
Fast and Efficient Address Translation
via Hybrid Restrictive & Flexible

Virtual-to-Physical Address Mappings

Konstantinos Kanellopoulos
Rahul Bera, Kosta Stojiljkovic, Nisa Bostanci, Can Firtina,

Rachata Ausavarungnirun, Rakesh Kumar, Nastaran Hajinazar,
Mohammad Sadrosadati, Nandita Vijaykumar, and Onur Mutlu

UTOPIA

Executive Summary
Problem: Conventional virtual memory (VM) frameworks enable a virtual address to flexibly map
to any physical address. This flexibility necessitates large translation structures leading to:

(1) high translation latency and (2) large translation-induced interference in the memory hierarchy

2

Motivation: Restricting the address mapping leads to compact translation structures and reduces
the overheads of address translation. Doing so across the entire memory has two major drawbacks:
(1) Limits core VM functionalities (e.g., data sharing)
(2) Increases swapping activity in the presence of free physical memory

Key Idea: Utopia is a new hybrid virtual-to-physical address mapping scheme that allows both
flexible and restrictive hash-based address mappings to harmoniously co-exist in the system

Utopia manages physical memory using two types of physical memory segments:
Flexible Segment

Page
TablePage
X86-64

Radix PT

Restrictive Segment

Page Hash
Function

Modulo
Hash

Fast Translation Limited VM features Supports all VM featuresSlow Translation

Key Results: Outperforms (i) the state-of-the-art contiguity-aware translation scheme by 13%,
and (ii) achieves 95% of the performance of an ideal perfect-TLB

https://github.com/CMU-SAFARI/Utopia

Talk Outline

3

Virtual Memory Background

Address Translation Overheads

Utopia: Hybrid Address Mappings

Utopia: Key Challenges

Evaluation Results

Talk Outline

4

Virtual Memory Background

A core feature of virtual memory management is that the
mapping between virtual-to-physical pages is fully-associative

Virtual Memory Basics

5

Virtual Address Space Physical Address Space

Page
Table

Perform Page Table Walk (PTW) to retrieve the mapping

Page Table Walk in x86-64

9 bits

Virtual Address

9 bits 9 bits 9 bits

CR3

6

Physical Frame Number

PL4 PL3 PL2 PL1

Page Table Walk in x86-64

9 bits

Virtual Address

9 bits 9 bits 9 bits

7

Physical Frame Number

12 bits

12 bits

1 2 3 4

Four sequential memory accesses
during a page table walk in x86-64

Address Translation Flow (I)

Memory
HierarchyCore

Page
Table

Memory
Management Unit

9

Virtual
Address

Address Translation Flow (II)

L1 I-TLB

L1 D-TLB

Unified
L2 TLB

Page Walk
Caches

Page Table
Walker

Miss
Miss

Miss

Virtual
Address

Miss

10

Memory
Hierarchy

Memory Management Unit

Page
Table

Address Translation Flow (III)

11

DRAM

Memory
Management Unit

Swap
Space

Physical Address Space

Page Table Entry

Swap in

Talk Outline

13

Address Translation Overheads

Data-Intensive Workloads

Graph Analytics Bioinformatics

14

High address translation overheads

Generative AI

Address Translation Overhead

15

Frequent page table walks

High-latency page table walks

Address Translation Overhead

16

High latency
PTWs

Frequent
PTWs

High performance
overheads

High interference in
memory hierarchy

+

High Performance Overhead

17

Completely avoiding address translation
leads on average to 31% higher performance

0.50

0.75

1.00

1.25

1.50

BC BFS CC
DLRM

GEN GC PR
RND

SSSP TC XS
GMEAN

Sp
ee

du
p

ov
er

 R
ad

ix

1.93x1.53x

State-of-the-art Page Table1 Perfect TLB

31%

[1] Skarlatos et al. “Elastic Cuckoo Page Tables: Rethinking Virtual Memory
Translation for Parallelism” ASPLOS 2020

High Interference in Main Memory

18

0.50
0.75
1.00
1.25
1.50
1.75

BC BFS CC
DLRM

GEN GC PR
RND

SSSP TC XS
GMEAN

N
or

m
al

iz
ed

R

ow
 B

uf
fe

r C
on

fli
ct

s

State-of-the-art Page Table1 Perfect TLB

Completely avoiding address translation
leads to 30% fewer DRAM row buffer conflicts

30%

[1] Skarlatos et al. “Elastic Cuckoo Page Tables: Rethinking Virtual Memory
Translation for Parallelism” ASPLOS 2020

Idea: Restricting VA-to-PA Mapping

19

Restrict the VA-to-PA mapping to
perform fast address translation1,2

..
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1

..

