UTOPIA

Fast and Efficient Address Translation
via Hybrid Restrictive & Flexible
Virtualto-Physical Address Mappings

Konstantinos Kanellopoulos
Rahul Bera, Kosta Stojilikovic, Nisa Bostanci, Can Firtina,

Rachata Ausavarungnirun, Rakesh Kumar, Nastaran Hajinazar,
Mohammad Sadrosadati, Nandita Vijaykumar, and Onur Mutlu

SAFARI ETHzirich
) ®@NTNU

Executive Summary

Problem: Conventional virtual memory (VM) frameworks enable a virtual address to flexibly map
to any physical address. This flexibility necessitates large translation structures leading to:

(1) high translation latency and (2) large translation-induced interference in the memory hierarchy
Motivation: Restricting the address mapping leads to compact translation structures and reduces
the overheads of address translation. Doing so across the entire memory has two major drawbacks:

(1) Limits core VM functionalities (e.qg., data sharing)
(2) Increases swapping activity in the presence of free physical memory

Key Idea: Utopia is a new hybrid virtual-to-physical address mapping scheme that allows both
flexible and restrictive hash-based address mappings to harmoniously co-exist in the system

Utopia manages physical memory using two types of physical memory segments:
Flexible Segment

X86-64

: Radix PT <
Function Relfie lable N\

Fast Translation Limited VM features Slow Translation Supports all VM features

Key Results: Outperforms (i) the state-of-the-art contiguity-aware translation scheme by 13%,
and (ii) achieves 95% of the performance of an ideal perfect-TLB

https://github.com/CMU-SAFARI/Utopia 5

SAFARI

Talk Outline

Virtual Memory Background
Address Translation Overheads
Utopia: Hybrid Address Mappings
Utopia: Key Challenges

Evaluation Results

SAFARI

Talk Outline

Virtual Memory Background

SAFARI

Virtual Memory Basics

A core feature of virtual memory management is that the
mapping between virtual-to-physical pages is fully-associative

Virtual Address Space Physical Address Space

Perform Page Table Walk (PTW) to retrieve the mapping

SAFARI

Page Table Walk in x86-64

Virtual Address
PLs4 PL3 PL2 PL1

9 bits 9 bits][9 bits 9 bits

CR3

Physical Frame Number

SAFARI

Page Table Walk in x86-64

Virtual Address

9 bits 9 bits 9 bits 9 bits 12 bits
| I —
v v
Physical Frame Number 12 bits

Four sequential memory accesses

during a page table walk in x86-64

SAFARI

Address Translation Flow (I)

Core

Virtual
Address

SAFARI

>

Memory
Management Unit

|

Page
Table

|

Memory
Hierarchy

Address Translation Flow (Il)

Memory Management Unit

» L11-TLB

Miss

Virtual
Address

—{ L1 D-TLB

Miss

Unified
L2 TLB

Miss

Page Walk
Caches

Miss

Page Table
Walker

SAFARI

Page
Table

Memory
Hierarchy

10

Address Translation Flow (1)

Physical Address Space

Memory
Management Unit

Swap in
—| DRAM |[+—

Page Table Entry

,| Swap
Space

SAFARI

Talk Outline

Address Translation Overheads

SAFARI

13

Data-Intensive Workloads

Output
Probabilities

Add & Norm

([Add & Norm Je~

uENon Mutti-Head
Feed Attention
Forward Nx
N Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
A 2} A 2
\ J U —
Positional & A Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

Generative Al Graph Analytics Bioinformatics

High address translation overheads

14
SAFARI

Address Translation Overhead

High-latency page table walks

Frequent page table walks

SAFARI

Address Translation Overhead

High latency
PTWs

High performance
overheads

SAFARI

!

Frequent
PTWs

High interference in

memory hierarchy

16

High Performance Overhead

@ State-of-the-art Page Table! O Perfect TLB

21.50
ks 31%
125

o

31.00
o

50.75
()

8-050
N ‘

Completely avoiding address translation

leads on average to 31% higher performance

[1] Skarlatos et al. “Elastic Cuckoo Page Tables: Rethinking Virtual Memory 17
SAFARI Translation for Parallelism” ASPLOS 2020

High Interference in Main Memory

@ State-of-the-art Page Table' O Perfect TLB

Y
N
&)

1.50
1.25

1.00 : t
0.75

0.50

Normalized
Row Buffer Conflicts
(§8]
~

Completely avoiding address translation
leads to 30% fewer DRAM row buffer conflicts

