

Uncovering in-DRAM RowHammer Protection Mechanisms: A New Methodology, Custom RowHammer Patterns, and Implications

Hasan Hassan

Yahya Can Tugrul Jeremie S. Kim Victor van der Veen Kaveh Razavi Onur Mutlu

The RowHammer Vulnerability

Repeatedly **opening** (activating) and **closing** (precharging) a DRAM row causes **RowHammer bit flips** in nearby cells

110

Current RowHammer Protection Mechanisms

DRAM vendors implement in-DRAM Target Row Refresh (TRR)

Key Idea: TRR refreshes nearby rows upon detecting an aggressor row

TRR is obscure, undocumented, and proprietary

We cannot easily study the *security properties* of TRR

SAFARI

Study in-DRAM TRR mechanisms to

3 secure DRAM completely against RowHammer

U-TRR (Uncovering TRR)

U-TRR: A new methodology to *uncover* the inner workings of TRR

Key idea: Use data retention failures as a side channel to detect when a row is refreshed by TRR

U-TRR: Experimental Setup

* SoftMC [Hassan+, HPCA'17] enhanced for DDR4

U-TRR Analysis Summary

Key Takeaways

All 45 modules we test are vulnerable

99.9% of rows in a DRAM bank experience **at least one RowHammer bit flip**

Up to 7 RowHammer bit flips in an 8-byte dataword, **making ECC ineffective**

Module	Date (yy-ww)	Chip Density (Gbit)	Organization				Our Key TRR Observations and Results							
			Ranks	Banks	Pins	HC_{first} †	Version	Aggressor Detection	Aggressor Capacity	Per-Bank TRR	TRR-to-REF Ratio	Neighbors Refreshed	% Vulnerable DRAM Rows†	Max. Bit Flips per Row per Hammer‡
A0	19-50	8	1	16	8	16K	A_{TRR1}	Counter-based	16	1	1/9	4	73.3%	1.16
A1-5	19-36	8	1	8	16	13K - 15K	A_{TRR1}	Counter-based	16	1	1/9	4	99.2% - 99.4%	2.32 - 4.73
A6-7	19-45	8	1	8	16	13K - 15K	A_{TRR1}	Counter-based	16	1	1/9	4	99.3% - 99.4%	2.12 - 3.86
A8-9	20-07	8	1	16	8	12K - 14K	A_{TRR1}	Counter-based	16	1	1/9	4	74.6% - 75.0%	1.96 - 2.96
A10-12	19-51	8	1	16	8	12K - 13K	A_{TRR1}	Counter-based	16	1	1/9	4	74.6% - 75.0%	1.48 - 2.86
A13-14	20-31	8	1	8	16	11K-14K	A_{TRR2}	Counter-based	16	1	1/9	2	94.3% - 98.6%	1.53 - 2.78
B0	18-22	4	1	16	8	44K	B _{TRR1}	Sampling-based	1	X	1/4	2	99.9%	2.13
B1-4	20-17	4	1	16	8	159K - 192K	B_{TRR1}	Sampling-based	1	×	1/4	2	23.3% - 51.2%	0.06 - 0.11
B5-6	16-48	4	1	16	8	44K-50K	B_{TRR1}	Sampling-based	1	×	1/4	2	99.9%	1.85 - 2.03
B7	19-06	8	2	16	8	20K	B _{TRR1}	Sampling-based	1	×	1/4	2	99.9%	31.14
B8	18-03	4	1	16	8	43K	B_{TRR1}	Sampling-based	1	×	1/4	2	99.9%	2.57
B9-12	19-48	8	1	16	8	42K-65K	B_{TRR2}	Sampling-based	1	×	1/9	2	36.3% - 38.9%	16.83 - 24.26
B13-14	20-08	4	1	16	8	11K-14K	B _{TRR3}	Sampling-based	1	1	1/2	4	99.9%	16.20 - 18.12
C0-3	16-48	4	1	16	x8	137K-194K	C_{TRR1}	Mix	Unknown	1	1/17	2	1.0% - 23.2%	0.05 - 0.15
C4-6	17-12	8	1	16	x8	130K - 150K	C_{TRR1}	Mix	Unknown	1	1/17	2	7.8% - 12.0%	0.06 - 0.08
C7-8	20-31	8	1	8	x16	40K-44K	C_{TRR1}	Mix	Unknown	1	1/17	2	39.8% - 41.8%	9.66 - 14.56
C9-11	20-31	8	1	8	x16	42K-53K	C_{TRR2}	Mix	Unknown	1	1/9	2	99.7%	9.30 - 32.0 ±
C12-14	20-46	16	1	8	x16	6K-7K	C_{TRR3}	Mix	Unknown	1	1/8	2	99.9%	4.91 - 12.64

Uncovering in-DRAM RowHammer Protection Mechanisms: A New Methodology, Custom RowHammer Patterns, and Implications

Hasan Hassan

Yahya Can Tugrul Jeremie S. Kim Victor van der Veen Kaveh Razavi Onur Mutlu