0 0 0 0 0
0 0 0 0 0
0 0 0 1 0

..

..

Hash
Function

Virtual Address Space Physical Address Space

Hash Mask
11100

[1] Picorel et al. “Near-Memory Address Translation” PACT 2017

[2] Gosakan et al. “Mosaic Pages: Big TLB Reach with Small Pages” ASPLOS 2023

Idea: Restricting VA-to-PA Mapping

20

..
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1

..

0 0 0 1 0 Hash
Function

Virtual Address Space Physical Address Space

Hash Mask
11100

Restrict the VA-to-PA mapping to
perform fast address translation1,2

[1] Picorel et al. “Near-Memory Address Translation” PACT 2016

[2] Gosakan et al. “Mosaic Pages: Big TLB Reach with Small Pages” ASPLOS 2023

Drawbacks of Restricting VA-to-PA Mapping

21

Employing a restrictive mapping across the entire
memory comes with two key drawbacks:

1. Limits core VM functionalities such as data sharing

2. Increases swapping activity since the system
cannot map virtual pages to free physical pages

Effect on Swapping Activity

22

2.37x

0
1
2
3
4
5
6

BC BFS CC
DLRM

GEN GC PR
RND

SSSP TC XS
GMEANN

or
m

al
iz

ed
 A

cc
es

se
s

to
 S

w
ap

 S
pa

ce

Only Restrictive Mapping

Sole use of restrictive mapping leads to 2.37x
higher swapping activity over the baseline

Our Goal

Design a virtual-to-physical address mapping
scheme that:

• Provides fast and efficient translation using a
restrictive hash-based address mapping

• Enjoys the benefits of the conventional
fully-flexible address mapping

23

Talk Outline

24

Utopia: Hybrid Address Mappings

Utopia: Key Idea

We propose Utopia, a new virtual-to-physical
mapping scheme that enables both:

25

Flexible MappingRestrictive Mapping

Harmoniously co-exist in the system

Utopia: Key Idea

26

Manage physical memory using two types of
physical memory segments:

Flexible SegmentsRestrictive Segments

Restrictive Segments

Utopia: Key Idea (I)

27

Flexible Segments

Fast address translation

Limited VM functionalities

Page

Virtual Page Number

Hash function

Restrictive Segment (RestSeg)

PagePagePage

Flexible Segments

Utopia: Key Idea (II)

28

Restrictive Segments

High-latency
address translation

Supports all conventional
VM features

Flexible Segment (FlexSeg)

Page Page Page Page

Virtual Page Number

Page Table

RestSeg Properties

29

Structural Properties

Address Translation for Data in RestSeg

RestSeg Properties

30

Structural Properties

RestSeg is organized in
a set-associative manner

similar to how hardware caches operate

RestSeg: Structural Properties

31

Example: 2-way associative RestSeg with 2 sets

4KB
Page

4KB
Page

4KB
Page

4KB
Page

Set 0

Way 0 Way 1 Way 0 Way 1

Set 1

Set-associative design offers high flexibility

Multiple RestSegs in the System

32

4KB
Page

4KB
Page

4KB
Page

4KB
Page

2MB
Page

2MB
Page

RestSeg #1 RestSeg #2

Backward compatible with
large page mechanisms

RestSeg Properties

33

Address Translation for Data in RestSeg

RestSeg

Page Page Page Page

Set 0

Way 0 Way 1 Way 0 Way 1

Set 1

Virtual Page

Restrictive Segment Walk (RSW)

34

RestSeg

Page Page Page Page

Set 0

Way 0 Way 1 Way 0 Way 1

Set 1

Virtual Page

Restrictive Segment Walk (RSW)

35

How can we find out the physical location of
the virtual page?

