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Executive Summary
Problem: Conventional virtual memory (VM) frameworks enable a virtual address to flexibly map                                         
to any physical address. This flexibility necessitates large translation structures leading to: 

(1) high translation latency and (2) large translation-induced interference in the memory hierarchy 

2

Motivation: Restricting the address mapping leads to compact translation structures and reduces 
the overheads of address translation. Doing so across the entire memory has two major drawbacks: 
(1) Limits core VM functionalities (e.g., data sharing) 
(2) Increases swapping activity in the presence of free physical memory 

Key Idea: Utopia is a new hybrid virtual-to-physical address mapping scheme  that allows both 
flexible and restrictive hash-based address mappings to harmoniously co-exist in the system

Utopia manages physical memory using two types of physical memory segments:
Flexible Segment
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Key Results: Outperforms (i) the state-of-the-art contiguity-aware translation scheme by 13%,
and (ii) achieves  95% of the performance of an ideal perfect-TLB

https://github.com/CMU-SAFARI/Utopia
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Virtual Memory Background



A core feature of virtual memory management is that the 
mapping between virtual-to-physical pages is fully-associative

Virtual Memory Basics

5

Virtual Address Space Physical Address Space
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Perform Page Table Walk (PTW) to retrieve the mapping  



Page Table Walk in x86-64
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Page Table Walk in x86-64
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Four sequential memory accesses 
during a page table walk in x86-64



Address Translation Flow (I)
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Address Translation Flow (II)
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Address Translation Flow (III)
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Address Translation Overheads



Data-Intensive Workloads

Graph Analytics Bioinformatics
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High address translation overheads

Generative AI



Address Translation Overhead
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Frequent page table walks

High-latency page table walks



Address Translation Overhead
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High latency 
PTWs

Frequent
PTWs

High performance 
overheads

High interference in 
memory hierarchy 
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High Performance Overhead
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Completely avoiding address translation 
leads on average to 31% higher performance
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[1] Skarlatos et al. “Elastic Cuckoo Page Tables: Rethinking Virtual Memory
Translation for Parallelism” ASPLOS 2020



High Interference in Main Memory
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Completely avoiding address translation 
leads to 30% fewer DRAM row buffer conflicts

30%

[1] Skarlatos et al. “Elastic Cuckoo Page Tables: Rethinking Virtual Memory
Translation for Parallelism” ASPLOS 2020



Idea: Restricting VA-to-PA Mapping
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Restrict the VA-to-PA mapping to 
perform fast address translation1,2

..
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1

..

0 0 0 0 0 
0 0 0 0 0 
0 0 0 1 0 

..

..

Hash 
Function

Virtual Address Space Physical Address Space

Hash Mask 
11100

[1] Picorel et al. “Near-Memory Address Translation” PACT 2017

[2] Gosakan et al. “Mosaic Pages: Big TLB Reach with Small Pages” ASPLOS 2023
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Drawbacks of Restricting VA-to-PA Mapping
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Employing a restrictive mapping across the entire 
memory comes with two key drawbacks:

1. Limits core VM functionalities such as data sharing

2. Increases swapping activity since the system         
cannot map virtual pages to free physical pages



Effect on Swapping Activity 
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Our Goal

Design a virtual-to-physical address mapping 
scheme that: 

• Provides fast and efficient translation using a 
restrictive hash-based address mapping

• Enjoys the benefits of the conventional                
fully-flexible address mapping 
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Utopia: Hybrid Address Mappings   



Utopia: Key Idea

We propose Utopia, a new virtual-to-physical 
mapping scheme that enables both: 
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Flexible MappingRestrictive Mapping

Harmoniously co-exist in the system



Utopia: Key Idea
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Manage physical memory using two types of 
physical memory segments: 

Flexible SegmentsRestrictive Segments



Restrictive Segments

Utopia: Key Idea (I)
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Flexible Segments

Fast address translation

Limited VM functionalities
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Flexible Segments

Utopia: Key Idea (II)
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Restrictive Segments

High-latency 
address translation

Supports all conventional 
VM features
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RestSeg Properties
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Structural Properties

Address Translation for Data in RestSeg



RestSeg Properties
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Structural Properties

RestSeg is organized in 
a set-associative manner 

similar to how hardware caches operate 



RestSeg: Structural Properties
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Example: 2-way associative RestSeg with 2 sets
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Set-associative design offers high flexibility 



Multiple RestSegs in the System 
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RestSeg Properties
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Address Translation for Data in RestSeg



RestSeg
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RestSeg

Page Page Page Page
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How can we find out the physical location of 
the virtual page?



