is limited. For example, this can happen in applica-
tions with large datasets, where we need to allocate most of the
space in the PIM core’s DRAM bank to input/output operand arrays.

Third, interpolation is an effective way of increasing accuracy
without increasing LUT size. Overall, interpolated L-LUT offers a
good tradeoff in terms of accuracy, execution cycles, and memory
consumption. For example, at the maximum accuracy that non-
interpolated LUT-based methods can provide (∼10−7), interpolated
L-LUT needs less memory than CORDIC+LUT and it is significantly
faster than pure CORDIC (see Figure 5).
Key Takeaway 3. Interpolated L-LUT methods offer a good trade-
off in terms of accuracy, execution cycles, and memory consumption.
However, CORDIC and CORDIC+LUT methods are recommended for
applications that require high accuracy, where the available mem-
ory is needed for large datasets (i.e., not available for lookup tables
required for the necessary accuracy).

4.2.4 Other Supported Functions. The general trends for other func-
tions supported by TransPimLib are similar to those of the sine
function, which we discuss above. Some major differences that are
worth highlighting are as follows.

First, methods for tangent calculation take around 2-3 times
more cycles than the same methods for sine. This is explained by
the fact that tangent needs (1) calculation of sine and cosine, and
(2) a floating-point division (much costlier than a floating-point
multiplication on UPMEM [47, 50]).

Second, some supported functions may require range reduction
and/or range extension (Section 2.2.3), e.g., sine/cosine, exponenti-
ation, logarithm, square root. The cost of these operations largely
differs between functions, because it depends on the specific opera-
tions needed for the conversion (e.g., mathematical identity that
applies to each function, Section 2.2.3). Figure 8 shows the exe-
cution cycles per input element for range reduction/extension in
sin, exp, log, and sqrt. Note that range reduction/extension is only
necessary depending on the range of input values. For example,
our experiments with the sine function (Figures 5 to 7) use input
values in [0, 2𝜋).
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Figure 8: Execution cycles per input element for range reduc-
tion/extension of TransPimLib implementations of the sine,
exponential, logarithm, and square root functions.

Third, functions that do not need range reduction/extension are
cheaper to calculate. This is the case for activation functions such
as tanh and GELU (Gaussian Error Linear Unit) [56], which are ap-
proximately linear in most parts. D-LUT and DL-LUT methods are
particularly well-suited for tanh and GELU, unlike sine (Figure 5).
They are ∼2× faster than, e.g., interpolated L-LUT for sine, while
providing similar accuracy.
Key Takeaway 4. D-LUT and DL-LUT methods are well-suited for
activation functions, such as tanh and GELU, which (1) do not require
range extension, and (2) are approximately linear in most parts. They
are faster than interpolated L-LUT, while providing similar accuracy.
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4.3 Real-World Benchmark Results
We implement for the UPMEM PIM architecture three full work-
loads (Section 4.1.2) that make use of several functions that are
supported by TransPimLib. We compare them to their single-thread
and 32-thread CPU baselines as well as a PIM baseline that uses
polynomial approximation.

Figure 9 shows the execution time of PIM implementations of
Blackscholes, Sigmoid, and Softmax (on 2545 PIM cores running 16
PIM threads each), and the CPU baselines (on 1 and 32 CPU cores).
We test PIM versions that use (1) polynomial approximation [67,
124] (for comparison to TransPimLib’s methods), (2) interpolated
M-LUT, and (3) interpolated L-LUT. For Blackscholes, we also test
a version with interpolated fixed-point L-LUTs. We include in the
measurements all range reduction/extension costs needed for some
functions (Figure 8). We make the following observations from
Figure 9.
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Figure 9: Execution time (s) of Blackscholes (a), Sigmoid (b),
and Softmax (c) implementations on PIM (on 2545 PIM cores
running 16 PIM threads each), 1 CPU core, and 32 CPU cores.

First, the PIM versions of Blackscholes that use TransPimLib re-
duce the execution time by 5−10×with respect to the baseline PIM
version with polynomial approximation. The M-LUT and L-LUT
versions are, respectively, within 75% and 82% the performance
of the 32-thread CPU baseline. The fixed-point L-LUT version (on
2545 PIM cores running 16 PIM threads each) is 62% faster than the
32-thread CPU baseline.

Second, both Sigmoid and Softmax show similar qualitative be-
havior. TransPimLib’s methods outperform the PIM version with
polynomial approximation by 50-75%. The 32-thread CPU baselines
are around 2× faster than TransPimLib’s PIM version. Nonetheless,
these functions are typically used as part of neural networks and

machine learning algorithms, which may run on the PIM cores.
Thus, TransPimLib’s methods can reduce data movement from PIM
cores to the CPU (Figure 1(b)) for applications running on the PIM
cores. As a result of saving such PIM-Host and Host-PIM transfers,
the execution of transcendental functions in the PIM cores (Fig-
ure 1(c)) could be 6 − 8× faster than the execution in the host CPU
(as inferred from Figure 1(b)).