RSW Operations

36

Tag Matching1

Set Filtering2

Virtual
Address

Hash
Function

RestSeg: Tag Matching

Tag

• Tag matching requires comparing the tags of all ways with the
tag of the virtual page

• Tag Array (TAR): Array that stores the tag of each entry

TAR

TAG

N/A

N/A

N/A

Set 0

Set 1

37

Set #

Do we always have to do tag matching?

RestSeg: Set Filtering
• Set Filtering: quickly discover if a set in the RestSeg is empty or

not and filter tag mismatches

• Set Filter (SF): Array of counters that keep track of the number
of pages inside each set

38

Virtual
Address

Hash
Function

SF

1

0

Set 0

Set 1

Set # Tag
Matching

Address Translation in Utopia

System employs:
• 2 RestSegs, one for 4KB and one for 2MB pages
• 1 FlexSeg

39

L1 TLB
Miss

RestSeg
Walks

L2 TLB
Access

Page Table
Walk

Talk Outline

40

Utopia: Key Challenges

Utopia: Key Challenges

1. Which data should be placed in the
RestSeg?

2. How to maintain RestSegs in the system

3. How to integrate Utopia in the address
translation pipeline

41

Utopia: Key Challenges

1. Which data should be placed in the
RestSegs?

2. How to maintain RestSegs in the system

3. How to integrate Utopia in the address
translation pipeline

42

Page Placement in RestSeg

Our goal is to place costly-to-translate pages
into a RestSeg

We propose two techniques to perform data
placement in Utopia:

• Page-Fault-based Allocation Policy

• PTW-Tracking-based Migration Policy

43

Page-Fault-Based Allocation Policy

On a page fault
the page is directly allocated in a RestSeg

RestSeg

Allocate

Page Fault

44

What about costly-to-translate pages
that reside in a FlexSeg?

PTW-Tracking-Based Migration Policy

Use unused bits of each PTE as a counter that tracks the
number and cost of PTWs for each page

Physical Frame #

Page Table Entry

Metadata PTE Counters

> Threshold

RestSeg

Migrate

Unused bits

45

Utopia: Three Key Challenges

1. Which data should be placed in the
RestSegs?

2. How to maintain RestSegs in the system

3. How to integrate Utopia in the address
translation pipeline

46

OS Support for Utopia

OS supports Utopia in three ways by handling:

1. Allocations in a RestSeg

2. Replacements in a RestSeg

3. Migrations to/from a RestSeg

47

Detailed description in the paper

Utopia: 3 Key Challenges

•Which data should be placed in the
RestSegs?

•How to maintain RestSegs in the system

•How to integrate Utopia in the address
translation pipeline

48

RestSeg Walker in MMU

49

TAR Cache

SF Cache

RestSeg Walker
FSM

Memory
Hierarchy

MMU: Page inside RestSeg (I)

50

L1 TLB

TAR Cache

SF Cache

RestSeg Walker
FSM

Miss

MMU: Page inside RestSeg (I)

51

L1 TLB

TAR Cache

SF Cache

RestSeg Walker
FSM

Miss

L2
Unified

TLB

MMU: Page inside RestSeg (I)

52

L1 TLB

TAR Cache

SF Cache

RestSeg Walker
FSM

Miss

L2
Unified

TLB
Stall

MMU: Page inside RestSeg (I)

53

L1 TLB

TAR Cache

SF Cache

RestSeg Walker
FSM

Miss
Data in RestSeg

Stall

MMU: Page inside RestSeg (I)

54

L1 TLB

TAR Cache

SF Cache

RestSeg Walker
FSM

Miss
Data in RestSeg

Stall PWCs

FlexSeg Walker
FSM

MMU: Page inside RestSeg (I)

55

L1 TLB

TAR Cache

SF Cache

RestSeg Walker
FSM

Miss
Data in RestSeg

Stall PWCs

FlexSeg Walker
FSM

MMU: Page inside FlexSeg (II)

56

L1 TLB

TAR Cache

SF Cache

RestSeg Walker
FSM

Miss

MMU: Page inside FlexSeg (II)