[1] Skarlatos et al. “Elastic Cuckoo Page Tables: Rethinking Virtual Memory 18
SAFARI Translation for Parallelism” ASPLOS 2020

ldea: Restricting VA-to-PA Mapping

Restrict the VA-to-PA mapping to
perform fast address translation®2

Virtual Address Space Physical Address Space
. 00000 |
00000
00010

Hash Mask

11100

[1] Picorel et al. "Near-Memory Address Translation” PACT 2017
[2] Gosakan et al. "Mosaic Pages: Big TLB Reach with Small Pages” ASPLOS 2023
SAFARI

ldea: Restricting VA-to-PA Mapping

Restrict the VA-to-PA mapping to
perform fast address translation®2

Virtual Address Space Physical Address Space

Hash Mask
11100

722

[1] Picorel et al. "Near-Memory Address Translation” PACT 2016

[2] Gosakan et al. "Mosaic Pages: Big TLB Reach with Small Pages” ASPLOS 2023 0

SAFARI

Drawbacks of Restricting VA-to-PA Mapping

Employing a restrictive mapping across the entire
memory comes with two key drawbacks:

1. Limits core VM functionalities such as data sharing

2. Increases swapping activity since the system
cannot map virtual pages to free physical pages

21

SAFARI

Effect on Swapping Activity

B Only Restrictive Mapping

O 6
7))

88 5
oQ 4
<<
O ©
N2 2
®D 1
E 9

5 0
2

Sole use of restrictive mapping leads to 2.37x

higher swapping activity over the baseline

SAFARI

Our Goal

Design a virtual-to-physical address mapping
scheme that:

* Provides fast and efficient translation using a
restrictive hash-based address mapping

* Enjoys the benefits of the conventional
fully-flexible address mapping

SAFARI

23

Talk Outline

Utopia: Hybrid Address Mappings

SAFARI

24,

Utopia: Key Idea

We propose Utopia, a new virtual-to-physical
mapping scheme that enables both:

Harmoniously co-exist in the system

SAFARI

25

Utopia: Key Idea

Manage physical memory using two types of
physical memory segments:

Restrictive Segments Flexible Segments

26
SAFARI

Utopia: Key Idea (I)

Restrictive Segment (RestSeq)

Page Page Page Page

Hash function

Virtual Page Number

Fast address translation
Limited VM functionalities

SAFARI

Utopia: Key Idea (lII)

Flexible Segment (FlexSeq)

Page Page Page Page

Page Table

Virtual Page Number

Supports all conventional
VM features

High-latency
address translation

SAFARI

RestSeq Properties

Structural Properties

Address Translation for Data in RestSegq

SAFARI “

RestSeq Properties

Structural Properties

RestSegq is organized in
a set-associative manner
similar to how hardware caches operate

SAFARI 3°

RestSeq: Structural Properties

Example: 2-way associative RestSeg with 2 sets

Seto Seta
| | |

4KB 4KB 4KB 4KB

Page Page Page Page

l I I\ | |
Wayo Wayai Wayo Way1

Set-associative design offers high flexibility

31
SAFARI

Multiple RestSegs in the System

RestSeg #1 RestSeqg #2

4KB 4KB 4KB 4KB 2MB 2MB
Page Page Page Page Page Page

Backward compatible with
large page mechanisms

32

SAFARI

RestSeq Properties

Address Translation for Data in RestSegq

SAFARI 33

Restrictive Segment Walk (RSW)

RestSeg

l - ll////éllé////%ilf////

|
Wayo Way 1, |Way o Way 1,

l

Seto Set2a

a

[Virtual Page]

SAFARI

34

Restrictive Segment Walk (RSW)

RestSeg
‘ 9 "//%?/////2,%/’/

I |
Wayo Way 1, |Way o Way 1,

l

Seto Set2a

How can we find out the physical location of

the virtual page?

[Virtual Page]

SAFARI 3

RSW Operations

(1) Tag Matching

2) Set Filtering

SAFARI

RestSeq: Tag Matching

» Tag matching requires comparing the tags of all ways with the
tag of the virtual page

» Tag Array (TAR): Array that stores the tag of each entry

TAR
. Tag | 16],
Virtual N/A
P o
Address Set # N/A
Set 1
N/A

Do we always have to do tag matching?