5 RELATEDWORK
To our knowledge, TransPimLib is the first library of transcendental
(and other hard-to-calculate) functions for general-purpose PIM
systems.

5.1 Real Processing-in-Memory Systems
PIM has become a reality in the last few years. UPMEM [135]
was first to release their PIM architecture [50, 134]. Since it is the
first publicly-available general-purpose PIM architecture, we have
implemented TransPimLib for it.

There is a good amount of recent works that analyze the UPMEM
PIM architecture and implement important applications for it. An
experimental characterization of the UPMEM PIM architecture and
a benchmark suite is presented in [46, 50]. SpMV, an important
memory-bound kernel, is extensively explored in [42]. The wave-
front algorithm (WFA) [93], which is currently the state-of-the-art
gap-affine pairwise alignment algorithm, a key step in genome anal-
ysis, is implemented on the UPMEM PIM architecture in [31, 32].

Besides UPMEM, there have been several prototypes of real
PIM chips developed by major vendors in industry, including Sam-
sung, SK Hynix, and Alibaba, in 2021-2022. Samsung introduced
HBM-PIM, also known as FIMDRAM, [84, 88], an architecture that
embeds one floating-point SIMD unit with a reduced instruction
set, called Programmable Compute Unit (PCU), next to two DRAM
banks in HBM2 layers. This architecture is targeted to accelerate
machine learning inference. The second prototype from Samsung is
AxDIMM [70, 85]. AxDIMM is a DIMM-based solution which places
an FPGA fabric in the buffer chip of the DIMM. It has been tested
for DLRM recommendation inference [70, 100] and in-memory
databases [85]. Another major DRAM vendor, SK Hynix, introduced
Accelerator-in-Memory [87], a GDDR6-based PIM architecture with
specialized units for multiply-and-accumulate and lookup-table-
based activation functions for deep learning applications. AiM [87]
uses LUTs and interpolation hardware for activation functions. A
key difference with our work is that AiM requires dedicated hard-
ware for address generation and interpolation. Alibaba introduced
HB-PNM [101], a PNM system with specialized engines for rec-
ommendation systems, which is composed of a DRAM die and a
logic die vertically integrated via hybrid bonding [38]. TransPim-
Lib can be realized for any PIM architecture that supports addition,
subtraction, multiplication, and division. As such, future work can
implement new versions of TransPimLib’s methods for other cur-
rent and future PIM architectures.

Thoughwe expect that real PIM systems will continue improving
their computing capabilities, integrating processing elements in
DRAM technology is challenging and constrains design decisions
heavily [30, 71, 78]. For example, DRAM has a lower number of
metal layers than CMOS and slower transistors [27, 30, 108, 120, 138,
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144]. As a result, manufacturing complex execution units (as those
needed for transcendental and other hard-to-calculate functions)
using DRAM technology would require the addition of extra (costly)
metal layers while resulting in low frequency logic units [71, 78],
which will hardly be affordable in PIM systems. Other future PIM
systems, e.g., 3D-stacked memories with processing elements in
a logic layer [61, 62, 65], can make the integration of complex
execution units easier. However, their area and thermal budget will
still be constrained. For example, in a forward-looking HBM-based
PIM system [77], PIM logic can occupy only ∼28% of the logic layer
due to the need for peripheral/control logic. Thus, the availability
of libraries for complex operations, such as TransPimLib, will likely
continue to be necessary.

5.2 Acceleration of Transcendental Functions
Several works [29, 113] aim to improve LUT-based implementation
methods (e.g., improving accuracy for a given memory consump-
tion). These works are not specific to PIM systems. Compared to
them, TransPimLib is simpler and requires less calculations before
and after lookup table queries.

Several other works [109, 127, 128] study the use of memoiza-
tion to accelerate expensive transcendental function calls in CPUs.
Compared to TransPimLib, these approaches are not self-sufficient
and, as such, they need additional mechanisms for the cases where
a value that has not been memoized is needed. As a result, if imple-
mented for PIM systems, these approaches could lead to excessive
data movement, as shown in Figure 1(b).

6 CONCLUSION
Processing-in-memory (PIM) is a promising trend to alleviate the
data movement bottleneck in current computing systems. PIM is
becoming a reality with the advent of real-world PIM architectures,
which place simple processing elements near the memory arrays.
These architectures support only limited instruction sets, which
makes the execution of complex operations challenging. This is
the case of transcendental functions and other hard-to-calculate
operations (e.g., square root).

In this work, we present TransPimLib, the first library for PIM
systems that provides CORDIC-based and LUT-based methods for
trigonometric functions, hyperbolic functions, exponentiation, log-
arithm, square root, etc. We develop an implementation of Tran-
sPimLib for the UPMEM PIM architecture and perform a thor-
ough evaluation of TransPimLib’s methods in terms of performance
and accuracy, using microbenchmarks and three full workloads
(Blackscholes, Softmax, Sigmoid).

We believe that TransPimLib methods can be suitable for other
current and future PIM architectures lacking native support for
these complex functions. The implementation of these methods
for other current and future PIM architectures is subject of future
work.
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