RSW Operations
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Tag Matching1

Set Filtering2



Virtual 
Address

Hash 
Function

RestSeg: Tag Matching

Tag

• Tag matching requires comparing the tags of all ways with the 
tag of the virtual page

• Tag Array (TAR): Array that stores the tag of each entry

TAR
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N/A

N/A

N/A

Set 0 
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Set #

Do we always have to do tag matching?



RestSeg: Set Filtering
• Set Filtering: quickly discover if a set in the RestSeg is empty or 

not and filter tag mismatches

• Set Filter (SF): Array of counters that keep track of the number 
of pages inside each set
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Address Translation in Utopia

System employs:
• 2 RestSegs, one for 4KB and one for 2MB pages
• 1 FlexSeg
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Utopia: Key Challenges



Utopia: Key Challenges

1. Which data should be placed in the 
RestSeg?

2. How to maintain RestSegs in the system  

3. How to integrate Utopia in the address 
translation pipeline 

41



Utopia:  Key Challenges

1. Which data should be placed in the 
RestSegs?

2. How to maintain RestSegs in the system  

3. How to integrate Utopia in the address 
translation pipeline  
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Page Placement in RestSeg

Our goal is to place costly-to-translate pages       
into a RestSeg

We propose two techniques to perform data 
placement in Utopia:

• Page-Fault-based Allocation Policy

• PTW-Tracking-based Migration Policy
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Page-Fault-Based Allocation Policy

On a page fault
the page is directly allocated in a RestSeg

RestSeg

Allocate

Page Fault
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What about costly-to-translate pages 
that reside in a FlexSeg?



PTW-Tracking-Based Migration Policy

Use unused bits of each PTE as a counter that tracks the 
number and cost of PTWs for each page

Physical Frame # 

Page Table Entry

Metadata PTE Counters

> Threshold

RestSeg

Migrate

Unused bits
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Utopia: Three Key Challenges

1. Which data should be placed in the 
RestSegs?

2. How to maintain RestSegs in the system  

3. How to integrate Utopia in the address 
translation pipeline 
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OS Support for Utopia

OS supports Utopia in three ways by handling: 

1. Allocations in a RestSeg

2. Replacements in a RestSeg

3. Migrations to/from a RestSeg
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Detailed description in the paper



Utopia: 3 Key Challenges

•Which data should be placed in the 
RestSegs?

•How to maintain RestSegs in the system  

•How to integrate Utopia in the address 
translation pipeline 
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RestSeg Walker in MMU
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MMU: Page inside RestSeg (I)
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MMU: Page inside RestSeg (I)
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MMU: Page inside RestSeg (I)
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MMU: Page inside RestSeg (I)
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MMU: Page inside RestSeg (I)
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MMU: Page inside FlexSeg (II)
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MMU: Page inside FlexSeg (II)

57

L1 TLB

TAR Cache

SF Cache

RestSeg Walker
FSM

Miss

L2 
Unified  

TLB



MMU: Page inside FlexSeg (II)
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MMU: Page inside FlexSeg (II)
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MMU: Page inside FlexSeg (II)
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MMU: Page inside FlexSeg (II)
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Area & Power Overhead

• Area and power overhead evaluation using McPat 

• Comparison to a high-end Intel Raptor Lake
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Utopia incurs 0.64% area and 
0.72% power overhead per core
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Evaluation Results