SAFARI 37

RestSeq: Set Filtering

* Set Filtering: quickly discover if a set in the RestSeq is empty or
not and filter tag mismatches

* Set Filter (SF): Array of counters that keep track of the number
of pages inside each set

Virtual
Address

SAFARI

>

SF

r

0

Set 0

Set 1

Tag

Matching

Address Translation in Utopia

System employs:
* 2 RestSegs, one for 4KB and one for 2MB pages

* 1 FlexSeqg
RestSeg
L1718 ¥ Walks S Page Table
Miss \ Walk
L2 TLB of

Access

SAFARI 39

Talk Outline

Utopia: Key Challenges

SAFARI

40

Utopia: Key Challenges

1. Which data should be placed in the
RestSeq?

2. How to maintain RestSegs in the system

3. How to integrate Utopia in the address
translation pipeline

SAFARI

41

Utopia: Key Challenges

1. Which data should be placed in the
RestSegs?

SAFARI

42

Page Placement in RestSeg

Our goal is to place costly-to-translate pages
into a RestSeq

We propose two techniques to perform data
placement in Utopia:

* Page-Fault-based Allocation Policy

* PTW-Tracking-based Migration Policy

SAFARI “3

Page-Fault-Based Allocation Policy

On a page fault
the page is directly allocated in a RestSeg

Page Fault

What about costly-to-translate pages

that reside in a FlexSeg?
RestSeg

SAFARI ol

PTW-Tracking-Based Migration Policy

Use unused bits of each PTE as a counter that tracks the
number and cost of PTWs for each page

Page Table Entry Unused bits
[Physical Frame # 1 Metadata I PTE Counters]

> Threshold
/

Migrate
RestSeg

SAFARI =

Utopia: Three Key Challenges

2. How to maintain RestSegs in the system

SAFARI

OS Support for Utopia

OS supports Utopia in three ways by handling:

1. Allocations in a RestSeq
2. Replacementsin a RestSeq

3. Migrations to/from a RestSeq

Detailed description in the paper

SAFARI &

Utopia: 3 Key Challenges

* How to integrate Utopia in the address
translation pipeline

SAFARI

RestSeqg Walker in MMU

FSM

r

&

.

TAR Cache

SAFARI

SF Cache

Memory
Hierarchy

49

MMU: Page inside RestSeq ()

SAFARI

L1TLB

Miss

TAR Cache

» SF Cache

50

MMU: Page inside RestSeq ()

SAFARI

L1TLB

Miss

TAR Cache

~ [

L2

——| Unified
TLB

» SF Cache

51

MMU: Page inside RestSeq ()

SAFARI

L1TLB

Miss

TAR Cache

» SF Cache

52

MMU: Page inside RestSeq ()

SAFARI

L1TLB

Miss

RestSeg Walker

Data in RestSeg

53

MMU: Page inside RestSeq ()

SAFARI

L1TLB

Miss

RestSeg Walker

Data in RestSeg

FlexSeg Walker

[Esm

=

PWCs

54

MMU: Page inside RestSeq ()

SAFARI

L1TLB

Miss

RestSeg Walker

Data in RestSeg

55

MMU: Page inside FlexSegq (ll)

SAFARI

L1TLB

Miss

TAR Cache

» SF Cache

MMU: Page inside FlexSegq (ll)

SAFARI

L1TLB

Miss

~ [

TAR Cache

L2
——| Unified
TLB

» SF Cache

57

MMU: Page inside FlexSegq (ll)

SAFARI

L1TLB

Miss

TAR Cache

» SF Cache

MMU: Page inside FlexSegq (ll)

SAFARI

L1TLB

Miss

RestSeg Walker

Data is not here

59

MMU: Page inside FlexSegq (ll)

SAFARI

L1TLB

Miss

RestSeg Walker

Data is not here

FlexSeg Walker

[Esm

=

PWCs

60

MMU: Page inside FlexSegq (ll)

SAFARI

L1TLB

Miss

RestSeg Walker

Data is not here

L2
Unified
TLB

Page Table Walker

Datais in

FlexSeg

61

Area & Power Overhead

* Area and power overhead evaluation using McPat

* Comparison to a high-end Intel Raptor Lake

Utopia incurs 0.64% area and
0.72% power overhead per core

62
SAFARI

Talk Outline

SAFARI

Evaluation Results

Evaluation Methodology

* Sniper Multicore Simulator extended with:
* Page table walker & page walk caches
* Buddy allocator
* Migration Latency