57

L1 TLB

TAR Cache

SF Cache

RestSeg Walker
FSM

Miss

L2
Unified

TLB

MMU: Page inside FlexSeg (II)

58

L1 TLB

TAR Cache

SF Cache

RestSeg Walker
FSM

Miss

L2
Unified

TLB
Stall

MMU: Page inside FlexSeg (II)

59

L1 TLB

TAR Cache

SF Cache

RestSeg Walker
FSM

Miss

L2
Unified

TLB
Stall

Data is not here

MMU: Page inside FlexSeg (II)

60

L1 TLB

TAR Cache

SF Cache

RestSeg Walker
FSM

Miss

L2
Unified

TLB
Stall

Data is not here

PWCs

FlexSeg Walker
FSM

MMU: Page inside FlexSeg (II)

61

L1 TLB

TAR Cache

SF Cache

RestSeg Walker
FSM

Miss

L2
Unified

TLB

Data is not here

PWCs

Page Table Walker
FSM

Data is in
FlexSeg

Area & Power Overhead

• Area and power overhead evaluation using McPat

• Comparison to a high-end Intel Raptor Lake

62

Utopia incurs 0.64% area and
0.72% power overhead per core

Talk Outline

63

Evaluation Results

Evaluation Methodology
• Sniper Multicore Simulator extended with:
• Page table walker & page walk caches
• Buddy allocator
• Migration Latency

64

Our poster at MICRO 2023 SRC introduces
a new open-source simulation

framework for VM research

https://github.com/CMU-SAFARI/Virtuoso

Evaluation Methodology
• Sniper Multicore Simulator extended with:
• Page table walker & page walk caches
• Buddy allocator
• Migration Latency

• Workloads: Executed for 500M instructions

• GraphBIG: PR, BFS, BC, GC, CC
• HPCC: Randacc
• XSBench: Particle Simulation with 15K grid
• DLRM: SLS-like
• GenomicsBench: k-mer count

65

Evaluated Mechanisms

• Baseline with Radix PT and Transparent Huge Pages enabled

• POM-TLB1: State-of-the art large software-managed TLB

• ECH2: State-of-the-art hash-based page table

• RMM3: Contiguity-aware address translation

• Utopia: 512MB RestSegs (one for 4KB and one for 2MB pages)

• P-TLB: Perfect L1 TLB (translation requests always hit in L1 TLB)

66

[2] Skarlatos et al. “Elastic Cuckoo Page Tables: Rethinking Virtual Memory Translation for Parallelism” ASPLOS ‘20
[1] Ryoo et al. “Rethinking TLB designs in virtualized environments: A very large part-of-memory TLB” ISCA ’17

[3] Karakostas et al. “Redundant memory mappings for fast access to large memories” ISCA ’15

Performance Results

67

0.8
0.9
1.0
1.2
1.3
1.4
1.5

BC
BFS CC

DLR
M

GEN GC PR
RND

SSSP TC XS

GMEANSp
ee

du
p

ov
er

 R
ad

ix

POM-TLB ECH RMM Utopia P-TLB

Utopia outperforms the second-best performing
scheme (RMM) by 13% and Radix by 24%

13%

Performance Results

68

Utopia’s performance is within 95% of P-TLB

0.8
0.9
1.0
1.2
1.3
1.4
1.5

BC
BFS CC

DLR
M

GEN GC PR
RND

SSSP TC XS

GMEANSp
ee

du
p

ov
er

 R
ad

ix

POM-TLB ECH RMM Utopia P-TLB

Translation Latency

69

63%

0%
20%
40%
60%
80%
100%

BC
BFS CC

DLR
M

GEN GC PR
RND

SSSP TC XS

GMEANR
ed

uc
tio

n
in

 A
dd

re
ss

Tr

an
sl

at
io

n
 L

at
en

cy

POM-TLB ECH RMM Utopia

Utopia reduces average translation latency by
63% over Radix and 14% over RMM

Main Memory Interference

70

0.0

0.5

1.0

1.5

BC
BFS CC

DLR
M

GEN GC PR
RND

SSSP TC XS

GMEAN

N
or

m
al

iz
ed

 D
R

AM

R
ow

 B
uf

fe
r C

on
fli

ct
s

POM-TLB ECH RMM Utopia P-TLB

Utopia reduces row buffer conflicts by 20%
over Radix and 9% less than P-TLB

More Results and Details in the Paper

• Sensitivity across different hash functions
• Sensitivity to parallel/serial TLB access and RSW
• Sensitivity to RestSeg size
• Reuse-level distribution of 4KB pages
• Effect of migration to memory requests
• TAR & SF cache hit rate
•Overhead across different context-switch quanta