Evaluation Methodology
• Sniper Multicore Simulator extended with:
• Page table walker & page walk caches
• Buddy allocator
• Migration Latency 
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Our poster at MICRO 2023 SRC introduces 
a new open-source simulation 

framework for VM research

https://github.com/CMU-SAFARI/Virtuoso



Evaluation Methodology
• Sniper Multicore Simulator extended with:
• Page table walker & page walk caches
• Buddy allocator
• Migration Latency 

• Workloads: Executed for 500M instructions

• GraphBIG: PR, BFS, BC, GC, CC 
• HPCC: Randacc
• XSBench: Particle Simulation with 15K grid
• DLRM: SLS-like
• GenomicsBench: k-mer count
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Evaluated Mechanisms

• Baseline with Radix PT and Transparent Huge Pages enabled

• POM-TLB1: State-of-the art large software-managed TLB 

• ECH2: State-of-the-art hash-based page table 

• RMM3: Contiguity-aware address translation 

• Utopia: 512MB RestSegs (one for 4KB and one for 2MB pages)

• P-TLB: Perfect L1 TLB (translation requests always hit in L1 TLB)
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[2] Skarlatos et al. “Elastic Cuckoo Page Tables: Rethinking Virtual Memory Translation for Parallelism” ASPLOS ‘20
[1] Ryoo et al. “Rethinking TLB designs in virtualized environments: A very large part-of-memory TLB” ISCA ’17

[3] Karakostas et al. “Redundant memory mappings for fast access to large memories” ISCA ’15



Performance Results
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Utopia outperforms the second-best performing 
scheme (RMM) by 13% and Radix by 24%

13%



Performance Results
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Utopia’s performance is within 95% of P-TLB 
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Translation Latency
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Utopia reduces average translation latency by 
63% over Radix and 14% over RMM



Main Memory Interference
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Utopia reduces row buffer conflicts by 20% 
over Radix and 9% less than P-TLB



More Results and Details in the Paper

• Sensitivity across different hash functions
• Sensitivity to parallel/serial TLB access and RSW  
• Sensitivity to RestSeg size 
• Reuse-level distribution of 4KB pages
• Effect of migration to memory requests
• TAR & SF cache hit rate
•Overhead across different context-switch quanta
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https://arxiv.org/abs/2211.12205
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Conclusion
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We propose Utopia, a new virtual-to-physical 
mapping scheme that enables both: 

Flexible MappingRestrictive Mapping

Harmoniously co-exist in the system

https://github.com/CMU-SAFARI/Utopia

Utopia is open source

Utopia achieves (i) 13% higher performance than                                   
the state-of-the-art contiguity-aware translation scheme and                                    

(ii) 95% of the performance of an ideal perfect-TLB
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Address Translation Flow (III)
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Virtual Memory Basics

Virtual Memory (VM) is one of the cornerstones
of most modern computing systems

Conventional VM designs provide :

(1) Application-transparent memory management

(2) Data sharing

(3) Process isolation
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Address Translation Flow (III)
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High Latency PTWs
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Irregular Memory 
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Large 
Datasets

Large and costly-to-access PT
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High Latency PTWs
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the state-of-the-art hash-based PT 



OS: Allocation in RestSeg

VPN

Hash 
Function

Tag Array There is a free way!
Store data there
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OS: Allocation in RestSeg

VPN

Hash 
Function

Tag Array Discover if there is a 
free way in the set
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OS: Replacement in RestSeg

VPN

Hash 
Function

Tag Array No way is free!
If no page-fault, 
evict a page!
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OS: Migration to/from RestSeg

RestSeg

Migration

FlexSeg

DMA engine is responsible for migrating data 
between RestSegs and FlexSegs
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Architectural Support for Utopia

New hardware components to support Utopia:

• Specialized hardware circuitry to perform the tag matching and 
the set filtering

- Avoid expensive software-based accesses to translation structures

• Small caches for the the Tag Array and Set Filter
- Accesses to Permissions Filter and Tag Array may exhibit high spatial 
and temporal locality 

• Minor modifications in the address translation pipeline:
- RSW occurs in parallel with L2 TLB access
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