Our poster at MICRO 2023 SRC introduces

a new open-source simulation
framework for VM research

VIRIUOSO

https://github.com/CMU-SAFARI/Virtuoso

SAFARI

Evaluation Methodology

* Sniper Multicore Simulator extended with:
* Page table walker & page walk caches
* Buddy allocator
* Migration Latency

* Workloads: Executed for 5ooM instructions

GraphBIG: PR, BFS, BC, GC, CC

HPCC: Randacc

XSBench: Particle Simulation with 15K grid
DLRM: SLS-like

GenomicsBench: k-mer count

SAFARI

Evaluated Mechanisms

Baseline with Radix PT and Transparent Huge Pages enabled
POM-TLB*: State-of-the art large software-managed TLB
ECH?: State-of-the-art hash-based page table

RMM3: Contiguity-aware address translation
* Utopia: 512MB RestSegs (one for 4KB and one for 2MB pages)
P-TLB: Perfect L1 TLB (translation requests always hit in L1 TLB)

[1] Ryoo et al. "Rethinking TLB designs in virtualized environments: A very large part-of-memory TLB” ISCA ‘17
[2] Skarlatos et al. “Elastic Cuckoo Page Tables: Rethinking Virtual Memory Translation for Parallelism” ASPLOS ‘20
[3] Karakostas et al. "Redundant memory mappings for fast access to large memories” ISCA ‘15

66
SAFARI

Performance Results

OPOM-TLB OECH ®BRMM @Utopia 0OP-TLB

Utopia outperforms the second-best performing
scheme (RMM) by 13% and Radix by 24%

SAFARI

Performance Results

OPOM-TLB OECH ®BRMM @Utopia 0OP-TLB

Utopia outperforms the second-best performing
scheme (RMM) by 13% and Radix by 24%

Utopia’s performance is within 95% of P-TLB

SAFARI

Translation Latency

OPOM-TLB OECH B RMM @ Utopia

% 2100%

S S 80

k- 63%
< 4 60%

£ c

c S 40%

28 20%

O»m o

S5 0%

o

& & 00390‘5\ ¢ & S A S
Q % >

Utopia reduces average translation latency by

63% over Radix and 14% over RMM

SAFARI

Main Memory Interference

OPOM-TLB OECH ®BRMM @ Utopia OP-TLB

‘.g ——
%é’w
5 6
821.0 5
N £
=35 0.5
£ M
ZoéO.OO%OQéO%OQ 06-6
K O F O T LN Fy
Q S 0“

Utopia reduces row buffer conflicts by 20%

over Radix and 9% less than P-TLB

70
SAFARI

More Results and Detalls in the Paper

» Sensitivity across different hash functions

* Sensitivity to parallel/serial TLB access and RSW
* Sensitivity to RestSeqg size

* Reuse-level distribution of 4KB pages

» Effect of migration to memory requests

* TAR & SF cache hit rate

* Overhead across different context-switch quanta

https://arxiv.org/abs/2211.12205

SAFARI 7

More Results and Detalls in the Paper

*Se
*Se
*Se
* Re
« Ef
e TA
* O\

Utopia: Fast and Efficient Address Translation via Hybrid
Restrictive & Flexible Virtual-to-Physical Address Mappings

Konstantinos Kanellopoulos! Rahul Bera!
Rachata Ausavarungnirun? Rakesh Kumar?

Nandita Vijaykumar

Kosta Stojiljkovic! Nisa Bostanci
Nastaran Hajinazar* Mohammad Sadrosadati’
> Onur Mutlu!

1 1

Can Firtina

IETH Zirich ZKing Mongkut’s University of Technology North Bangkok
3Norwegian University of Science and Technology “Intel Labs 3University of Toronto

Abstract

Conventional virtual memory (VM) frameworks enable a virtual
address to flexibly map to any physical address. This flexibility
necessitates large data structures to store virtual-to-physical map-
pings, which leads to high address translation latency and large
translation-induced interference in the memory hierarchy, espe-
cially in data-intensive workloads. On the other hand, restricting
the address mapping so that a virtual address can only map to a
specific set of physical addresses can significantly reduce address
translation overheads by making use of compact and efficient trans-
lation structures. However, restricting the address mapping flexi-
bility across the entire main memory severely limits data sharing
across different processes and increases data accesses to the swap
space of the storage device even in the presence of free memory.
We propose Utopia, a new hybrid virtual-to-physical address
mapping scheme that allows both flexible and restrictive hash-based
address mapping schemes to harmoniously co-exist in the system.
The key idea of Utopia is to manage physical memory using two