71

https://arxiv.org/abs/2211.12205

More Results and Details in the Paper

• Sensitivity across different hash functions
• Sensitivity to parallel/serial TLB access and RSW
• Sensitivity to RestSeg size
• Reuse-level distribution of 4KB pages
• Effect of migration to memory requests
• TAR & SF cache hit rate
•Overhead across different context-switch quanta

72

https://arxiv.org/abs/2211.12205

Conclusion

73

We propose Utopia, a new virtual-to-physical
mapping scheme that enables both:

Flexible MappingRestrictive Mapping

Harmoniously co-exist in the system

https://github.com/CMU-SAFARI/Utopia

Utopia is open source

Utopia achieves (i) 13% higher performance than
the state-of-the-art contiguity-aware translation scheme and

(ii) 95% of the performance of an ideal perfect-TLB

Fast and Efficient Address Translation
via Hybrid Restrictive & Flexible

Virtual-to-Physical Address Mappings

Konstantinos Kanellopoulos
Rahul Bera, Kosta Stojiljkovic, Nisa Bostanci, Can Firtina,

Rachata Ausavarungnirun, Rakesh Kumar, Nastaran Hajinazar,
Mohammad Sadrosadati, Nandita Vijaykumar, and Onur Mutlu

UTOPIA

https://github.com/CMU-SAFARI/Utopia

Address Translation Flow (III)

75

Memory
HierarchyCore

Page
Table

Memory
Management Unit

Virtual
Address

Translation Latency

Hit in TLBs

Virtual Memory Basics

Virtual Memory (VM) is one of the cornerstones
of most modern computing systems

Conventional VM designs provide :

(1) Application-transparent memory management

(2) Data sharing

(3) Process isolation

76

Address Translation Flow (III)

77

Memory
HierarchyCore

Page
Table

Memory
Management Unit

Virtual
AddressCache/DRAM Access

TLB Miss

Translation Latency

High Latency PTWs

78

Irregular Memory
Access Patterns

Large
Datasets

Large and costly-to-access PT

79

0
20
40
60
80

BC
BFS CC

DLR
M

GEN GC PR
RND

SSSP TC XS

GMEAN

L2
 T

LB
 M

PK
I

L2 TLB 1.5K entries 2K 4K 8K 16K 32K 64K

Even the largest 64K-entry L2 TLB
experiences 24 MPKI on average

Frequent PTWs

High Latency PTWs

80

138

86

0
25
50
75

100
125
150

BC
BFS CC

DLRM
GEN GC PR

RND
SSSP TC XS

GMEAN

PT
W

 L
at

en
cy

 (c
yc

le
s)

Radix ECH

86 cycles on average to access
the state-of-the-art hash-based PT

OS: Allocation in RestSeg

VPN

Hash
Function

Tag Array There is a free way!
Store data there

81

OS: Allocation in RestSeg

VPN

Hash
Function

Tag Array Discover if there is a
free way in the set

82

OS: Replacement in RestSeg

VPN

Hash
Function

Tag Array No way is free!
If no page-fault,
evict a page!

83

OS: Migration to/from RestSeg

RestSeg

Migration

FlexSeg

DMA engine is responsible for migrating data
between RestSegs and FlexSegs

84

DMA
Engine

Architectural Support for Utopia

New hardware components to support Utopia:

• Specialized hardware circuitry to perform the tag matching and
the set filtering

- Avoid expensive software-based accesses to translation structures

• Small caches for the the Tag Array and Set Filter
- Accesses to Permissions Filter and Tag Array may exhibit high spatial
and temporal locality

• Minor modifications in the address translation pipeline:
- RSW occurs in parallel with L2 TLB access

85

