

Uncovering in-DRAM RowHammer Protection Mechanisms: A New Methodology, Custom RowHammer Patterns, and Implications

Hasan Hassan

Yahya Can Tugrul Jeremie S. Kim Victor van der Veen Kaveh Razavi Onur Mutlu

Summary

DRAM **RowHammer** vulnerability leads to critical reliability and security issues

Target Row Refresh (TRR):

a set of obscure, undocumented, and proprietary RowHammer mitigation techniques

Is TRR fully secure? How can we validate its security guarantees?

U-TRR	A new methodology that leverages <i>data retention failures</i> to uncover the inner workings of TRR and study its security
High-Level Operation	 Profile the retention time of a row R Find when TRR refreshes R to understand the underlying TRR mechanism

All 45 modules we test are vulnerable

99.9% of rows in a DRAM bank experience **at least one RowHammer bit flip**

Up to **7** RowHammer **bit flips** in an 8-byte dataword, **making ECC ineffective**

U-TRR can enable **more secure** RowHammer solutions

Outline

1. DRAM Operation Basics

2. RowHammer & Target Row Refresh

3. The U-TRR Methodology

4. Observations & New RowHammer Access Patterns

5. RowHammer Bit Flip Analysis

6. Takeaways and Conclusion

DRAM Organization

Accessing DRAM

DRAM Cell Leakage

Each cell encodes information in leaky capacitors

Stored data is **corrupted** if too much charge leaks (i.e., the capacitor voltage degrades too much)

DRAM Refresh

Periodic **refresh operations** preserve stored data

Outline

1. DRAM Operation Basics

2. RowHammer & Target Row Refresh

3. The U-TRR Methodology

4. Observations & New RowHammer Access Patterns

5. RowHammer Bit Flip Analysis

6. Takeaways and Conclusion

The RowHammer Vulnerability

Repeatedly **opening** (activating) and **closing** (precharging) a DRAM row causes **RowHammer bit flips** in nearby cells

Target Row Refresh (TRR)

DRAM vendors equip their DRAM chips with a *proprietary* mitigation mechanisms known as **Target Row Refresh (TRR)**

Key Idea: TRR refreshes nearby rows upon detecting an aggressor row

The Problem with TRR

TRR is obscure, undocumented, and proprietary

We cannot easily study the *security properties* of TRR

Study in-DRAM TRR mechanisms to

assess their security

Outline

1. DRAM Operation Basics

2. RowHammer & Target Row Refresh

3. The U-TRR Methodology

4. Observations & New RowHammer Access Patterns

5. RowHammer Bit Flip Analysis

6. Takeaways and Conclusion

U-TRR: A new methodology to *uncover* the inner workings of TRR

Key idea: Use data retention failures as a side channel to detect when a row is refreshed by TRR

High-Level U-TRR Operation

U-TRR has two main components: **Row Scout (RS)** and **TRR Analyzer (TRR-A)**

Row Scout: finds a **set of DRAM rows** that meet certain requirements as needed by TRR-A and **identifies the data retention times** of these rows

TRR Analyzer: uses RS-provided rows to **distinguish between TRR-induced and regular refreshes**, and thus builds an understanding of the underlying TRR mechanism

Row Scout (RS)

SAFARI

Goal: Identify a list of *useful* DRAM rows and their *retention times* **Row Scout must** find:

✓ Rows with **consistent*** retention times

> To correctly infer whether a row has been refreshed

 ✓ Multiple rows that are located at *certain configurable distances* and have the *same retention time (i.e., Row Group)*

> To observe whether TRR can refresh multiple rows at the same time

* The retention time of a DRAM row may change over time due to Variable Retention Time (VRT) effects

Row Scout (RS) Operation

Row Group: V V V

TRR Analyzer (TRR-A)

Goal: Use RS-provided rows to determine when TRR refreshes a victim row

High-level Operation:

- 1) Run a certain DRAM access pattern (i.e., RowHammer attack)
- 2) Monitor retention failures in RS-provided rows to determine when TRR refreshes any of these rows
- 3) Develop an understanding of the underlying TRR operation