twnece nf nhveiral memarv ceomente: rectrictive ceomente and flavi-

1 Introduction

Virtual memory (VM) serves as a foundational element in most com-
puting systems, simplifying the programming model by offering
an abstraction layer over physical memory [2-24]. In the presence
of VM, the operating system (OS) maps each virtual address to its
corresponding physical memory address to facilitate application-
transparent memory management, process isolation, and memory
protection. The virtual-to-physical mapping scheme in conven-
tional VM frameworks allows a virtual address to flexibly map to
any physical address. This flexibility enables key VM functionali-
ties, such as (i) data sharing between processes while maintaining
process isolation and (ii) avoiding frequent swapping (i.e., avoiding
storing data in the swap space of the storage device in the presence
of free main memory space). However, a flexible mapping scheme
requires mapping metadata for every virtual address and its corre-
sponding physical address, which is stored in the page table (PT). As
shown in multiple prior works [25-35], data-intensive workloads
do not efficiently use translation-dedicated hardware structures and

the nracecenr narfarme freament PT acceccee ie a nracece rallad

RSW

uanta

https://arxiv.org/abs/2211.12205

SAFARI

72

Conclusion

We propose Utopia, a new virtual-to-physical
mapping scheme that enables both:

Harmoniously co-exist in the system

Utopia achieves (i) 13% higher performance than
the state-of-the-art contiguity-aware translation scheme and
(ii) 95% of the performance of an ideal perfect-TLB

Utopia is open source
https://github.com/CMU-SAFARI/Utopia

SAFARI 73

2[a]

UTOPIA

Fast and Efficient Address Translation
via Hybrid Restrictive & Flexible
Virtualto-Physical Address Mappings

e

ﬁ

https://github.com/CMU-SAFARI/Utopia | [ElizxE
Konstantinos Kanellopoulos

Rahul Bera, Kosta Stojilikovic, Nisa Bostanci, Can Firtina,

Rachata Ausavarungnirun, Rakesh Kumar, Nastaran Hajinazar,
Mohammad Sadrosadati, Nandita Vijaykumar, and Onur Mutlu

SAFARI Eﬂ-lzur/ch
) ®@NTNU

- S
% TORONTO

Address Translation Flow (1)

Translation Latency

BN HitinTLBs

Virtual
Address Memory

" Management Unit

Core

SAFARI

|

Page
Table

|

Memory
Hierarchy

75

Virtual Memory Basics

Virtual Memory (VM) is one of the cornerstones
of most modern computing systems

Conventional VM designs provide :

(1) Application-transparent memory management
(2) Data sharing

(3) Process isolation

SAFARI

Address Translation Flow (1)

Translation Latency

TLB Miss Page

Table

Memory
Hierarchy

Cache/DRAM Access

SAFARI 77

High Latency PTWs

Irreqular Memory Large
Access Patterns Datasets

l l

Large and costly-to-access PT

SAFARI

Frequent PTWs

OL2 TLB 1.5K entries 02K O4K E8K E16K E32K H64K

Even the largest 64K-entry L2 TLB
experiences 24 MPKI on average

SAFARI 79

High Latency PTWs

B Radix OECH l

g
3150 1381
c
©

86 cycles on average to access
the state-of-the-art hash-based PT

80
SAFARI

OS: Allocation Iin RestSeg

£

There is a free way!

[Tag Array] Store data there

SAFARI

81

OS: Allocation Iin RestSeg

£

Discover if thereis a

[Tag Array] free way in the set

SAFARI

82

OS: Replacement in RestSeg

£

No way is free!
[Tag Array] If no page-fault,

evict a page!

SAFARI

OS: Migration to/from RestSeg

DMA engine is responsible for migrating data
between RestSegs and FlexSegs

Migration
RestSeg EDN!A
ngine

SAFARI

Architectural Support for Utopia

New hardware components to support Utopia:

* Specialized hardware circuitry to perform the tag matching and
the set filtering

- Avoid expensive software-based accesses to translation structures

* Small caches for the the Tag Array and Set Filter

- Accesses to Permissions Filter and Tag Array may exhibit high spatial
and temporal locality

* Minor modifications in the address translation pipeline:
- RSW occurs in parallel with L2 TLB access

SAFARI