TRR Analyzer (TRR-A) Operation

TRR-A helps to understand how TRR operates based on when Retention Profiled Rows are refreshed by TRR

Outline

1. DRAM Operation Basics

2. RowHammer & Target Row Refresh

3. The U-TRR Methodology

4. Observations & New RowHammer Access Patterns

5. RowHammer Bit Flip Analysis

6. Takeaways and Conclusion

DRAM Testing Infrastructure

We implement U-TRR using FPGA-based *SoftMC* [Hassan+, HPCA'17] *modified to support DDR4 DRAM*

Module	Date (yy-ww)	Chip Density (Gbit)	Organization				Our Key TRR Observations and Results							
			Ranks	Banks	Pins	HC _{first} †	Version	Aggressor Detection	Aggressor Capacity	Per-Bank TRR	TRR-to-REF Ratio	Neighbors Refreshed	% Vulnerable DRAM Rows†	Max. Bit Flips per Row per Hammer†
A0	19-50	8	1	16	8	16K	A_{TRR1}	Counter-based	16	1	1/9	4	73.3%	1.16
A1-5	19-36	8	1	8	16	13K - 15K	A_{TRR1}	Counter-based	16	1	1/9	4	99.2% - 99.4%	2.32 - 4.73
A6-7	19-45	8	1	8	16	13K - 15K	A_{TRR1}	Counter-based	16	1	1/9	4	99.3% - 99.4%	2.12 - 3.86
A8-9	20-07	8	1	16	8	12K - 14K	A_{TRR1}	Counter-based	16	1	1/9	4	74.6% - 75.0%	1.96 - 2.96
A10-12	19-51	8	1	16	8	12K - 13K	A_{TRR1}	Counter-based	16	1	1/9	4	74.6% - 75.0%	1.48 - 2.86
A13-14	20-31	8	1	8	16	11K-14K	A_{TRR2}	Counter-based	16	1	1/9	2	94.3% - 98.6%	1.53 - 2.78
B0	18-22	4	1	16	8	44K	B _{TRR1}	Sampling-based	1	×	1/4	2	99.9%	2.13
B1-4	20-17	4	1	16	8	159K-192K	B_{TRR1}	Sampling-based	1	×	1/4	2	23.3% - 51.2%	0.06 - 0.11
B5-6	16-48	4	1	16	8	44K-50K	B _{TRR1}	Sampling-based	1	×	1/4	2	99.9%	1.85 - 2.03
B7	19-06	8	2	16	8	20K	B_{TRR1}	Sampling-based	1	×	1/4	2	99.9%	31.14
B8	18-03	4	1	16	8	43K	B _{TRR1}	Sampling-based	1	×	1/4	2	99.9%	2.57
B9-12	19-48	8	1	16	8	42K-65K	B_{TRR2}	Sampling-based	1	×	1/9	2	36.3% - 38.9%	16.83 - 24.26
B13-14	20-08	4	1	16	8	11K-14K	B _{TRR3}	Sampling-based	1	1	1/2	4	99.9%	16.20 - 18.12
C0-3	16-48	4	1	16	x8	137K-194K	C _{TRR1}	Mix	Unknown	1	1/17	2	1.0% - 23.2%	0.05 - 0.15
C4-6	17-12	8	1	16	x8	130K - 150K	C_{TRR1}	Mix	Unknown	1	1/17	2	7.8% - 12.0%	0.06 - 0.08
C7-8	20-31	8	1	8	x16	40K-44K	C_{TRR1}	Mix	Unknown	1	1/17	2	39.8% - 41.8%	9.66 - 14.56
C9-11	20-31	8	1	8	x16	42K-53K	C_{TRR2}	Mix	Unknown	1	1/9	2	99.7%	9.30 - 32.04
C12-14	20-46	16	1	8	x16	6 <i>K</i> -7 <i>K</i>	C _{TRR3}	Mix	Unknown	1	1/8	2	99.9%	4.91 - 12.64

SAFARI

Table 1 in our paper provides moreinformation about the analyzed modules

Key Observations: Vendor A

Refresh Types:

- Regular Refresh (RR)
- TRR-capable Refresh (**TREF**₁ and **TREF**₂)

Observation: TRR tracks potentially aggressor rows using a **Counter Table**

TREF₁: Refreshes the victims of **row ID** with the **largest counter value**

TREF₂: Refreshes the victims of **row ID** that TREF₂ pointer refers to

Circumventing Vendor A's TRR

This RowHammer access pattern requires **synchronizing** accesses with REF commands

Circumventing Vendor A's TRR by discarding the actual aggressor rows from the Counter Table

Key Observations: Vendor B

Refresh Types:

- Regular Refresh (RR)
- TRR-capable Refresh (TREF)

Observation 1: TRR *probabilistically* samples the address of an activated row

Observation 2: A newly-sampled row overwrites the previously-sampled one

TREF: Refreshes the victims of the **last sampled row**

Circumventing Vendor B's TRR

Approach: Maximize the **dummy** row hammers **after** hammering the **aggressor** rows and **before** the next **TREF**

$$TREF \rightarrow ACT([A_1, A_2]) \rightarrow ACT(D_1) \rightarrow TREF$$

$$N times \qquad M times$$

$$[A1, A2] not$$
refreshed by TRR

Circumventing Vendor B's TRR by making it replace a sampled aggressor row by sampling a dummy row

Key Observations: Vendor C

Refresh Types:

- Regular Refresh (RR)
- TRR-capable Refresh (TREF)

Observation 1: TRR detects an aggressor row only among the first 2K ACT commands issued after a **TREF**

Observation 2: Rows activated earlier within the 2K ACT commands are more likely to be detected by TRR

TREF: Detects an aggressor row only among the first 2K ACT commands while favoring the earlier activations more

Circumventing Vendor C's TRR

Approach: Hammer dummy rows before aggressor rows to **maximize the probability** of TRR **detecting** a dummy row

Circumventing Vendor C's TRR by first hammering dummy rows to make aggressor rows less likely to be detected

Outline

1. DRAM Operation Basics

2. RowHammer & Target Row Refresh

3. The U-TRR Methodology

4. Observations & New RowHammer Access Patterns

5. RowHammer Bit Flip Analysis

6. Takeaways and Conclusion

We craft **new RowHammer access patterns** that **circumvent TRR** of three major DRAM vendors

On the **45** DDR4 modules we test, the new access patterns cause a large number of RowHammer bit flips

Effect on Individual Rows

All 45 modules we tested are vulnerable to our new RowHammer access patterns

Our RowHammer access patterns cause bit flips in more than 99.9% of the rows

Why are some modules less vulnerable?

- 1) Fundamentally less vulnerable to RowHammer
- 2) Different TRR mechanisms
- 3) Unique row organization

Effect on Individual Rows

All 45 modules we tested are vulnerable to our new RowHammer access patterns

Our RowHammer access patterns cause bit flips in more than 99.9% of the rows

Our access patterns successfully circumvent the TRR implementations of all three major DRAM vendors

3) Unique row organization

Can ECC Protect Against Our Access Patterns?

Bypassing ECC with New RowHammer Patterns

Modules from all three vendors have many **8-byte data chunks** with **3 and more (up to 7) RowHammer bit flips**

Conventional DRAM ECC cannot protect against our new RowHammer access patterns

Other Observations and Results in the Paper

- More observations on the TRRs of the three vendors
- Detailed description of the crafted access patterns
- Hammers per aggressor row sensitivity analysis
- Observations and results for individual modules

• ...

Module	Date (yy-ww)	Chip Density (Gbit)	Organization				Our Key TRR Observations and Results							
			Ranks	Banks	Pins	HC _{first} †	Version	Aggressor Detection	Aggressor Capacity	Per-Bank TRR	TRR-to-REF Ratio	Neighbors Refreshed	% Vulnerable DRAM Rows†	Max. Bit Flips per Row per Hammer†
A0	19-50	8	1	16	8	16K	A_{TRR1}	Counter-based	16	1	1/9	4	73.3%	1.16
A1-5	19-36	8	1	8	16	13K - 15K	A_{TRR1}	Counter-based	16	1	1/9	4	99.2% - 99.4%	2.32 - 4.73
A6-7	19-45	8	1	8	16	13K - 15K	A_{TRR1}	Counter-based	16	1	1/9	4	99.3% - 99.4%	2.12 - 3.86
A8-9	20-07	8	1	16	8	12K - 14K	A_{TRR1}	Counter-based	16	1	1/9	4	74.6% - 75.0%	1.96 - 2.96
A10-12	19-51	8	1	16	8	12K-13K	A_{TRR1}	Counter-based	16	1	1/9	4	74.6% - 75.0%	1.48 - 2.86
A13-14	20-31	8	1	8	16	11K-14K	A_{TRR2}	Counter-based	16	✓	1/9	2	94.3% - 98.6%	1.53 - 2.78
B0	18-22	4	1	16	8	44K	B _{TRR1}	Sampling-based	1	×	1/4	2	99.9%	2.13
B1-4	20-17	4	1	16	8	159K-192K	B_{TRR1}	Sampling-based	1	×	1/4	2	23.3% - 51.2%	0.06 - 0.11
B5-6	16-48	4	1	16	8	44K-50K	B _{TRR1}	Sampling-based	1	×	1/4	2	99.9%	1.85 - 2.03
B7	19-06	8	2	16	8	20K	B_{TRR1}	Sampling-based	1	×	1/4	2	99.9%	31.14
B8	18-03	4	1	16	8	43K	B _{TRR1}	Sampling-based	1	×	1/4	2	99.9%	2.57
B9-12	19-48	8	1	16	8	42K-65K	B_{TRR2}	Sampling-based	1	×	1/9	2	36.3% - 38.9%	16.83 - 24.26
B13-14	20-08	4	1	16	8	11K-14K	B _{TRR3}	Sampling-based	1	1	1/2	4	99.9%	16.20 - 18.12
C0-3	16-48	4	1	16	x8	137K-194K	C _{TRR1}	Mix	Unknown	✓	1/17	2	1.0% - 23.2%	0.05 - 0.15
C4-6	17-12	8	1	16	x8	130K - 150K	C_{TRR1}	Mix	Unknown	1	1/17	2	7.8% - 12.0%	0.06 - 0.08
C7-8	20-31	8	1	8	x16	40K - 44K	C_{TRR1}	Mix	Unknown	1	1/17	2	39.8% - 41.8%	9.66 - 14.56
C9-11	20-31	8	1	8	x16	42K-53K	C_{TRR2}	Mix	Unknown	1	1/9	2	99.7%	9.30 - 32.04
C12-14	20-46	16	1	8	x16	6 <i>K-</i> 7 <i>K</i>	C _{TRR3}	Mix	Unknown	1	1/8	2	99.9%	4.91 - 12.64

Outline

1. DRAM Operation Basics

2. RowHammer & Target Row Refresh

3. The U-TRR Methodology

4. Observations & New RowHammer Access Patterns

5. RowHammer Bit Flip Analysis

6. Takeaways and Conclusion

Conclusion

Target Row Refresh (TRR):

a set of obscure, undocumented, and proprietary RowHammer mitigation techniques

We cannot easily study the security properties of TRR

Is TRR fully secure? How can we validate its security guarantees?

U-TRR

A new methodology that leverages *data retention failures* to uncover the inner workings of TRR and study its security

TRR does not provide security against RowHammer

U-TRR can facilitate the development of **new RowHammer attacks** and **more secure RowHammer protection** mechanisms

Uncovering in-DRAM RowHammer Protection Mechanisms: A New Methodology, Custom RowHammer Patterns, and Implications

Hasan Hassan

Yahya Can Tugrul Jeremie S. Kim Victor van der Veen Kaveh Razavi Onur Mutlu

